toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pardoen, T.; Colla, M.-S.; Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D.; Bhaskar, U.K.; Raskin, J.-P. pdf  url
doi  openurl
  Title A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects Type A1 Journal article
  Year 2016 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 17 Issue 17 Pages 485-495  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373524300020 Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 7 Open Access  
  Notes This research has been performed with the financial support of the “Politique scientifique fédérale” under the framework of the interuniversity attraction poles program, IAP7/21, as well as with the support of the “Communauté française de Belgique” under the program “Actions de recherche concertées” ARC 05/10-330 and ARC Convention No. 11/16-037. The support of the “Fonds belge pour la recherche dans l'industrie et l'agriculture (FRIA)” for M.-S. Colla is also gratefully acknowledged as are the FWO research projects G012012N “Understanding nanocrystalline mechanical behavior from structural investigations” for B. Amin-Ahmadi. Approved Most recent IF: 2.048  
  Call Number c:irua:129995 Serial 4014  
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Zanaga, D.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Supracrystalline Colloidal Eggs: Epitaxial Growth and Freestanding Three-Dimensional Supracrystals in Nanoscaled Colloidosomes Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3493-3500  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of template-confined chemical reactions allows the synthesis of complex molecules that would hardly be producible through conventional method. This idea was developed to produce high quality nanocrystals more than 20 years ago. However, template-mediated assembly of colloidal nanocrystals is still at an elementary level, not only because of the limited templates suitable for colloidal assemblies, but also because of the poor control over the assembly of nanocrystals within a confined space. Here, we report the design of a new system called “supracrystalline colloidal eggs” formed by controlled assembly of nanocrystals into complex colloidal supracrystals through superlattice-matched epitaxial overgrowth along the existing colloidosomes. Then, with this concept, we extend the supracrystalline growth to lattice-mismatched binary nanocrystal superlattices, in order to reach anisotropic superlattice growths, yielding freestanding binary nanocrystal supracrystals that could not be produced previously.  
  Address CEA/IRAMIS , CEA Saclay F-91191 Gif-sur-Yvette, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372477700034 Publication Date 2016-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 57 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The authors thank Dr. P. A. Albouy for the SAXS measurement.; esteem2_ta Approved Most recent IF: 13.858  
  Call Number c:irua:131923 c:irua:131923 Serial 4018  
Permanent link to this record
 

 
Author Zanaga, D.; Altantzis, T.; Sanctorum, J.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title An alternative approach for ζ-factor measurement using pure element nanoparticles Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 164 Issue 164 Pages 11-16  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called ζ-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373526200002 Publication Date 2016-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS) and the European Union under the FP7 (Integrated Infrastructure Initiative N. 312483 – ESTEEM2). The authors would also like to thank Luis M. Liz-Marzán, Ana Sánchez-Iglesias, Stefanos Mourdikoudis and Cristina Fernández-López for sample provision and useful discussions.; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ Serial 4019  
Permanent link to this record
 

 
Author Ren, X.-N.; Wu, L.; Jin, J.; Liu, J.; Hu, Z.-Y.; Li, Y.; Hasan, T.; Yang, X.-Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title 3D interconnected hierarchically macro-mesoporous TiO2networks optimized by biomolecular self-assembly for high performance lithium ion batteries Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 26856-26862  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomolecular self-assembly is an effective synthesis strategy for materials fabrication with unique structural complexity and properties. For the first time, we intergrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g-1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure largely enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372253700043 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 16 Open Access  
  Notes G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 3.108  
  Call Number c:irua:131915 c:irua:131915 c:irua:131915 Serial 4022  
Permanent link to this record
 

 
Author Béché, A.; Goris, B.; Freitag, B.; Verbeeck, J. pdf  url
doi  openurl
  Title Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 093103  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of compressed sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic beam blanker placed in the condenser plane of a STEM is proposed. The beam blanker deflects the beam with a random pattern, while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both the medium scale and high resolution are acquired and reconstructed based on a discrete cosine algorithm. The obtained results confirm that compressed sensing is highly attractive to limit beam damage in experimental STEM even though some remaining artifacts need to be resolved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375329200043 Publication Date 2016-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 40 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2), from the GOA project SOLARPAINT and the POC project I13/009 from the University of Antwerp. B.G. acknowledges the Research Foundation Flanders (FWO Vlaanderen) for a postdoctoral research grant. The QuAnTem microscope was partially funded by the Hercules Foundation. We thank Zhaoliang Liao from the Mesa+ laboratory at the University of Twente for the perovskite test sample.; esteem2jra3 ECASJO; Approved Most recent IF: 3.411  
  Call Number c:irua:131895 c:irua:131895UA @ admin @ c:irua:131895 Serial 4023  
Permanent link to this record
 

 
Author Yuan, R.; Claes, N.; Verheyen, E.; Tuel, A.; Bals, S.; Breynaert, E.; Martens, J.; Kirschhock, C.E.A. pdf  url
doi  openurl
  Title Synthesis of IWW-type germanosilicate zeolite using 5-azonia-spiro[4, 4]nonane as structure directing agent Type A1 Journal article
  Year 2016 Publication New journal of chemistry Abbreviated Journal New J Chem  
  Volume 40 Issue 40 Pages 4319-4324  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract IWW-type zeolite with Si/Ge of 4.9 is obtained using 5-azonia-spiro[4,4]nonane as template in fluoride-free medium under hydrothermal conditions at 175 °C. In an otherwise identical synthesis, using the related 5-azonia-spiro[4,5]decane as structure directing agent, a mixture of IWW and NON zeolite types was formed. In absence of GeO2 from the reactant mixture, pure NON formed. The IWW zeolite was characterized by XRD, SEM, and HRTEM. IWW zeolite displayed a unique morphology and could be calcined at 600 °C without loss of crystallinity. The Si/Ge ratio of the IWW zeolite was increased by postsynthesis modification. Part of the germanium could be eliminated from the as-synthesized IWW zeolite by acid leaching using 6 M HCl solution. Also the calcined material could be degermanated. Here the presence of a silicon source in the acidic leaching solution minimized structural damage. This way the Si/Ge ratio of the IWW zeolite was increased from 4.9 up to 10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375586400038 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge FWO/NWO and ESRF for providing beam time at the DUBBLE and SNBL beamlines (ESRF, Grenoble) and P. Abdala for her assistance during the use of the beamline. The authors are grateful to L. Van Tendeloo for taking SEM images. I. Cuppens and K. Houthoofd are thanked for the ICP and AAS measurements. R.Y. acknowledges Chinese Scholarship Council for a CSC doctoral fellowship. JAM and CEAK acknowledge the Flemish government for long-term structural funding (Methusalem). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.269  
  Call Number c:irua:133671 Serial 4027  
Permanent link to this record
 

 
Author Matthai, C.C.; Lamoen, D.; March, N.H. pdf  url
doi  openurl
  Title Melting temperatures and possible precursor plastic phases of CCl4and GeI4as a function of pressure Type A1 Journal article
  Year 2016 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq  
  Volume 54 Issue 54 Pages 130-134  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The motivation for the present study is to be found in the recent experiments of Fuchizaki and Hamaya on GeI4. They observed a rapid increase in the melting temperature Tm in going from atmospheric pressure to p ~ 2.6 GPa. Tm was found to be largely independent of pressure above this value. In this paper, heuristic arguments are presented to support the idea that until some critical pressure, a crystalline phase of SnI4, CCl4 and GeI4 molecular solids melts into a low density liquid. However, at this critical pressure, a phase boundary intersects Tm(p), separating a low density liquid phase from a high density liquid. The new phase boundary is between the crystal and an amorphous molecular solid with increasing polymerisation as the pressure is increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365724100012 Publication Date 2015-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9104 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.145 Times cited Open Access  
  Notes NHM wishes to thank Professors D. Lamoen and C. Van Alsenoy for making possible the continuing affiliation of Approved Most recent IF: 1.145  
  Call Number c:irua:130190 Serial 4029  
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J. url  doi
openurl 
  Title Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue 93 Pages 023811  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The orbital angular momentum (OAM) of light and matter waves is a parameter that has been getting increasingly more attention over the past couple of years. Beams with a well-defined OAM, the so-called vortex beams, are applied already in, e.g., telecommunication, astrophysics, nanomanipulation, and chiral measurements in optics and electron microscopy. Also, the OAM of a wave induced by the interaction with a sample has attracted a lot of interest. In all these experiments it is crucial to measure the exact (local) OAM content of the wave, whether it is an incoming vortex beam or an exit wave after interacting with a sample. In this work we investigate the use of spiral phase plates (SPPs) as an alternative to the programmable phase plates used in optics to measure OAM. We derive analytically how these can be used to study the local OAM components of any wave function. By means of numerical simulations we illustrate how the OAM of a pure vortex beam can be measured. We also look at a sum of misaligned vortex beams and show how, by using SPPs, the position and the OAM of each individual beam can be detected. Finally, we look at the OAM induced by a magnetic dipole on a free-electron wave and show how the SPP can be used to localize the magnetic poles and measure their “magnetic charge.” Although our findings can be applied to study the OAM of any wave function, our findings are of particular interest for electron microscopy where versatile programmable phase plates do not yet exist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369367700006 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 12 Open Access  
  Notes The authors acknowledge support from the Aspirant Fonds Wetenschappelijk Onderzoek–Vlaanderen (FPO), the EU un- der the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, and the ERC Starting Grant 278510 VORTEX.; esteem2jra2 ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:131613 c:irua:131613UA @ admin @ c:irua:131613 Serial 4030  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V. pdf  url
doi  openurl
  Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 191 Issue 191 Pages 149-157  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371143200018 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 27 Open Access  
  Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved Most recent IF: 4.798  
  Call Number c:irua:131911 Serial 4032  
Permanent link to this record
 

 
Author Altantzis, T.; Yang, Z.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Thermal Stability of CoAu13Binary Nanoparticle Superlattices under the Electron Beam Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 716-719  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract One primary goal of self-assembly in nanoscale regime is to implement multifunctional binary nanoparticle superlattices into practical use. In the last decade, considerable effort has been put into the fabrication of binary nanoparticle superlattices with controllable structure and stoichiometry. However, limited effort has been made in order to improve the stability of these binary nanoparticle superlattices, which is a prerequisite for their potential application. In this work, we demonstrate that the carbon deposition from specimen contamination can play an auxiliary role during the heat treatment of binary nanoparticle superlattices. With the in-situ carbon matrix formation, the thermal stability of CoAu 13 binary nanoparticle superlattices is unambiguously enhanced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370112200007 Publication Date 2016-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by theEuropean Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number c:irua:131908 Serial 4040  
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. pdf  doi
openurl 
  Title One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation Type A1 Journal article
  Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume 6 Issue 6 Pages 1863-1869  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Simple methods for producing noble metal catalysts with well-defined active sites and improved performance are highly desired in the chemical industry. However, the development of such methods still presents a formidable synthetic challenge. Here, we demonstrate a one-pot synthesis route for the controlled production of bimetallic Pt–In catalysts based on the single-step formation of Mg,Al,Pt,In-containing layered double hydroxides (LDHs). Besides their simple synthesis, these Pt–In catalysts exhibit superior propane dehydrogenation activity compared to their multi-step synthesized analogs. The presented material serves as a showcase for the one-pot synthesis of a broader class of LDH-derived mono- and multimetallic Pt catalysts. The compositional flexibility provided by LDH materials can pave the way towards highperforming Pt-based catalysts with tunable physicochemical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372172800031 Publication Date 2015-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 12 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) by supplying financing of beam time at the DUBBLE beamline of the ESRF and travel costs and a post-doctoral fellowship for S. T. The authors acknowledge the assistance from the DUBBLE (XAS campaign 26-01-979) and SuperXAS staff (Proposal 20131191). E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to O. Janssens for performing ex situ XRD characterization. Approved Most recent IF: 5.773  
  Call Number c:irua:133167 Serial 4057  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Turner, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Fabrication and Characterization of Fe2O3-Based Nanostructures Functionalized with Metal Particles and Oxide Overlayers Type A1 Journal article
  Year 2015 Publication Journal of advanced microscopy research Abbreviated Journal  
  Volume 10 Issue 10 Pages 239-243  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the design of nanosystems based on functionalized -Fe 2 O 3 nanostructures supported on fluorine-doped tin oxide (FTO) substrates. The target materials were developed by means of hybrid vapor phase approaches, combining plasma assisted-chemical vapor deposition (PA-CVD) for the production of iron(III) oxide systems and the subsequent radio frequency (RF)-sputtering or atomic layer deposition (ALD) for the functionalization with Au nanoparticles or TiO 2 overlayers, respectively. The interplay between material characteristics and the adopted processing parameters was investigated by complementary analytical techniques, encompassing X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), and energy dispersive X-ray spectroscopy (EDXS). The obtained results highlight the possibility of fabricating Au/ -Fe 2 O 3 nanocomposites, with a controlled dispersion and distribution of metal particles, and TiO 2 / -Fe 2 O 3 heterostructures, characterized by an intimate coupling between the constituent oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-7573 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes The authors acknowledge the financial support under the FP7 project “SOLARO- GENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2015 projects, grant n CPDR132937/13 (SOLLEONE), and Regione Lombardia- INSTM ATLANTE program. Stuart Turner acknowledges the FWO Flanders for a post-doctoral scholarship. Thanks are also due to Dr. L. Borgese and Prof. E. Bontempi (Chemistry for Technologies Laboratory, Brescia Univer- sity, Italy) for precious assistance in ALD experiments. Approved Most recent IF: NA  
  Call Number EMAT @ emat @ c:irua:132798 Serial 4058  
Permanent link to this record
 

 
Author Reguera, J.; Jiménez de Aberasturi, D.; Naomi Winckelmans, N.; Langer, J.; Bals, S.; Liz-Marzan, L.M. url  doi
openurl 
  Title Synthesis of Janus plasmonic-magnetic, star-sphere nanoparticles, and their application in SERS detection Type A1 Journal article
  Year 2016 Publication Faraday discussions Abbreviated Journal Faraday Discuss  
  Volume 191 Issue 191 Pages 47-59  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multicomponent nanoparticles are of particular interest due to a unique combination of properties at the nanoscale, which make them suitable for a wide variety of applications. Among them, Janus nanoparticles, presenting two distinct surface regions, can lead to specific interactions with interfaces, biomolecules, membranes etc. We report the synthesis of Janus nanoparticles comprising iron oxide nanospheres and gold nanostars, through two consecutive seed-mediated-growth steps. Electron tomography combining HAADF-STEM and EDX mapping has been performed to evaluate the spatial distribution of the two components of the nanoparticle, showing their clear separation in a Janus morphology. Additionally, SERS measurements assisted by magnetic separation were carried out to assess the application of combined plasmonic and magnetic properties for sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385257300003 Publication Date 2016-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.588 Times cited 53 Open Access OpenAccess  
  Notes This work has been funded by the European Research Council (ERC Advanced Grant #267867, Plasmaquo). N.W. and S.B. acknowledge funding by the European Research Council (ERC Starting Grant #335078, Colouratom).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.588  
  Call Number c:irua:132891 Serial 4060  
Permanent link to this record
 

 
Author De Schutter, B.; Van Stiphout, K.; Santos, N.M.; Bladt, E.; Jordan-Sweet, J.; Bals, S.; Lavoie, C.; Comrie, C.M.; Vantomme, A.; Detavernier, C. pdf  url
doi  openurl
  Title Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111) Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 135305  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We studied the solid-phase reaction between a thin Nifilm and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situX-ray diffraction and in situRutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374150200035 Publication Date 2016-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 14 Open Access OpenAccess  
  Notes The authors thank the FWO-vlaanderen, BOF-UGent (under Contract No. “GOA 01G01513”) and the Hercules Foundation (under Project No. “AUGE/09/014”) for financial support. S. Bals acknowledges financial support from European Research Council (ERC Starting Grant No. “#335078-COLOURATOMS”). A. Vantomme thanks the BOF-KULeuven (under Contract No. “GOA/14/007”) and the Joint Science and Technology Collaboration between the FWO (G.0031.14) and NRF (UID88013). The National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Contract No. DE-AC02-98CH10886).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:restricted); Approved Most recent IF: 2.068  
  Call Number c:irua:132897 Serial 4066  
Permanent link to this record
 

 
Author Mourdikoudis, S.; Altantzis, T.; Liz-Marzan, L.M.; Bals, S.; Pastoriza-Santos, I.; Perez-Juste, J. pdf  url
doi  openurl
  Title Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance Type A1 Journal article
  Year 2016 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 18 Issue 18 Pages 3422-3427  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Water-soluble Pt nanoflowers (NFs) were prepared by a diethylene glycol-mediated reduction of Pt acetylacetonate

(Pt(acac)2) in the presence of polyethyleneimine. Advanced electron microscopy analysis showed that NFs consist of

multiple branches with truncated cubic morphology and different crystallographic orientations. We demonstrate that the

nature of the solvent strongly influences the resulting morphology. The catalytic performance of Pt NFs in 4–nitrophenol

reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, Pt NFs display good

catalytic reusability with no loss of activity after five consecutive cycles.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375697800012 Publication Date 2016-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited 30 Open Access OpenAccess  
  Notes The authors would like to thank J. Millos for the XRD experiments and R. Lomba for ICP-OES elemental analysis measurements at the CACTI institute in Vigo. S. Rodal-Cedeira is acknowledged for the FTIR measurement. This research project was implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology of Greece) and is co-financed by the European Social Fund (ESF) and the Greek State [project code PE4(1546)]. This work has been also supported by the Spanish MINECO (grant MAT2013-45168-R) and by the Xunta de Galicia/FEDER (Grant No. GPC2013-006; INBIOMED/FEDER “Unha maneira de facer Europa”). S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.474  
  Call Number c:irua:133670 Serial 4067  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S. pdf  url
doi  openurl
  Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 8 Issue 8 Pages 501-508  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.  
  Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000374534100019 Publication Date 2016-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 51 Open Access  
  Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved Most recent IF: 25.87  
  Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial 4068  
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 1245-1257  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.  
  Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369356800031 Publication Date 2016-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access  
  Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857  
  Call Number c:irua:132247 Serial 4073  
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Custers, K.; Kerkhofs, S.; Sree, S.P.; Gobechiya, E.; Kirschhock, C.E.A.; Van Tendeloo, G.; Martens, J.A. pdf  url
doi  openurl
  Title Anatase TiO2nanoparticle coating on porous COK-12 platelets as highly active and reusable photocatalysts Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 46678-46685  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale TiO2 photocatalysts are widely used for biomedical applications, self-cleaning processes and wastewater treatments. The impregnation/deposition of TiO2 nanoparticles is indispensable for facile handling and separation as well as the improvement of their photocatalytic performance. In the present study, ordered mesoporous COK-12 silica thin platelets with a high-aspect-ratio and rough surfaces are demonstrated as a potential nanoporous support for homogeneous TiO2 nanoparticle coatings with high loading up to 16.7 wt%. The photocatalytic composite of COK-12 platelets and TiO2 nanoparticles is characterized in detail by HRSEM, SAXS, XRD, N2 physisorption analysis, solid-state UV-vis spectroscopy, HAADF-STEM, EDX analysis, and electron tomography. HAADF-STEM-EDX and electron tomography studies reveal a homogeneous dispersion of nanosized TiO2 nanoparticles over COK-12 platelets. The final composite material with anatase TiO2 nanoparticles that demonstrate a blueshifted semiconductor band gap energy of 3.2 eV coated on a highly porous COK-12 support shows exceptional photocatalytic catalytic activity for photodegradation of organic dyes (rhodamine 6G and methylene blue) and an organic pollutant (1-adamantanol) under UV light radiation, outperforming the commercial P25 TiO2 (Degussa) catalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377254800070 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access  
  Notes L. H. W. and S. T. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number (12M1415N) and (G004613N), respectively. J. A.Mgratefully acknowledge nancial supports from Flemish Government (Long-term structural funding-Methusalem). Collaboration among universities was supported by the Belgium Government (IAP-PAI networking). Approved Most recent IF: 3.108  
  Call Number c:irua:133775 Serial 4074  
Permanent link to this record
 

 
Author Fedotov, S.S.; Kuzovchikov, S.M.; Khasanova, N.R.; Drozhzhin, O.A.; Filimonov, D.S.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V. pdf  url
doi  openurl
  Title Synthesis, structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate Type A1 Journal article
  Year 2016 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 242 Issue 242 Pages 70-77  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LiNaCo 0.5 Fe 0.5 PO 4 F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo 0.5 Fe 0.5 PO 4 F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by 57 Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo 0.5 Fe 0.5 PO 4 F cathode material demonstrated a reversible activity of the Fe 3+ /Fe 2+ redox couple at the electrode potential near 3.4 V and minor activity of the Co 3+ /Co 2+ redox couple over 5 V vs Li/Li + . The material exhibits a good capacity retention in the 2.4÷4.6 V vs Li/Li + potential range with the delivered discharge capacity of more than 82% (theo.) regarding Fe 3+ /Fe 2+ .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383304900010 Publication Date 2016-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 1 Open Access  
  Notes The authors kindly thank Dr. O. A. Shlyakhtin for the assistance in the freeze-drying synthesis. We are grateful to the Laboratory for Neutron Scattering and Imaging (NLS) at the Paul Scherrer Institut (Villigen, Switzerland) for granting beam time at the HRPT diffractometer and to Dr. D. V. Sheptyakov for the technical support during the experiment. The work was partly supported by Russian Foundation for Basic Research (RFBR grant 13-03-00495a, 14-29-04064 ofim, 16-33-01131 mola), Skoltech Center for Electrochemical Energy Storage and Moscow State University Development Program up to 2020. J. Hadermann, O.M. Karakulina and A.M. Abakumov acknowledge support from FWO under grant G040116N. Approved Most recent IF: 2.299  
  Call Number c:irua:133776 Serial 4075  
Permanent link to this record
 

 
Author Pahlke, P.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Hanisch, J.; Sieger, M.; Usoskin, A.; Stromer, J.; Holzapfel, B.; Schultz, L.; Huhne, R. pdf  url
doi  openurl
  Title Reduced Anisotropy and Enhanced In-Field Performance of Thick BaHfO3-Doped Films on ABAD-YSZ Templates Type A1 Journal article
  Year 2016 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 26 Issue 26 Pages 1-4  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pure and 6 mol% BaHfO3 (BHO) doped YBa2Cu3O7-δ (YBCO) films were prepared on CeO2-buffered ABAD-YSZ templates by pulsed laser deposition. The self-field Jc at 77 K reaches 1.1 MA/cm² in the doped sample compared to 2.5 MA/cm² in pure YBCO, at a film thickness of around 1 μm. Above a magnetic field of 2.2 T along B||c, Jc of the BHO-doped sample exceeds the Jc of the undoped film. The maximum pinning force density (FP,max) reaches a value of around 3 GN/cm² for both samples, but B(FP,max) increases from 1.4 T (pure) to a value of 2.9 T (BHO:YBCO). The Jc anisotropy curves of the doped sample show a large and broad peak at B||c and a strongly reduced anisotropy at all temperatures and fields compared to the pure sample. A complex defect structure with YBa2Cu4O8 intergrowths, Y2O3 precipitates and BHO nanocolumns with a fanshaped structure is observed by TEM investigations, which can explain the measured Jc(B,θ) behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376189700001 Publication Date 2016-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 14 Open Access  
  Notes This work was supported by EUROTAPES, a collaborative project funded by the European Union’s Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement n.280432. Approved Most recent IF: NA  
  Call Number c:irua:133779 Serial 4078  
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Hanisch, J.; Sparing, M.; Bianchetti, M.; MacManus-Driscoll, J.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Schultz, L.; Holzapfel, B.; Huhne, R. pdf  url
doi  openurl
  Title Ba2Y(Nb/Ta)O6–Doped YBCO Films on Biaxially Textured Ni–5at.% W Substrates Type A1 Journal article
  Year 2016 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 26 Issue 26 Pages 1-5  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The incorporation of nanoscaled pinning centers in superconducting YBa2Cu3O7-d (YBCO) films is one of the core topics to enhance the critical current density Jc(B, Q) of coated conductors. The mixed double-perovskite Ba2Y(Nb/Ta)O6 (BYNTO) can be grown in nanosized columns parallel the YBCO c-axis and in step-like patterns, making it customizable to meet specific working conditions (T, B, Q). We compare a 1.6 μm thick film of pure YBCO and a similar film with additional 5 mol% of BYNTO, grown by pulsed laser deposition with a growth rate of 1.6 nm/s on buffered biaxially textured Ni-5at.% W tape. Our doped sample shows nanosized BYNTO columns parallel cYBCO and plates in the ab-plane containing Y, Nb and Ta. An improved homogeneity of the critical current density Jc over the sample was evaluated from trapped field profiles measured with a scanning Hall probe microscope. The mean Jc in rolling direction of the tape is 1.8 MA/cm² (77 K, self-field) and doubles the value of the undoped sample. Angular dependent measurements of the critical current density, Jc(Q), show a decreased anisotropy of the doped film for various magnetic fields at 77 K as well as 64 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375581500001 Publication Date 2016-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 6 Open Access  
  Notes This work was supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007 – 2013) under Grant Agreement n.280432. Approved Most recent IF: NA  
  Call Number c:irua:133781 Serial 4079  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 14787-14790  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial 4080  
Permanent link to this record
 

 
Author van den Bos, K.H. W.; De Backer, A.; Martinez, G.T.; Winckelmans, N.; Bals, S.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 116 Issue 116 Pages 246101  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of new nanocrystals with outstanding physicochemical properties requires a full threedimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378059500010 Publication Date 2016-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 46 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Projects No. G.0374.13N, No. G.0368.15N, and No. G.0369.15N, and by grants to K. H.W. van den Bos and A. De Backer. S. Bals and N. Winckelmans acknowledge funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant No. 312483—ESTEEM2. The authors are grateful to A. Rosenauer for providing the STEMsim program.; esteem2jra2; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.462  
  Call Number c:irua:133954 c:irua:133954 Serial 4084  
Permanent link to this record
 

 
Author Juchtmans, R.; Verbeeck, J. url  doi
openurl 
  Title Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries Type A1 Journal article
  Year 2015 Publication Physical review: B: condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 134108  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work we present an alternative way to look at electron diffraction in a transmission electron microscope.

Instead of writing the scattering amplitude in Fourier space as a set of plane waves,we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362893100002 Publication Date 2015-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes The authors acknowledge support from the FWO (As- pirant Fonds Wetenschappelijk Onderzoek–Vlaanderen), the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2, and ERC Starting Grant No. 278510 VORTEX; esteem2jra1; ECASJO; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:129417 c:irua:129417UA @ admin @ c:irua:129417 Serial 4089  
Permanent link to this record
 

 
Author Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Symmetry-constrained electron vortex propagation Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue 93 Pages 063840  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378197200006 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 7 Open Access  
  Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:134086 c:irua:134086 Serial 4090  
Permanent link to this record
 

 
Author Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.-G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; D'Haen, J.; Haenen, K.; Verbeeck, J.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title CVD diamond growth from nanodiamond seeds buried under a thin chromium layer Type A1 Journal article
  Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 64 Issue 64 Pages 163-168  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work presents a morphological and structural analysis of CVD diamond growth on silicon from nanodiamond seeds covered by a 50 nm thick chromium layer. The role of carbon diffusion as well as chromium and carbon silicide formation is analyzed. The local diamond environment is investigated by scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. The evolution of the diamond phase composition (sp3/sp2) is evaluated by micro-Raman spectroscopy. Raman and X-ray diffraction analysis are used to identify the interfacial phases formed during CVD growth. Based upon the observed morphological and structural evolution, a diamond growth model from nanodiamond seeds buried beneath a thin Cr layer is proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374608100020 Publication Date 2016-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 11 Open Access  
  Notes The authors acknowledge financial support provided by Research Program FWO G.056.810 and G0044.13N. A.H. and M.K.V.B are grateful to Hercules Foundation Flanders for financial support. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). The Titan microscope used for this work was partially funded by the Hercules Foundation. Approved Most recent IF: 2.561  
  Call Number c:irua:133624UA @ admin @ c:irua:133624 Serial 4091  
Permanent link to this record
 

 
Author Lottini, E.; López-Ortega, A.; Bertoni, G.; Turner, S.; Meledina, M.; Van Tendeloo, G.; de Julián Fernández, C.; Sangregorio, C. url  doi
openurl 
  Title Strongly Exchange Coupled Core|Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 4214-4222  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Antiferromagnetic(AFM)|ferrimagnetic(FiM) core|shell (CS) nanoparticles (NPs) of formula Co0.3Fe0.7O|Co0.6Fe2.4O4 with mean diameter from 6 to 18 nm have been synthesized through a one-pot thermal decomposition process. The CS structure has been generated by topotaxial oxidation of the core region, leading to the formation of a highly monodisperse single inverted AFM|FiM CS system with variable AFM-core diameter and constant FiM-shell thickness (~2 nm). The sharp interface, the high structural matching between both phases and the good crystallinity of the AFM material have been structurally demonstrated and are corroborated by the robust exchange-coupling between AFM and FiM phases, which gives rise to one among the largest exchange bias (HE) values ever reported for CS NPs (8.6 kOe) and to a strongly enhanced coercive field (HC). In addition, the investigation of the magnetic properties as a function of the AFM-core size (dAFM), revealed a non-monotonous trend of both HC and HE, which display a maximum value for dAFM = 5 nm (19.3 and 8.6 kOe, respectively). These properties induce a huge improvement of the capability of storing energy of the material, a result which suggests that the combination of highly anisotropic AFM|FiM materials can be an efficient strategy towards the realization of novel Rare Earth-free permanent magnets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378973100013 Publication Date 2016-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 48 Open Access  
  Notes This work was supported by the EU-FP7 through NANOPYME Project (No. 310516) and Integrated Infrastructure Initiative ESTEEM2 (No. 312483). S.T. gratefully acknowledges the FWO Flanders for a post-doctoral scholarship.; esteem2_ta Approved Most recent IF: 9.466  
  Call Number c:irua:134084 c:irua:134084 Serial 4092  
Permanent link to this record
 

 
Author Lobato, I.; Van Aert, S.; Verbeeck, J. pdf  doi
openurl 
  Title Progress and new advances in simulating electron microscopy datasets using MULTEM Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 168 Issue 168 Pages 17-27  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new version of the open source program MULTEM is presented here. It includes a graphical user interface, tapering truncation of the atomic potential, CPU multithreading functionality, single/double precision calculations, scanning transmission electron microscopy (STEM) simulations using experimental detector sensitivities, imaging STEM (ISTEM) simulations, energy filtered transmission electron microscopy (EFTEM) simulations, STEM electron energy loss spectroscopy (EELS) simulations along with other improvements in the algorithms. We also present a mixed channeling approach for the calculation of inelastic excitations, which allows one to considerably speed up time consuming EFTEM/STEM-EELS calculations.  
  Address EMAT, University of Antwerp, Department of Physics, Groenenborgerlaan 171, B-2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000380754100003 Publication Date 2016-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 43 Open Access  
  Notes The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N and G.0368.15N).; esteem2jra3; esteem2na3; esteem2_jra2 Approved Most recent IF: 2.843  
  Call Number c:irua:134088 c:irua:134088UA @ admin @ c:irua:134088 Serial 4093  
Permanent link to this record
 

 
Author Béché, A.; Juchtmans, R.; Verbeeck, J. pdf  url
doi  openurl
  Title Efficient creation of electron vortex beams for high resolution STEM imaging Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 178 Issue 178 Pages 12-19  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angstrom, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000403862900003 Publication Date 2016-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 30 Open Access OpenAccess  
  Notes A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V. acknowledges funding from FWO project G.0044.13N ('Charge ordering').; ECASJO_; Approved Most recent IF: 2.843  
  Call Number c:irua:134085 c:irua:134085UA @ admin @ c:irua:134085 Serial 4094  
Permanent link to this record
 

 
Author Ramachandran, D.; Egoavil, R.; Crabbe, A.; Hauffman, T.; Abakumov, A.; Verbeeck, J.; Vandendael, I.; Terryn, H.; Schryvers, D. pdf  url
doi  openurl
  Title TEM and AES investigations of the natural surface nano-oxide layer of an AISI 316L stainless steel microfibre Type A1 Journal article
  Year 2016 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 264 Issue 264 Pages 207-214  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The chemical composition, nanostructure and electronic structure of nanosized oxide scales naturally formed on the surface of AISI 316L stainless steel microfibres used for strengthening of composite materials have been characterised using a combination of scanning and transmission electron microscopy with energy-dispersive X-ray, electron energy loss and Auger spectroscopy. The analysis reveals the presence of three sublayers within the total surface oxide scale of 5.0-6.7 nm thick: an outer oxide layer rich in a mixture of FeO.Fe2 O3 , an intermediate layer rich in Cr2 O3 with a mixture of FeO.Fe2 O3 and an inner oxide layer rich in nickel.  
  Address Electron Microscopy for Materials Science, University of Antwerp, Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385944300009 Publication Date 2016-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 12 Open Access  
  Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck for help in FIB sample preparation, to Hamed Heidari for useful comments and to the N.V. Bekaert S.A. company for providing the microfibres. RE acknowledges funding by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. Approved Most recent IF: 1.692  
  Call Number c:irua:134087 Serial 4096  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: