toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. doi  openurl
  Title Voltage-controlled superconducting magnetic memory Type A1 Journal article
  Year 2019 Publication AIP advances T2 – 64th Annual Conference on Magnetism and Magnetic Materials (MMM), NOV 04-08, 2019, Las Vegas, NV Abbreviated Journal  
  Volume 9 Issue (up) 12 Pages 125223  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Over the past few decades, superconducting circuits have been used to realize various novel electronic devices such as quantum bits, SQUIDs, parametric amplifiers, etc. One domain, however, where superconducting circuits fall short is information storage. Superconducting memories are based on the quantization of magnetic flux in superconducting loops. Standard implementations store information as magnetic flux quanta in a superconducting loop interrupted by two Josephson junctions (i.e., a SQUID). However, due to the large inductance required, the size of the SQUID loop cannot be scaled below several micrometers, resulting in low-density memory chips. Here, we propose a scalable memory consisting of a voltage-biased superconducting ring threaded by a half-quantum flux bias. By numerically solving the time-dependent Ginzburg-Landau equations, we show that applying a time-dependent bias voltage in the microwave range constitutes a writing mechanism to change the number of stored flux quanta within the ring. Since the proposed device does not require a large loop inductance, it can be scaled down, enabling a high-density memory technology. (C) 2019 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515525300002 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:167551 Serial 8740  
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S. pdf  doi
openurl 
  Title Effective bioeconomy policies for the uptake of innovative technologies under resource constraints Type A1 Journal article
  Year 2019 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 120 Issue (up) 120 Pages 91-106  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The bioeconomy is a shared vision for a future European industry entirely based on organic matter. Authorities support this technological development with subsidies and policies stimulating R&D. One major limitation for the bioeconomy is that R&D and industrial growth require the continuous availability of biomass as a primary resource. This resource dependence is already present during the formative years of new biobased innovations and influences the pilot and demonstration phase of the development. Traditionally, it is assumed that public support for pilot and demonstration initiatives may overcome this hurdle. In this paper, we investigate how this resource constraint limits the effectiveness of bioeconomy policies. The future development of the biobased sector is simulated including the inherent dependence of industrial activity on biomass. We simulate the future growth and technological diversity of an emerging biotechnological sector: the sector of manure transformation in Belgium. The paper reports the evolutions for three policy scenarios. The model explicitly accounts for endogenous innovation and knowledge transfer mechanisms. The results show that policies may have an important impact on the sector structure in the long run, but the sector growth remains ultimately constrained by the availability of inputs. So bioeconomy policies to promote innovation will be less effective, unless mechanisms are included to alleviate the resource constraint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454887700011 Publication Date 2018-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 3.219  
  Call Number UA @ admin @ c:irua:156757 Serial 6191  
Permanent link to this record
 

 
Author Zhao, L.; Ding, L.; Soete, J.; Idrissi, H.; Kerckhofs, G.; Simar, A. pdf  url
doi  openurl
  Title Fostering crack deviation via local internal stresses in Al/NiTi composites and its correlation with fracture toughness Type A1 Journal article
  Year 2019 Publication Composites: part A: applied science and manufacturing Abbreviated Journal Compos Part A-Appl S  
  Volume 126 Issue (up) 126 Pages 105617  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the framework of metal matrix composites, a research gap exists regarding tailoring damage mechanisms. The present work aims at developing an Al/NiTi composite incorporating internal stresses in the vicinity of reinforcements. The composite is manufactured by friction stir processing which allows a homogenous NiTi distribution and a good Al/NiTi interface bonding. The internal stresses are introduced via shape memory effect of the embedded NiTi particles. The induced internal strain field is confirmed by digital image correlation and the corresponding stress field is evaluated by finite element simulation. It is found that the damage mechanism is modified in the presence of internal stresses. The consequent enhancement of fracture toughness arises by the fact that the internal stresses foster discrete damages shifted from the fracture ligament line. These damages release the stress concentration at the main crack tip and lead to a deviated crack path when coalescing to accommodate fracture propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489350600025 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-835x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.075 Times cited Open Access  
  Notes ; This research work has been exclusively supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no 716678). The X-ray computed,tomography facilities of the Department of Materials Engineering of the KU Leuven are financed by the Hercules Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). The authors acknowledge Professor F. Delannay from UCLouvain for fruitful discussions. ; Approved Most recent IF: 4.075  
  Call Number UA @ admin @ c:irua:163706 Serial 5387  
Permanent link to this record
 

 
Author De Beule, C.; Saniz, R.; Partoens, B. pdf  doi
openurl 
  Title Crystalline topological states at a topological insulator junction Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids  
  Volume 128 Issue (up) 128 Pages 144-151  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We consider an interface between two strong time-reversal invariant topological insulators having surface states with opposite spin chirality, or equivalently, opposite mirror Chern number. We show that such an interface supports gapless modes that are protected by mirror symmetry. The interface states are investigated with a continuum model for the Bi2Se3 class of topological insulators that takes into account terms up to third order in the crystal momentum, which ensures that the model has the correct symmetry. The model parameters are obtained from ab initio calculations. Finally, we consider the effect of rotational mismatch at the interface, which breaks the mirror symmetry and opens a gap in the interface spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472693100013 Publication Date 2018-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.059 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 2.059  
  Call Number UA @ admin @ c:irua:161391 Serial 5385  
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Kumar, V.; Llombart, P.; Diaz-Nunez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Noya, E.G.; MacDowell, L.G.; Guerrero-Martinez, A.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (up) 13 Pages 4424-4435  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract One of the major difficulties hindering the widespread application of colloidal anisotropic plasmonic nanoparticles is the limited robustness and reproducibility of multistep synthetic methods. We demonstrate herein that the reproducibility and reliability of colloidal gold nanorod (AuNR) synthesis can be greatly improved by disconnecting the symmetry-breaking event from the seeded growth process. We have used a modified silver-assisted seeded growth method in the presence of the surfactant hexadecyltrimethylammonium bromide and n-decanol as a co-surfactant to prepare small AuNRs in high yield, which were then used as seeds for the growth of high quality AuNR colloids. Whereas the use of n-decanol provides a more-rigid micellar system, the growth on anisotropic seeds avoids sources of irreproducibility during the symmetry breaking step, yielding uniform AuNR colloids with narrow plasmon bands, ranging from 600 to 1270 nm, and allowing the fine-tuning of the final dimensions. This method provides a robust route for the preparation of high quality AuNR colloids with tunable morphology, size, and optical response in a reproducible and scalable manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466052900067 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 100 Open Access OpenAccess  
  Notes ; This work has been funded by the Spanish MINECO (grant nos. FIS2017-89361-C3-2-P and MAT2017-86659-R), the Madrid Regional Government (grant no. P2018/NMT-4389) and the Complutense University of Madrid (grant no. PR75/18-21616). Funding is acknowledged from the European Commission (grant no. EUSMI 731019). G.G.-R. acknowledges receipt of FPI Fellowship from the Spanish MINECO. E.B. and T.A. acknowledge postdoctoral grants from the Research Foundation Flanders (FWO). The authors are indebted to Profs. Justin Gooding, Watson Loh, Nicholas Kotov, Deqing Zhang, Mihaela Delcea, Maurizio Prato, and Krishna Ganesh, for providing milli-Q water samples. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160417 Serial 5246  
Permanent link to this record
 

 
Author Albrecht, W.; Bladt, E.; Vanrompay, H.; Smith, J.D.; Skrabalak, S.E.; Bals, S. url  doi
openurl 
  Title Thermal Stability of Gold/Palladium Octopods Studied in Situ in 3D: Understanding Design Rules for Thermally Stable Metal Nanoparticles Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (up) 13 Pages 6522-6530  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multifunctional metal nanoparticles (NPs) such as anisotropic multimetallic NPs are crucial for boosting nanomaterial based applications. Advanced synthetic protocols exist to make a large variety of such nanostructures. However, a major limiting factor for the usability of them in real life applications is their stability. Here, we show that Au/Pd octopods, 8-branched nanocrystals with Oh symmetry, with only a low amount of Pd exhibited a high thermal stability and maintained strong plasmon resonances up to 600 ◦C. Furthermore, we study the influence of the composition, morphology and environment on the thermal stability and define key parameters for the design of thermally stable multifunctional NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473248300038 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 46 Open Access OpenAccess  
  Notes W. A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. H. V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). J. D. S. and S.E.S acknowledge funding from the US National Science Foundation (award number: CHE-1602476). The authors acknowledge funding from the European Commission Grant (EUSMI E180600101 to S. B. and S. E. S.) and European Research Council (ERC Starting Grant #335078-COLOURATOMS). Realnano 815128; sygma Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:161356 Serial 5285  
Permanent link to this record
 

 
Author Vanmeert, M.; Razzokov, J.; Mirza, M.U.; Weeks, S.D.; Schepers, G.; Bogaerts, A.; Rozenski, J.; Froeyen, M.; Herdewijn, P.; Pinheiro, V.B.; Lescrinier, E. url  doi
openurl 
  Title Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins Type A1 Journal article
  Year 2019 Publication Nucleic acids research Abbreviated Journal Nucleic Acids Res  
  Volume 47 Issue (up) 13 Pages 7130-7142  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490556600047 Publication Date 2019-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0305-1048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.162 Times cited 1 Open Access  
  Notes European Research Council, FP7/2007-2013 ERC-2012-ADG 20120216/320683 ; KU Leuven, OT/14/128 ; Biotechnology and Biosciences Research Council, BB/N01023X/1 BB/N010221/1 ; Authors are grateful to Prof. Dr A.M.J.J. (Alexandre) Bonvin from the University of Utrecht and the WeNMR institute for his expert contribution. We have greatly benefited from discussions and help from numerous postdocs over the years (in particular, Dr E. Groaz, Dr E. Eremeeva, Dr J. Masschelein, Dr S. Xiaoping and Dr M. Renders) as well as graduate student D. Kestemont and undergraduate student M. Abdel Fattah Ismail. We express our gratitude to L. Margamuljana for helpful discussions and excellent technical assistance on in vitro experiments. Approved Most recent IF: 10.162  
  Call Number PLASMANT @ plasmant @c:irua:162105 Serial 5359  
Permanent link to this record
 

 
Author Skorikov, A.; Albrecht, W.; Bladt, E.; Xie, X.; van der Hoeven, J.E.S.; van Blaaderen, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Quantitative 3D Characterization of Elemental Diffusion Dynamics in Individual Ag@Au Nanoparticles with Different Shapes Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (up) 13 Pages 13421-13429  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Anisotropic bimetallic nanoparticles are promising candidates for plasmonic and catalytic applications. Their catalytic performance and plasmonic properties are closely linked to the distribution of the two metals, which can change during applications in which the particles are exposed to heat. Due to this fact, correlating the thermal stability of complex heterogeneous nanoparticles to their microstructural properties is of high interest for the practical applications of such materials. Here, we employ quantitative electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADFSTEM) mode to measure the 3D elemental diffusion dynamics in individual anisotropic Au−Ag nanoparticles upon heating in situ. This approach allows us to study the elemental redistribution in complex, asymmetric nanoparticles on a single particle level, which has been inaccessible to other techniques so far. In this work, we apply the proposed method to compare the alloying dynamics of Au−Ag nanoparticles with different shapes and compositions and find that the shape of the nanoparticle does not exhibit a significant effect on the alloying speed whereas the composition does. Finally, comparing the experimental results to diffusion simulations allows us to estimate the diffusion coefficients of the metals for individual nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500650000115 Publication Date 2019-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 29 Open Access OpenAccess  
  Notes This project has received funding from the European Commission (grant 731019, EUSMI) and European Research Council (ERC Consolidator Grants 815128, REALNANO; 770887, PICOMETRICS; 648991, 3MC; and ERC Advanced Grant 291667, HierarSACol). This project has also received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 823717, ESTEEM3. W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). X.X. acknowledges financial support from the EU H2020-MSCAITN-2015 project 676045, MULTIMAT. The authors also acknowledge financial support by the Research Foundation Flanders (FWO grants G038116N, G026718N, and G036915N).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:164061 Serial 5379  
Permanent link to this record
 

 
Author Hinterding, S.O.M.; Berends, A.C.; Kurttepeli, M.; Moret, M.-E.; Meeldijk, J.D.; Bals, S.; van der Stam, W.; de Donega, C.M. url  doi
openurl 
  Title Tailoring Cu+ for Ga3+ cation exchange in Cu2-xS and CuInS2 nanocrystals by controlling the Ga precursor chemistry Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue (up) 13 Pages 12880-12893  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S-2 nanocrystals, which increases the photoluminescence quantum yield 10 -fold, while blue -shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500650000061 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 27 Open Access OpenAccess  
  Notes ; S.O.M.H., W.v.d.S., A.C.B., and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant Nos. ECHO.712.012.0001 and ECHO.712.014.001. S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant No. 815128-REALNANO). S.O.M.H. is supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. DFT calculations were carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. This work was sponsored by NWO Physical Sciences for the use of supercomputer facilities. The authors thank Jessi van der Hoeven for EDS and TEM measurements. ; sygma Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:165149 Serial 6324  
Permanent link to this record
 

 
Author Zankowski, S.P.; Van Hoecke, L.; Mattelaer, F.; de Raedt, M.; Richard, O.; Detavernier, C.; Vereecken, P.M. doi  openurl
  Title Redox layer deposition of thin films of MnO2 on nanostructured substrates from aqueous solutions Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal  
  Volume 31 Issue (up) 13 Pages 4805-4816  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we report a new method for depositing thin films of MnO2 on planar and complex nanostructured surfaces, with high precision and conformality. The method is based on repeating cycles of adsorption of an unsaturated alcohol on a surface, followed by its oxidation with aqueous KMnO4 and formation of thin, solid MnO2. The amount of manganese oxide formed in each cycle is limited by the quantity of the adsorbed alcohol; thus, the growth exhibits the self-limiting characteristics of atomic layer deposition (ALD). Contrary to the typical ALD, however, the new redox layer deposition is performed in air, at room temperature, using common chemicals and simple laboratory glassware, which greatly reduces its cost and complexity. We also demonstrate application of the method for the fabrication of a nanostructured MnO2/Ni electrode, which was not possible with thermal ALD because of the rapid decomposition of the gaseous precursor on the high surface-area substrate. Thanks to its simplicity, the conformal deposition of MnO2 can be easily upscaled and thus exploited for its numerous (electro)chemical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000475408400021 Publication Date 2019-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161225 Serial 8465  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Spectroscopic coincidence experiments in transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue (up) 14 Pages 143101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal

correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a

delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both

events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or

EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many

difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input

and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations

of elements need to be detected in a matrix of other elements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464450200022 Publication Date 2019-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 18 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G093417 ; Horizon 2020 Framework Programme, 823717 ESTEEM3 ; Helmholtz Association, VH-NG-1327 ; Approved Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159155 Serial 5168  
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
  Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.  
  Volume 4 Issue (up) 14 Pages 813-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466846700004 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020  
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179  
Permanent link to this record
 

 
Author Torre, I.; de Castro, L.V.; Van Duppen, B.; Barcons Ruiz, D.; Peeters, F.M.; Koppens, F.H.L.; Polini, M. url  doi
openurl 
  Title Acoustic plasmons at the crossover between the collisionless and hydrodynamic regimes in two-dimensional electron liquids Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue (up) 14 Pages 144307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrodynamic flow in two-dimensional electron systems has so far been probed only by dc transport and scanning gate microscopy measurements. In this work we discuss theoretically signatures of the hydrodynamic regime in near-field optical microscopy. We analyze the dispersion of acoustic plasmon modes in two-dimensional electron liquids using a nonlocal conductivity that takes into account the effects of (momentumconserving) electron-electron collisions, (momentum-relaxing) electron-phonon and electron-impurity collisions, and many-body interactions beyond the celebrated random phase approximation. We derive the dispersion and, most importantly, the damping of acoustic plasmon modes and their coupling to a near-field probe, identifying key experimental signatures of the crossover between collisionless and hydrodynamic regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465160000003 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work has been sponsored by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 785219 “Graphene Core2” and via the European Research Council (ERC) Grant Agreement No. 786285. B.V.D. is supported by a post-doctoral fellowship of the Flemish Science Foundation (FWO-Vl). F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grant Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. F.M.P. and L.V.d.C. were supported by the Methusalem Program of the Flemish Government. We thank Niels Hesp and Hanan Hertzig Sheinfux for useful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159333 Serial 5193  
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Multicomponent screening and superfluidity in gapped electron-hole double bilayer graphene with realistic bands Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue (up) 14 Pages 144517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superfluidity has recently been reported in double electron-hole bilayer graphene. The multiband nature of the bilayers is important because of the very small band gaps between conduction and valence bands. The long-range nature of the superfluid pairing interaction means that screening must be fully taken into account. We have carried out a systematic mean-field investigation that includes (i) contributions to screening from both intraband and interband excitations, (ii) the low-energy band structure of bilayer graphene with its small band gap and flattened Mexican-hat-like low-energy bands, (iii) the large density of states at the bottom of the bands, (iv) electron-hole pairing in the multibands, and (v) electron-hole pair transfers between the conduction and valence band condensates. We find that the superfluidity strongly modifies the intraband contributions to the screening, but that the interband contributions are unaffected. Unexpectedly, a net effect of the screening is to suppress Josephson-like pair transfers and to confine the superfluid pairing entirely to the conduction-band condensate even for very small band gaps, making the system behave similarly to a one-band superfluid.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465160000004 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem Foundation. We thank Mohammad Zarenia and Alfredo VargasParedes for useful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159332 Serial 5221  
Permanent link to this record
 

 
Author Scuracchio, P.; Michel, K.H.; Peeters, F.M. doi  openurl
  Title Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue (up) 14 Pages 144303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from our previous work in which we obtained a system of coupled integrodifferential equations for acoustic sound waves and phonon density fluctuations in two-dimensional (2D) crystals, we derive here the corresponding hydrodynamic equations, and we study their consequences as a function of temperature and frequency. These phenomena encompass propagation and damping of acoustic sound waves, diffusive heat conduction, second sound, and Poiseuille heat flow, all of which are characterized by specific transport coefficients. We calculate these coefficients by means of correlation functions without using the concept of relaxation time. Numerical calculations are performed as well in order to show the temperature dependence of the transport coefficients and of the thermal conductivity. As a consequence of thermal tension, mechanical and thermal phenomena are coupled. We calculate the dynamic susceptibilities for displacement and temperature fluctuations and study their resonances. Due to the thermomechanical coupling, the thermal resonances such as the Landau-Placzek peak and the second-sound doublet appear in the displacement susceptibility, and conversely the acoustic sound wave doublet appears in the temperature susceptibility, Our analytical results not only apply to graphene, but they are also valid for arbitrary 2D crystals with hexagonal symmetry, such as 2D hexagonal boron nitride, 2H-transition-metal dichalcogenides, and oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464717300006 Publication Date 2019-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159346 Serial 5225  
Permanent link to this record
 

 
Author Tonkikh, A.A.; Tsebro, V.I.; Obraztsova, E.A.; Rybkovskiy, D.V.; Orekhov, A.S.; Kondrashov, I.I.; Kauppinen, E.I.; Chuvilin, A.L.; Obraztsova, E.D. url  doi
openurl 
  Title Films of filled single-wall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue (up) 14 Pages 6755-6765  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we show the advantages of transparent high conductive films based on filled single-wall carbon nanotubes. The nanotubes with internal channels filled with acceptor molecules (copper chloride or iodine) form networks demonstrating significantly improved characteristics. Due to the charge transfer between the nanotubes and filler, the doped-nanotube films exhibit a drop in electrical sheet resistance of an order of magnitude together with a noticeable increase of film transparency in the visible and near-infrared spectral range. The thermoelectric power measurements show a significant improvement of air-stability of the nanotube network in the course of the filling procedure. For the nanotube films with an initial transparency of 87% at 514 nm and electrical sheet resistance of 862 Ohm sq(-1) we observed an improvement of transparency up to 91% and a decrease of sheet resistance down to 98 Ohm sq(-1). The combination of the nanotube synthesis technique and molecules for encapsulation has been optimized for applications in optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464454400024 Publication Date 2019-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 2 Open Access Not_Open_Access: Available from 06.09.2019  
  Notes ; The work was supported by the RFBR project 18-29-19113-mk, grant no. 311533 of Academy of Finland, Russian Federation President Program for young scientist MK-3140.2018.2. Also, the reported study was funded by RFBR and Moscow city Government according to the research project no. 19-32-70004. TEM measurements were performed with financial support from the Ministry of Science and Higher Education of the Russian Federation within the state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences. ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:159339 Serial 5249  
Permanent link to this record
 

 
Author Bafekry, A.; Shayesteh, S.F.; Ghergherehchi, M.; Peeters, F.M. pdf  doi
openurl 
  Title Tuning the bandgap and introducing magnetism into monolayer BC3 by strain/defect engineering and adatom/molecule adsorption Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 126 Issue (up) 14 Pages 144304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we study the structural, electronic, and optical properties of pristine BC3. Our results show that BC3 is a semiconductor which can be useful in optoelectronic device applications. Furthermore, we found that the electronic properties of BC3 can be modified by strain and the type of edge states. With increasing thickness, the indirect bandgap decreases from 0.7 eV (monolayer) to 0.27 eV (bulk). Upon uniaxial tensile strain along the armchair and zigzag directions, the bandgap slightly decreases, and with increasing uniaxial strain, the bandgap decreases, and when reaching -8%, a semiconductor-to-metal transition occurs. By contrast, under biaxial strain, the bandgap increases to 1.2 eV in +8% and decreases to zero in -8%. BC3 nanoribbons with different widths exhibit magnetism at the zigzag edges, while, at the armchair edges, they become semiconductor, and the bandgap is in the range of 1.0-1.2 eV. Moreover, we systematically investigated the effects of adatoms/molecule adsorption and defects on the structural, electronic, and magnetic properties of BC3. The adsorption of various adatoms and molecules as well as topological defects (vacancies and Stone-Wales defects) can modify the electronic properties. Using these methods, one can tune BC3 into a metal, half-metal, ferromagnetic-metal, and dilute-magnetic semiconductor or preserve its semiconducting character. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503995300019 Publication Date 2019-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 48 Open Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:165160 Serial 6328  
Permanent link to this record
 

 
Author Tummers, A.; Wallert, A.; De Keyser, N. openurl 
  Title Supplementing the eye : the technical analysis of Frans Hals's paintings – ii Type A1 Journal article
  Year 2019 Publication The Burlington magazine Abbreviated Journal  
  Volume 161 Issue (up) 1401 Pages 996-1003  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The painting 'Two fisherboys' has long caused confusion among experts. A close comparison of the painting with a forgery by Han van Meegeren and Frans Hals's `Fisherboy' solves the conundrum and provides valuable insights into the merits and drawbacks of modern analytical techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000500540400006 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-6287; 2044-9925 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:165106 Serial 8624  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Peeters, F.M. pdf  doi
openurl 
  Title New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity Type A1 Journal article
  Year 2019 Publication Carbon Abbreviated Journal Carbon  
  Volume 141 Issue (up) 141 Pages 712-718  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon materials play an important role in nanomaterials. We propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (H-4,H-4,H-4-graphyne), which is a nanoporous structure composed of rectangular carbon rings and triple bonds of carbon. Using first-principles calculations, we systematically studied the structure, stability, and band structure of this new material. We found that its total energy is lower than that of experimentally synthesized beta-graphdiyne and it is stable at least up to 1500 K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the band structure of H-4,H-4,H-4-graphyne exhibits double Dirac points along the high-symmetry points and the corresponding Fermi velocities (1.04-1.27 x 10(6) m/s) are asymmetric and higher than that of graphene. The origin of these double Dirac points is traced back to the nodal line states, which can be well explained by a tight-binding model. The H-4,H-4,H-4-graphyne forms a moire superstructure when placed on top of a hexagonal boron nitride substrate. These properties make H-4,H-4,H-4-graphyne a promising semimetal material for applications in high-speed electronic devices. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450312600072 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 38 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA project TRANS2DTMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government -department EWI. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:155364 Serial 5222  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Springael, J.; Van Dael, M.; Malina, R.; Van Passel, S. pdf  doi
openurl 
  Title Sustainability indicators for biobased chemicals : a Delphi study using multi-criteria decision analysis Type A1 Journal article
  Year 2019 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 144 Issue (up) 144 Pages 198-208  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Biobased chemistry has gained interest and has the potential to tackle some of the sustainability challenges the chemical industry must endure. Sustainability impacts need to be evaluated and monitored to highlight the advantages and pitfalls of different biobased routes over the entire product life cycle. This study aims for expert consensus concerning indicators needed and preferred for sustainability analysis of biobased chemicals in Europe. Experts are consulted by means of a Delphi method with stakeholders selected from three core groups: the private, public and academic sector. Best-Worst Scaling (BWS) is performed to gather data on the prioritization of the sustainability indicators per respondent. Afterwards, Multi-Criteria Decision Analysis (MCDA) is used to develop a consensus ranking among the experts. The results show that GHG emissions, market potential and acceptance of biobased materials are deemed the most crucial indicators for respectively environmental, economic and social sustainability. Expert consensus is positive in all three sustainability domains, with the strongest consensus measured for environmental sustainability showing a median Kendalls τ of 0.63 (τ ranging from -1 to 1) and the weakest consensus found within social sustainability showing a median Kendalls τ of 0.50. Further research can apply the ranked indicators on specific case studies to evaluate the practicability of the defined indicator set.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461534800021 Publication Date 2019-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 3.313  
  Call Number UA @ admin @ c:irua:156929 Serial 6255  
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Van Loon, J.; Du Bois, E.; De Wael, K.; Moretto, L.M. pdf  doi
openurl 
  Title Disposable electrodes from waste materials and renewable sources for (bio) electroanalytical applications Type A1 Journal article
  Year 2019 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 146 Issue (up) 146 Pages 111758  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract The numerous advantages of disposable and screen-printed electrodes (SPEs) particularly in terms of portability, sensibility, sensitivity and low-cost led to the massive application of these electroanalytical devices. To limit the electronic waste and recover precious materials, new recycling processes were developed together with alternative SPEs fabrication procedures based on renewable, biocompatible sources or waste materials, such as paper, agricultural byproducts or spent batteries. The increased interest in the use of eco-friendly materials for electronics has given rise to a new generation of highly performing green modifiers. From paper based electrodes to disposable electrodes obtained from CD/DVD, in the last decades considerable efforts were devoted to reuse and recycle in the field of electrochemistry. Here an overview of recycled and recyclable disposable electrodes, sustainable electrode modifiers and alternative fabrication processes is proposed aiming to provide meaningful examples to redesign the world of disposable electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000497250600003 Publication Date 2019-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.78 Times cited 2 Open Access  
  Notes ; This research received funding from FWO and IOF (UAntwerpen). ; Approved Most recent IF: 7.78  
  Call Number UA @ admin @ c:irua:164563 Serial 5578  
Permanent link to this record
 

 
Author Alaerts, L.; Van Acker, K.; Rousseau, S.; De Jaeger, S.; Moraga, G.; Dewulf, J.; De Meester, S.; Van Passel, S.; Compernolle, T.; Bachus, K.; Vrancken, K.; Eyckmans, J. url  doi
openurl 
  Title Towards a more direct policy feedback in circular economy monitoring via a societal needs perspective Type A1 Journal article
  Year 2019 Publication Resources, conservation and recycling Abbreviated Journal Resour Conserv Recy  
  Volume 149 Issue (up) 149 Pages 363-371  
  Keywords A1 Journal article; Economics; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing focus on circular economy at the level of governments and policy requires the development of appropriate indicators to effectively monitor the progress towards the circular economy. Currently two very different types of indicator areas are under development: (i) monitoring frameworks based on macro indicators that summarize the progress at (supra)national level, and (ii) micro indicators tailored towards assessing circularity at the level of products. It is not possible to obtain sufficiently direct feedback about the impact of policy interventions by either macro or micro indicators alone. In this paper, a conceptual approach is developed that aims to bridge the gap between the micro and macro level with meso level indicators, and thus ultimately deliver more direct feedback for policymakers, via the insertion of an extra level of meso indicators in between the macro and the micro level. These indicators have been extracted from a dedicated workshop that involved policy, sector and societal stakeholders. The aim of these indicators is to report on progress towards circular economy objectives based on the fulfillment of societal needs. In this way the consumption perspective is given a central position, and the role of circular business models is acknowledged. Following the development of the concept, the next steps towards tailored, flexible and agile monitoring frameworks for circular economy at (supra)national and regional level are outlined. The paper concludes with an illustrative example of the framework applied to the mobility system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000483414300034 Publication Date 2019-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited 1 Open Access  
  Notes ; The authors are very grateful for financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions. The authors are also grateful to the numerous stakeholders for extended discussions and comments. ; Approved Most recent IF: 3.313  
  Call Number UA @ admin @ c:irua:162774 Serial 6271  
Permanent link to this record
 

 
Author Gu, J.-G.; Zhang, Y.; Gao, M.-X.; Wang, H.-Y.; Zhang, Q.-Z.; Yi, L.; Jiang, W. pdf  doi
openurl 
  Title Enhancement of surface discharge in catalyst pores in dielectric barrier discharges Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue (up) 15 Pages 153303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The generation of high-density plasmas on the surface of porous catalysts is very important for plasma catalysis, as it determines the active surface of the catalyst that is available for the reaction. In this work, we investigate the mechanism of surface and volume plasma streamer formation and propagation near micro-sized pores in dielectric barrier discharges operating in air at atmospheric pressure. A two-dimensional particle-in-cell/ Monte Carlo collision model is used to model the individual kinetic behavior of plasma species. Our calculations indicate that the surface discharge is enhanced on the surface of the catalyst pores compared with the microdischarge inside the catalyst pores. The reason is that the surface ionization wave induces surface charging along the catalyst pore sidewalls, leading to a strong electric field along the pore sidewalls, which in turn further enhances the surface discharge. Therefore, highly concentrated reactive species occur on the surfaces of the catalyst pores, indicating high-density plasmas on the surface of porous catalysts. Indeed, the maximum electron impact excitation and ionization rates occur on the pore surface, indicating the more pronounced production of excited state and electron-ion pairs on the pore surface than inside the pore, which may profoundly affect the plasma catalytic process. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465441200022 Publication Date 2019-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:160397 Serial 5273  
Permanent link to this record
 

 
Author Blommaerts, N.; Vanrompay, H.; Nuti, S.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold-Silver Bimetallic Nanoparticles Type A1 Journal article
  Year 2019 Publication Small Abbreviated Journal Small  
  Volume 15 Issue (up) 15 Pages 1902791  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract For the synthesis of gold-silver bimetallic nanoparticles, the Turkevich method has been the state-of-the-art method for several decades. It has been presumed that this procedure results in a homogeneous alloy, although this has been debatable for many years. In this work, it is shown that neither a full alloy, nor a perfect core-shell particle is formed but rather a core-shell-like particle with altering metal composition along the radial direction. In-depth wet-chemical experiments are performed in combination with advanced transmission electron microscopy, including EDX tomography, and Finite Element Method modeling to support the observations. From the electron tomography results, the core-shell structure could be clearly visualized and the spatial distribution of gold and silver atoms could be quantified. Theoretical simulations are performed to demonstrate that even though UV-Vis spectra show only one plasmon band, this still originates from core-shell type structures. The simulations also indicate that the core-shell morphology does not so much affect the location of the plasmon band, but mainly results in significant band broadening. Wet-chemistry experiments provide the evidence that the synthesis pathway starts with gold enriched alloy cores, and later on in the synthesis mainly silver is incorporated to end up with a silver enriched alloy shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482637100001 Publication Date 2019-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 26 Open Access OpenAccess  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1S32617N G.0369.15N G.0381.16N ; Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:161636 Serial 5290  
Permanent link to this record
 

 
Author Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F. pdf  url
doi  openurl
  Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue (up) 15 Pages 5900-5908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480826900060 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:161814 Serial 5291  
Permanent link to this record
 

 
Author Florea, A.; Cowen, T.; Piletsky, S.; De Wael, K. url  doi
openurl 
  Title Electrochemical analysis of cocaine in real samples based on electrodeposited biomimetic affinity ligands Type A1 Journal article
  Year 2019 Publication The analyst Abbreviated Journal Analyst  
  Volume 144 Issue (up) 15 Pages 4639-4646  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A selective electrochemical sensor for direct detection of cocaine was developed based on molecularly imprinted polymers electropolymerized onto graphene-modified electrodes. Palladium nanoparticles were integrated in the sensing layer for the benefit of enhancing the communication between imprinted sites and electrode and improving their homogenous distribution. The molecularly imprinted polymer was synthesized by cyclic voltammetry using p-aminobenzoic acid as high affinity monomer selected by computational modeling, and cocaine as template molecule. Experimental parameters related to the electrochemical deposition of palladium nanoparticles, pH, composition of electropolymerization mixture, extraction and rebinding condition were studied and optimized. Under optimized conditions the oxidation peak current varied linearly with cocaine concentration in the range of 100-500 µM, with a detection limit of 50 µM (RSD 0.71%, n=3). The molecularly imprinted sensor was able to detect cocaine in saliva and river water with good recoveries after sample pretreatment and was successfully applied for screening real street samples for cocaine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476812000021 Publication Date 2019-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.885 Times cited 3 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. ; Approved Most recent IF: 3.885  
  Call Number UA @ admin @ c:irua:160062 Serial 5586  
Permanent link to this record
 

 
Author Neven, L.; Thiruvottriyur Shanmugam, S.; Rahemi, V.; Trashin, S.; Sleegers, N.; Carrion, E.N.; Gorun, S.M.; De Wael, K. pdf  url
doi  openurl
  Title Optimized photoelectrochemical detection of essential drugs bearing phenolic groups Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue (up) 15 Pages 9962-9969  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The World Health Organization (WHO) model “List of Essential Medicines” includes among indispensable medicines antibacterials and pain and migraine relievers. Monitoring their concentration in the environment, while challenging, is important in the context of antibiotic resistance as well as their production of highly toxic compounds via hydrolysis. Traditional detection methods such as high-performance liquid chromatography (HPLC) or LC combined with tandem mass spectrometry or UV-vis spectroscopy are time-consuming, have a high cost, require skilled operators and are difficult to adapt for field operations. In contrast, (electrochemical) sensors have elicited interest because of their rapid response, high selectivity, and sensitivity as well as potential for on-site detection. Previously, we reported a novel sensor system based on a type II photosensitizer, which combines the advantages of enzymatic sensors (high sensitivity) and photoelectrochemical sensors (easy baseline subtraction). Under red-light illumination, the photosensitizer produces singlet oxygen which oxidizes phenolic compounds present in the sample. The subsequent reduction of the oxidized phenolic compounds at the electrode surface gives rise to a quantifiable photocurrent and leads to the generation of a redox cycle. Herein we report the optimization in terms of pH and applied potential of the photoelectrochemical detection of the hydrolysis product of paracetamol, i.e., 4-aminophenol (4-AP), and two antibacterials, namely, cefadroxil (CFD, beta-lactam antibiotic) and doxycycline (DXC, tetracycline antibiotic). The optimized conditions resulted in a detection limit of 0.2 mu mol L-1 for DXC, but in a 10 times higher sensitivity, 20 nmol L-1, for CFD. An even higher sensitivity, 7 nmol L-1, was noted for 4-AP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480499200086 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 2 Open Access  
  Notes ; FWO and UA-BOF are acknowledged for financial support. The Center for Functional Materials of Seton Hall University is thanked for support (S.M.G. and E.N.C.). Joren Van Loon is thanked for the graphical abstract. This research was supported by the medium scale research infrastructure funding Hercules funding (SEM). ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:161831 Serial 5763  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. pdf  doi
openurl 
  Title Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2019 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 159 Issue (up) 159 Pages 228-234  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457856900023 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.292  
  Call Number UA @ admin @ c:irua:157480 Serial 5272  
Permanent link to this record
 

 
Author O'Donnell, D.; Hassan, S.; Du, Y.; Gauquelin, N.; Krishnan, D.; Verbeeck, J.; Fan, R.; Steadman, P.; Bencok, P.; Dobrynin, A.N. pdf  url
doi  openurl
  Title Etching induced formation of interfacial FeMn in IrMn/CoFe bilayers Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue (up) 16 Pages 165002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of ion etching on exchange bias in IrMn3/Co70Fe30 bilayers is investigated. In spite of the reduction of saturation magnetization caused by the embedding of Tr from the capping layer into the Co70Fe30 layer during the etching process, the exchange bias in samples with the same thickness of the Co70Fe30 layer is reducing in proportion to the etching power. X-ray magnetic circular dichroism measurements revealed the emergence of an uncompensated Mn magnetization after etching, which is antiferromagnetically coupled to the ferromagnetic layer. This suggests etching induced formation of small interfacial FeMn regions which leads to the decrease of effective exchange coupling between ferromagnetic and antiferromagnetic layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458524800001 Publication Date 2019-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes ; This work was supported by Seagate Technology (Ireland). Beamline I10, Diamond Light Source, is acknowledged for provided beamtime. ; Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:157458 Serial 5247  
Permanent link to this record
 

 
Author Moro, G.; De Wael, K.; Moretto, L.M. pdf  url
doi  openurl
  Title Challenges in the electrochemical (bio)sensing of non-electroactive food and environmental contaminants Type A1 Journal article
  Year 2019 Publication Current opinion in electrochemistry Abbreviated Journal  
  Volume 16 Issue (up) 16 Pages 57-65  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The electrochemical detection of non-electroactive contaminants can be successfully faced via the use of indirect detection strategies. These strategies can provide sensitive and selective responses often coupled with portable and user-friendly analytical tools. Indirect detection strategies are usually based on the change in the signal of an electroactive probe, induced by the presence of the target molecule at a modified electrode. This critical review aims at addressing the developments in indirect electro-sensing strategies for non-electroactive contaminants in food and environmental analysis in the last years (2017-2019). Emphasis is given to the strategy design, the electrode modifiers used and the feasibility of technological transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000485814400010 Publication Date 2019-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:159574 Serial 5498  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: