toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Petrov, M.; Bekaert, J.; Milošević, M.V. pdf  url
doi  openurl
  Title Superconductivity in gallenene Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 3 Pages 035056  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Among the large variety of two-dimensional (2D) materials discovered to date, elemental monolayers that host superconductivity are very rare. Using ab initio calculations we show that recently synthesized gallium monolayers, coined gallenene, are intrinsically superconducting through electron-phonon coupling. We reveal that Ga-100 gallenene, a planar monolayer isostructural with graphene, is the structurally simplest 2D superconductor to date, furthermore hosting topological edge states due to its honeycomb structure. Our anisotropic Eliashberg calculations show distinctly three-gap superconductivity in Ga-100, in contrast to the alternative buckled Ga-010 gallenene which presents a single anisotropic superconducting gap. Strikingly, the critical temperature (T ( c )) of gallenene is in the range of 7-10 K, exceeding the T ( c ) of bulk gallium from which it is exfoliated. Finally we explore chemical functionalization of gallenene with hydrogen, and report induced multigap superconductivity with an enhanced T ( c ) in the resulting gallenane compound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000667458500001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 8 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:179623 Serial 7025  
Permanent link to this record
 

 
Author Tao, Z.H.; Dong, H.M.; Milošević, M.V.; Peeters, F.M.; Van Duppen, B. doi  openurl
  Title Tailoring dirac plasmons via anisotropic dielectric environment by design Type A1 Journal article
  Year 2021 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 16 Issue 5 Pages 054030  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in a two-dimensional (2D) crystal are strongly affected by the dielectric properties of the environment, due to interaction of their electric field lines with the surrounding medium. Using graphene as a 2D reservoir of free carriers, one can engineer a material configuration that provides an anisotropic environment to the plasmons. In this work, we discuss the physical properties of Dirac plasmons in graphene surrounded by an arbitrary anisotropic dielectric and exemplify how h-BN-based heterostructures can be designed to bear the required anisotropic characteristics. We calculate how dielec-tric anisotropy impacts the spatial propagation of the plasmons and find that an anisotropy-induced plasmon mode emerges, together with a damping pathway, that stem from the out-of-plane off-diagonal elements in the dielectric tensor. Furthermore, we find that one can create hyperbolic plasmons by inher-iting the dielectric hyperbolicity of the designed material environment. Strong control over plasmon propagation patterns can be realized in a similar manner. Finally, we show that in this way one can also control the polarization of the light-matter excitations that constitute the plasmon. Taken together, our results promote the design of the dielectric environment as an effective path to tailor the plasmonic response of graphene on the nanoscopic level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000720372500002 Publication Date 2021-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.808 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.808  
  Call Number UA @ admin @ c:irua:184063 Serial 7028  
Permanent link to this record
 

 
Author Sevik, C.; Bekaert, J.; Petrov, M.; Milošević, M.V. url  doi
openurl 
  Title High-temperature multigap superconductivity in two-dimensional metal borides Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials  
  Volume 6 Issue 2 Pages 024803  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766666300003 Publication Date 2022-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 4 Open Access Not_Open_Access  
  Notes Universiteit Antwerpen; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, COST-118F187 ; Air Force Office of Scientific Research, FA9550-19-1-7048 ; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 3.4  
  Call Number CMT @ cmt @c:irua:187126 Serial 7047  
Permanent link to this record
 

 
Author Menezes, R.M.; Šabani, D.; Bacaksiz, C.; de Souza Silva, C.C.; Milošević, M.V. url  doi
openurl 
  Title Tailoring high-frequency magnonics in monolayer chromium trihalides Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025021  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Monolayer chromium-trihalides, the archetypal two-dimensional (2D) magnetic materials, are readily suggested as a promising platform for high-frequency magnonics. Here we detail the spin-wave properties of monolayer CrBr<sub>3</sub>and CrI<sub>3</sub>, using spin-dynamics simulations parametrized from the first principles. We reveal that spin-wave dispersion can be tuned in a broad range of frequencies by strain, paving the way towards flexo-magnonic applications. We further show that ever-present halide vacancies in these monolayers host sufficiently strong Dzyaloshinskii-Moriya interaction to scatter spin-waves, which promotes design of spin-wave guides by defect engineering. Finally we discuss the spectra of spin-waves propagating across a moiré-periodic modulation of magnetic parameters in a van der Waals heterobilayer, and show that the nanoscale moiré periodicities in such samples are ideal for realization of a magnonic crystal in the terahertz frequency range. Recalling the additional tunability of magnetic 2D materials by electronic gating, our results situate these systems among the front-runners for prospective high-frequency magnonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000771735500001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco; Special Research Funds of the University of Antwerp; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fonds Wetenschappelijk Onderzoek; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187125 Serial 7048  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 7 Pages 074205-74208  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832387000006 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:189498 Serial 7130  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Controlling the hybridization gap and transport in a thin-film topological insulator : effect of strain, and electric and magnetic field Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 3 Pages 035119-7  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a thin-film topological insulator (TI), the edge states on two surfaces may couple by quantum tunneling, opening a gap known as the hybridization gap. Controlling the hybridization gap and transport has a variety of potential uses in photodetection and energy-harvesting applications. In this paper, we report the effect of strain, and electric and magnetic field, on the hybridization gap and transport in a thin Bi2Se3 film, investigated within the tight-binding theoretical framework. We demonstrate that vertical compression decreases the hybridization gap, as does tensile in-plane strain. Applying an electric field breaks the inversion symmetry and leads to a Rashba-like spin splitting proportional to the electric field, hence closing and reopening the gap. The influence of a magnetic field on thin-film TI is also discussed, starting from the role of an out-of-plane magnetic field on quantum Hall states. We further demonstrate that the hybridization gap can be controlled by an in-plane magnetic field, and that by applying a sufficiently strong field a quantum phase transition from an insulator to a semimetal can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832277500001 Publication Date 2022-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:189515 Serial 7140  
Permanent link to this record
 

 
Author Moura, V.N.; Dantas, D.S.; Farias, G.A.; Chaves, A.; Milošević, M.V. url  doi
openurl 
  Title Latent superconductivity at parallel interfaces in a superlattice dominated by another collective quantum phase Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 1 Pages 014516-10  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically examine behavior of superconductivity at parallel interfaces separating the domains of another dominant collective excitation, such as charge density waves or spin density waves. Due to their competitive coupling in a two-component Ginzburg-Landau model, suppression of the dominant order parameter at the interfacial planes allows for nucleation of the (hidden) superconducting order parameter at those planes. In such a case, we demonstrate how the number of the parallel interfacial planes and the distance between them are linked to the number and the size of the emerging superconducting gaps in the system, as well as the versatility and temperature evolution of the possible superconducting phases. These findings bear relevance to a broad selection of known layered superconducting materials, as well as to further design of artificial (e.g., oxide) superlattices, where the interplay between competing order parameters paves the way towards otherwise unattainable superconducting states, some with enhanced superconducting critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834346000004 Publication Date 2022-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:189520 Serial 7179  
Permanent link to this record
 

 
Author Vizarim, N.P.; Souza, J.C.B.; Reichhardt, C.J.O.; Reichhardt, C.; Milošević, M.V.; Venegas, P.A. url  doi
openurl 
  Title Soliton motion in skyrmion chains : stabilization and guidance by nanoengineered pinning Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 22 Pages 224409-224412  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a particle-based model we examine the depinning motion of solitons in skyrmion chains in quasi -onedimensional (1D) and two-dimensional (2D) systems containing embedded 1D interfaces. The solitons take the form of a particle or hole in a commensurate chain of skyrmions. Under an applied drive, just above a critical depinning threshold, the soliton moves with a skyrmion Hall angle of zero. For higher drives, the entire chain depins, and in a 2D system we observe that both the solitons and chain move at zero skyrmion Hall angle and then transition to a finite skyrmion Hall angle as the drive increases. In a 2D system with a 1D interface that is at an angle to the driving direction, there can be a reversal of the sign of the skyrmion Hall angle from positive to negative. Our results suggest that solitons in skyrmion systems could be used as information carriers in racetrack geometries that would avoid the drawbacks of finite skyrmion Hall angles. The soliton states become mobile at significantly lower drives than the depinning transition of the skyrmion chains themselves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823038900004 Publication Date 2022-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:189671 Serial 7209  
Permanent link to this record
 

 
Author Harrabi, K.; Gasmi, K.; Mekki, A.; Bahlouli, H.; Kunwar, S.; Milošević, M.V. pdf  url
doi  openurl
  Title Detection and measurement of picoseconds-pulsed laser energy using a NbTiN superconducting filament Type A1 Journal article
  Year 2023 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 33 Issue 5 Pages 2400205-5  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract investigate non-equilibrium states created by a laser beam incident on a superconducting NbTiN filament subject to an electrical pulse at 4 K. In absence of the laser excitation, when the amplitude of the current pulse applied to the filament exceeds the critical current value, we monitored the delay time td that marks the collapse of the superconducting phase which is then followed by a voltage rise. We linked the delay time to the applied current using the time-dependent Ginzburg-Landau (TDGL) theory, which enabled us to deduce the cooling (or heat-removal) time from the fit to the experimental data. Subsequently, we exposed the filament biased with a current pulse close to its critical value to a focused laser beam, inducing a normal state in the impact region of the laser beam. We showed that the energy of the incident beam and the incurred delay time are related to each other by a simple expression, that enables direct measurement of incident beam energy by temporal monitoring of the transport response. This method can be extended for usage in single-photon detection regime, and be used for accurate calibration of an arbitrary light source.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946265900016 Publication Date 2023-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.8; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195110 Serial 7295  
Permanent link to this record
 

 
Author Lazarevic, N.; Baum, A.; Milosavljevic, A.; Peis, L.; Stumberger, R.; Bekaert, J.; Solajic, A.; Pesic, J.; Wang, A.; Scepanovic, M.; Abeykoon, A.M.M.; Milošević, M.V.; Petrovic, C.; Popovic, Z.V.; Hackl, R. url  doi
openurl 
  Title Evolution of lattice, spin, and charge properties across the phase diagram of Fe1-xSx Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 9 Pages 094510-94519  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A Raman scattering study covering the entire substitution range of the FeSe1-xSx solid solution is presented. Data were taken as a function of sulfur concentration x for 0 <= x <= 1, of temperature and of scattering symmetry. All types of excitations including phonons, spins, and charges are analyzed in detail. It is observed that the energy and width of the iron-related B-1g phonon mode vary continuously across the entire range of sulfur substitution. The A(1g) chalcogenide mode disappears above x = 0.23 and reappears at a much higher energy for x = 0.69. In a similar way the spectral features appearing at finite doping in A(1g) symmetry vary discontinuously. The magnetic excitation centered at approximately 500 cm(-1) disappears above x = 0.23 where the A(1g) lattice excitations exhibit a discontinuous change in energy. The low-energy mode associated with fluctuations displays maximal intensity at the nematostructural transition and thus tracks the phase boundary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000917933500004 Publication Date 2022-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:194397 Serial 7304  
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
  Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume 18 Issue 3 Pages 034064-34069  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000870234200001 Publication Date 2022-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:191539 Serial 7307  
Permanent link to this record
 

 
Author Yorulmaz, U.; Šabani, D.; Yagmurcukardes, M.; Sevik, C.; Milošević, M.V. pdf  doi
openurl 
  Title High-throughput analysis of tetragonal transition metal Xenes Type A1 Journal article
  Year 2022 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 24 Issue 48 Pages 29406-29412  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report a high-throughput first-principles characterization of the structural, mechanical, electronic, and vibrational properties of tetragonal single-layer transition metal Xenes (t-TMXs). Our calculations revealed 22 dynamically, mechanically and chemically stable structures among the 96 possible free-standing layers present in the t-TMX family. As a fingerprint for their structural identification, we identified four characteristic Raman active phonon modes, namely three in-plane and one out-of-plane optical branches, with various intensities and frequencies depending on the material in question. Spin-polarized electronic calculations demonstrated that anti-ferromagnetic (AFM) metals, ferromagnetic (FM) metals, AFM semiconductors, and non-magnetic semiconductor materials exist within this family, evidencing the potential of t-TMXs for further use in multifunctional heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000892446100001 Publication Date 2022-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:192762 Serial 7310  
Permanent link to this record
 

 
Author Nulens, L.; Dausy, H.; Wyszynski, M.J.; Raes, B.; Van Bael, M.J.; Milošević, M.V.; Van de Vondel, J. url  doi
openurl 
  Title Metastable states and hidden phase slips in nanobridge SQUIDs Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 13 Pages 134518-134519  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We fabricated an asymmetric nanoscale SQUID consisting of one nanobridge weak link and one Dayem bridge weak link. The current phase relation of these particular weak links is characterized by multivaluedness and linearity. While the latter is responsible for a particular magnetic field dependence of the critical current (so-called vorticity diamonds), the former enables the possibility of different vorticity states (phase winding numbers) existing at one magnetic field value. In experiments the observed critical current value is stochastic in nature, does not necessarily coincide with the current associated with the lowest energy state and critically depends on the measurement conditions. In this paper, we unravel the origin of the observed metastability as a result of the phase dynamics happening during the freezing process and while sweeping the current. Moreover, we employ special measurement protocols to prepare the desired vorticity state and identify the (hidden) phase slip dynamics ruling the detected state of these nanodevices. In order to gain insights into the dynamics of the condensate and, more specifically the hidden phase slips, we performed time-dependent Ginzburg-Landau simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904657300007 Publication Date 2022-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:193393 Serial 7321  
Permanent link to this record
 

 
Author Soenen, M.; Bacaksiz, C.; Menezes, R.M.; Milošević, M.V. url  doi
openurl 
  Title Stacking-dependent topological magnons in bilayer CrI₃ Type A1 Journal article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 2 Pages 024421-10  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the potential of atomically thin magnets towards achieving tunable high-frequency magnonics, we detail the spin-wave dispersion of bilayer CrI3. We demonstrate that the magnonic behavior of the bilayer strongly depends on its stacking configuration and the interlayer magnetic ordering, where a topological band gap opens in the dispersion caused by the Dzyaloshinskii-Moriya and Kitaev interactions, classifying bilayer CrI3 as a topological magnon insulator. We further reveal that both the size and the topology of the band gap in a CrI3 bilayer with an antiferromagnetic interlayer ordering are tunable by an external magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000943169600001 Publication Date 2023-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195179 Serial 7338  
Permanent link to this record
 

 
Author Reichhardt, C.; Reichhardt, C.J.O.; Milošević, M.V. url  doi
openurl 
  Title Statics and dynamics of skyrmions interacting with disorder and nanostructures Type A1 Journal article
  Year 2022 Publication Reviews of modern physics Abbreviated Journal Rev Mod Phys  
  Volume 94 Issue 3 Pages 035005-35061  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetic skyrmions are topologically stable nanoscale particlelike objects that were discovered in 2009. Since that time, intense research interest in the field has led to the identification of numerous compounds that support skyrmions over a range of conditions spanning from cryogenic to room temperatures. Skyrmions can be set into motion under various types of driving, and the combination of their size, stability, and dynamics makes them ideal candidates for numerous applications. At the same time, skyrmions represent a new class of system in which the energy scales of the skyrmion-skyrmion interactions, sample disorder, temperature, and drive can compete. A growing body of work indicates that the static and dynamic states of skyrmions can be influenced strongly by pinning or disorder in the sample; thus, an understanding of such effects is essential for the eventual use of skyrmions in applications. The current state of knowledge regarding individual skyrmions and skyrmion assemblies interacting with quenched disorder or pinning is reviewed. The microscopic mechanisms for skyrmion pinning, including the repulsive and attractive interactions that can arise from impurities, grain boundaries, or nanostructures, are outlined. This is followed by descriptions of depinning phenomena, sliding states over disorder, the effect of pinning on the skyrmion Hall angle, the competition between thermal and pinning effects, the control of skyrmion motion using ordered potential landscapes such as one-or two-dimensional periodic asymmetric substrates, the creation of skyrmion diodes, and skyrmion ratchet effects. Highlighted are the distinctions arising from internal modes and the strong gyrotropic or Magnus forces that cause the dynamical states of skyrmions to differ from those of other systems with pinning, such as vortices in type-II superconductors, charge density waves, or colloidal particles. Throughout this review future directions and open questions related to the and in are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861559900001 Publication Date 2022-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6861; 1539-0756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 44.1 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 44.1  
  Call Number UA @ admin @ c:irua:191507 Serial 7339  
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Hamilton, A.R.; Milošević, M.V.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures Type A1 Journal article
  Year 2023 Publication Physical review letters Abbreviated Journal  
  Volume 130 Issue 5 Pages 057001-57006  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A supersolid, a counterintuitive quantum state in which a rigid lattice of particles flows without resistance, has to date not been unambiguously realized. Here we reveal a supersolid ground state of excitons in a double-layer semiconductor heterostructure over a wide range of layer separations outside the focus of recent experiments. This supersolid conforms to the original Chester supersolid with one exciton per supersolid site, as distinct from the alternative version reported in cold-atom systems of a periodic density modulation or clustering of the superfluid. We provide the phase diagram augmented by the supersolid. This new phase appears at layer separations much smaller than the predicted exciton normal solid, and it persists up to a solid-solid transition where the quantum phase coherence collapses. The ranges of layer separations and exciton densities in our phase diagram are well within reach of the current experimental capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968650900001 Publication Date 2023-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007; 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.6; 2023 IF: 8.462  
  Call Number UA @ admin @ c:irua:196742 Serial 8817  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title High Chern number in strained thin films of dilute magnetic topological insulators Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195119-6  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The quantum anomalous Hall effect was first observed experimentally by doping the Bi2Se3 materials family with chromium, where 5% doping induces an exchange field of around 0.1 eV. In ultrathin films, a topological phase transition from a normal insulator to a Chern insulator can be induced with an exchange field proportional to the hybridization gap. Subsequent transitions to states with higher Chern numbers require an exchange field larger than the (bulk) band gap, but are prohibited in practice by the detrimental effects of higher doping levels. Here, we show that threshold doping for these phase transitions in thin films is controllable by strain. As a consequence, higher Chern states can be reached with experimentally feasible doping, sufficiently dilute for the topological insulator to remain structurally stable. Such a facilitated realization of higher Chern insulators opens prospects for multichannel quantum computing, higher-capacity circuit interconnects, and energy-efficient electronic devices at elevated temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000995111000003 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197295 Serial 8820  
Permanent link to this record
 

 
Author Pandey, T.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal  
  Volume 11 Issue 33 Pages 11185-11194  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001041124900001 Publication Date 2023-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4; 2023 IF: 5.256  
  Call Number UA @ admin @ c:irua:198296 Serial 8821  
Permanent link to this record
 

 
Author Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2023 Publication Applied physics letters Abbreviated Journal  
  Volume 123 Issue 3 Pages 033102-33106  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033604700003 Publication Date 2023-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4; 2023 IF: 3.411  
  Call Number UA @ admin @ c:irua:198382 Serial 8823  
Permanent link to this record
 

 
Author Tang, C.S.; Zeng, S.; Wu, J.; Chen, S.; Naradipa, M.A.; Song, D.; Milošević, M.V.; Yang, P.; Diao, C.; Zhou, J.; Pennycook, S.J.; Breese, M.B.H.; Cai, C.; Venkatesan, T.; Ariando, A.; Yang, M.; Wee, A.T.S.; Yin, X. url  doi
openurl 
  Title Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy Type A1 Journal article
  Year 2023 Publication Applied physics reviews Abbreviated Journal  
  Volume 10 Issue 3 Pages 031406-31409  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) perovskite oxide interfaces are ideal systems to uncover diverse emergent properties, such as the arising polaronic properties from short-range charge-lattice interactions. Thus, a technique to detect this quasiparticle phenomenon at the buried interface is highly coveted. Here, we report the observation of 2D small-polarons at the LaAlO3/SrTiO3 conducting interface using high-resolution spectroscopic ellipsometry. First-principles investigations show that interfacial electron-lattice coupling mediated by the longitudinal phonon mode facilitates the formation of these polarons. This study resolves the long-standing question by attributing the formation of interfacial 2D small polarons to the significant mismatch between experimentally measured interfacial carrier density and theoretical values. Our study sheds light on the complexity of broken periodic lattice-induced quasi-particle effects and its relationship with exotic phenomena at complex oxide interfaces. Meanwhile, this work establishes spectroscopic ellipsometry as a useful technique to detect and locate optical evidence of polaronic states and other emerging quantum properties at the buried interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001038283300001 Publication Date 2023-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15; 2023 IF: 13.667  
  Call Number UA @ admin @ c:irua:198433 Serial 8847  
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; Barboza, E. da S.; Milošević, M.V.; Pereira, T.A.S. url  doi
openurl 
  Title Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 26 Pages 17907-17913  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio density functional theory (DFT) and DFT plus coherent potential approximation (DFT + CPA) are employed to reveal, respectively, the effect of in-plane strain and site-diagonal disorder on the electronic structure of cubic boron arsenide (BAs). It is demonstrated that tensile strain and static diagonal disorder both reduce the semiconducting one-particle band gap of BAs, and a V-shaped p-band electronic state emerges – enabling advanced valleytronics based on strained and disordered semiconducting bulk crystals. At biaxial tensile strains close to 15% the valence band lineshape relevant for optoelectronics is shown to coincide with one reported for GaAs at low energies. The role played by static disorder on the As sites is to promote p-type conductivity in the unstrained BAs bulk crystal, consistent with experimental observations. These findings illuminate the intricate and interdependent changes in crystal structure and lattice disorder on the electronic degrees of freedom of semiconductors and semimetals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001008414700001 Publication Date 2023-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.108  
  Call Number UA @ admin @ c:irua:197317 Serial 8861  
Permanent link to this record
 

 
Author Bekaert, J.; Bringmans, L.; Milošević, M.V. pdf  url
doi  openurl
  Title Ginzburg-Landau surface energy of multiband superconductors : derivation and application to selected systems Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 32 Pages 325602-325610  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We determine the energy of an interface between a multiband superconducting and a normal half-space, in presence of an applied magnetic field, based on a multiband Ginzburg-Landau (GL) approach. We obtain that the multiband surface energy is fully determined by the critical temperature, electronic densities of states, and superconducting gap functions associated with the different band condensates. This furthermore yields an expression for the thermodynamic critical magnetic field, in presence of an arbitrary number of contributing bands. Subsequently, we investigate the sign of the surface energy as a function of material parameters, through numerical solution of the GL equations. Here, we consider two distinct cases: (i) standard multiband superconductors with attractive interactions, and (ii) a three-band superconductor with a chiral ground state with phase frustration, arising from repulsive interband interactions. Furthermore, we apply this approach to several prime examples of multiband superconductors, such as metallic hydrogen and MgB2, based on microscopic parameters obtained from first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986281900001 Publication Date 2023-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:196664 Serial 8875  
Permanent link to this record
 

 
Author Foltyn, M.; Norowski, K.; Wyszynski, M.J.; De Arruda, A.S.; Milošević, M.V.; Zgirski, M. doi  openurl
  Title Probing confined vortices with a superconducting nanobridge Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 19 Issue 4 Pages 044073-12  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We realize a superconducting nanodevice in which vortex traps in the form of an aluminum square are integrated with a Dayem nanobridge. We perform field cooling of the traps arriving to different vortex configurations, dependent on the applied magnetic field, to demonstrate that the switching current of the bridge is highly sensitive to the presence and location of vortices in the trap. Our measurements exhibit unprecedented precision and ability to detect the first and successive vortex entries into all fabricated traps, from few hundred nm to 2 mu m in size. The experimental results are corroborated by Ginzburg-Landau simulations, which reveal the subtle yet crucial changes in the density of the superconducting condensate in the vicinity of the bridge with every additional vortex entry and relocation inside the trap. An ease of integration and simplicity make our design a convenient platform for studying dynamics of vortices in strongly confining geometries, involving a promise to manipulate vortex states electronically with simultaneous in situ control and monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000980861100007 Publication Date 2023-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:197356 Serial 8918  
Permanent link to this record
 

 
Author Soenen, M.; Milošević, M.V. url  doi
openurl 
  Title Tunable magnon topology in monolayer CrI₃ under external stimuli Type A1 Journal article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 8 Pages 084402-84409  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) honeycomb ferromagnets, such as monolayer chromium trihalides, are predicted to behave as topological magnon insulators, characterized by an insulating bulk and topologically protected edge states, giving rise to a thermal magnon Hall effect. Here we report the behavior of the topological magnons in monolayer CrI3 under external stimuli, including biaxial and uniaxial strain, electric gating, as well as in-plane and out-of-plane magnetic field, revealing that one can thereby tailor the magnetic states as well as the size and the topology of the magnonic bandgap. These findings broaden the perspective of using 2D magnetic materials to design topological magnonic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052941600003 Publication Date 2023-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:199201 Serial 8947  
Permanent link to this record
 

 
Author Duran, T.A.; Šabani, D.; Milošević, M.V.; Sahin, H. doi  openurl
  Title Experimental and theoretical investigation of synthesis and properties of dodecanethiol-functionalized MoS₂ Type A1 Journal article
  Year 2023 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 25 Issue 40 Pages 27141-27150  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Herein, we investigate the DDT (1-dodecanethiol) functionalization of exfoliated MoS2 by using experimental and theoretical tools. For the functionalization of MoS2, DDT treatment was incorporated into the conventional NMP (N-methyl pyrrolidone) exfoliation procedure. Afterward, it has been demonstrated that the functionalization process is successful through optical, morphological and theoretical analysis. The D, G and 2LA peaks seen in the Raman spectrum of exfoliated NMP-MoS2 particles, indicate the formation of graphitic species on MoS2 sheets. In addition, as the DDT ratio increases, the vacant sites on MoS2 sheets diminish. Moreover, at an optimized ratio of DDT-NMP, the maximum number of graphitic quantum dots (GQDs) is observed on MoS2 nanosheets. Specifically, the STEM and AFM data confirm that GQDs reside on the MoS2 nano-sheets and also that the particle size of the DDT-MoS2 is mostly fixed, while the NMP-MoS2 show many smaller and distributed sizes. The comparison of PL intensities of the NMP-MoS2 and DDT-MoS2 samples states a 10-fold increment is visible, and a 60-fold increment in NIR region photoluminescent properties. Moreover, our results lay out understanding and perceptions on the surface and edge chemistry of exfoliated MoS2 and open up more opportunities for MoS2 and GQD particles with broader applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076998800001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200284 Serial 9033  
Permanent link to this record
 

 
Author Dong, H.M.; Liang, H.P.; Tao, Z.H.; Duan, Y.F.; Milošević, M.V.; Chang, K. doi  openurl
  Title Interface thermal conductivities induced by van der Waals interactions Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 26 Issue 5 Pages 4047-4051  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interface heat transfer of two layers induced by van der Waals (vdW) contacts is theoretically investigated, based on first-principles calculations at low temperatures. The results suggest that out-of-plane acoustic phonons with low frequencies dominate the interface thermal transport due to the vdW interaction. The interface thermal conductivity is proportional to the cubic of temperature at very low temperatures, but becomes linearly proportional to temperature as temperature increases. We show that manipulating the strain alters vdW coupling, leading to increased interfacial thermal conductivity at the interface. Our findings provide valuable insights into the interface heat transport in vdW heterostructures and support further design and optimization of electronic and optoelectronic nanodevices based on vdW contacts. The heat transfer induced by van der Waals contacts is dominated by ZA phonons. The interface thermal conductivity is proportional to the cubic of temperature, but becomes linearly proportional to temperature as temperature increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142323400001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202795 Serial 9050  
Permanent link to this record
 

 
Author Linek, J.; Wyszynski, M.; Müller, B.; Korinski, D.; Milošević, M.V.; Kleiner, R.; Koelle, D. pdf  doi
openurl 
  Title On the coupling of magnetic moments to superconducting quantum interference devices Type A1 Journal article
  Year 2024 Publication Superconductor science and technology Abbreviated Journal  
  Volume 37 Issue 2 Pages 025010-25012  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the coupling factor phi( mu) that quantifies the magnetic flux phi per magnetic moment mu of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating phi(mu)(r,e(mu)) vs. position r and orientation e(mu) of the dipole anywhere in space from the magnetic field B-J(r) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg-Landau theory to calculate phi (mu) from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( r greater than or similar to a= inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for phi (mu) from simple filamentary loop models with simulation results for loops with finite width w (outer size A > alpha), thickness d and London penetration depth lambda(L )and show that for thin ( d << alpha ) and narrow (w < alpha) loops the introduction of an effective loop size a(eff) in the filamentary loop-model expressions results in good agreement with simulations. For a dipole placed right in the center of the loop, simulations provide an expression phi(mu)(a,A,d,lambda(L)) that covers a wide parameter range. In the near-field regime (dipole centered at small distance z above one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered. For this case, we compare simulations with an analytical expression derived for a homogeneous current density distribution, which yields excellent agreement for lambda(L)>w,d . Moreover, we analyze the improvement of phi(mu) provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001145725500001 Publication Date 2024-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202759 Serial 9067  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Chen, Z.; Kong, M.; Milošević, M.V.; Wu, Y. doi  openurl
  Title Ground state configurations of two-dimensional plasma crystals under long-range attractive particle interaction force Type A1 Journal article
  Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 67 Issue 5 Pages 439  
  Keywords (up) A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000183154800014 Publication Date 2003-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.28; 2003 IF: 0.688  
  Call Number UA @ lucian @ c:irua:57249 Serial 1385  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: