toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yu, M.Y.; Yu, W.; Chen, Z.Y.; Zhang, J.; Yin, Y.; Cao, L.H.; Lu, P.X.; Xu, Z.Z. url  doi
openurl 
  Title Electron acceleration by an intense short-pulse laser in underdense plasma Type A1 Journal article
  Year 2003 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 10 Issue 6 Pages 2468-2474  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000183316500031 Publication Date 2003-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 41 Open Access  
  Notes Approved Most recent IF: 2.115; 2003 IF: 2.146  
  Call Number UA @ lucian @ c:irua:103293 Serial 904  
Permanent link to this record
 

 
Author Vranjes, J.; Petrovic, D.; Pandey, B.P.; Poedts, S. doi  openurl
  Title Electrostatic modes in multi-ion and pair-ion collisional plasmas Type A1 Journal article
  Year 2008 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 15 Issue 7 Pages 072104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The physics of plasmas containing positive and negative ions is discussed with special attention to the recently produced pair-ion plasma containing ions of equal mass and opposite charge. The effects of the density gradient in the direction perpendicular to the ambient magnetic field vector are discussed. The possible presence of electrons is discussed in the context of plasma modes propagating at an angle with respect to the magnetic field vector. It is shown that the electron plasma mode may become a backward mode in the presence of a density gradient, and this behavior may be controlled either by the electron number density or the mode number in the perpendicular direction. In plasmas with hot electrons an instability may develop, driven by the combination of electron collisions and the density gradient, and in the regime of a sound ions' response. In the case of a pure pair-ion plasma, for lower frequencies and for parameters close to those used in the recent experiments, the perturbed ions may feel the effects of the magnetic field. In this case the plasma mode also becomes backward, resembling features of an experimentally observed but yet unexplained backward mode. (C) 2008 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000258175800004 Publication Date 2008-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 54 Open Access  
  Notes Approved Most recent IF: 2.115; 2008 IF: 2.427  
  Call Number UA @ lucian @ c:irua:103554 Serial 1023  
Permanent link to this record
 

 
Author Si, X.-J.; Zhao, S.-X.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma Type A1 Journal article
  Year 2011 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 18 Issue 3 Pages 033504-033504,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000289151900073 Publication Date 2011-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.115; 2011 IF: 2.147  
  Call Number UA @ lucian @ c:irua:87876 Serial 1233  
Permanent link to this record
 

 
Author Cai, H.-bo; Yu, W.; Zhu, S.-ping; Zheng, C.-yang; Cao, L.-hua; Li, B.; Chen, Z.Y.; Bogaerts, A. doi  openurl
  Title Short-pulse laser absorption in very steep plasma density gradients Type A1 Journal article
  Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 13 Issue Pages 094504,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000240877800057 Publication Date 2006-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.115; 2006 IF: 2.258  
  Call Number UA @ lucian @ c:irua:59375 Serial 2995  
Permanent link to this record
 

 
Author Liu, Y.H.; Chen, Z.Y.; Huang, F.; Yu, M.Y.; Wang, L.; Bogaerts, A. doi  openurl
  Title Simulation of disk- and band-like voids in dusty plasma systems Type A1 Journal article
  Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 13 Issue Pages 052110,1-6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000237943000011 Publication Date 2006-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 20 Open Access  
  Notes Approved Most recent IF: 2.115; 2006 IF: 2.258  
  Call Number UA @ lucian @ c:irua:57858 Serial 3011  
Permanent link to this record
 

 
Author Cui, Z.; Jafarzadeh, A.; Hao, Y.; Liu, L.; Li, L.; Zheng, Y. pdf  doi
openurl 
  Title Prediction of the decomposition tendency of C5F10O on discharged metal surfaces Type A1 Journal article
  Year 2023 Publication IEEE transactions on dielectrics and electrical insulation Abbreviated Journal  
  Volume 30 Issue 3 Pages 1365-1367  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, a dipole sheet method is proposed to theoretically study the adsorption and decomposition of C5F10O over-discharged Cu (111) and Al (111) surfaces. A synergistic effect of external electric fields and surface excess charges shows up for jointly promoting the adsorption of C5F10O, accompanied by the enhancement of C-F bond elongation and charge transfer process. The decomposition of C5F10O is facilitated in the discharged region and the initial decomposition is found most likely to occur via the cleavage of the C-F single bond. The results indicate that the decomposition of C5F10O over the metal electrode surfaces is much accelerated when discharge faults occur and free F atoms could be generated from C5F10O before its carbon chain breakage. These findings help to elucidate the underlying decomposition tendency of C5F10O in discharged systems and provide a practical method for evaluating and designing new insulation gases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001000675800054 Publication Date 2023-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1070-9878 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:197319 Serial 9076  
Permanent link to this record
 

 
Author Alexiades, V.; Autrique, D. openurl 
  Title Enthalpy model for heating, melting, and vaporization in laser ablation Type A1 Journal article
  Year 2010 Publication Electronic journal of differential equations Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a selfconsistent way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455668500001 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1072-6691 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190550 Serial 7925  
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R. doi  openurl
  Title Comparative study of organic dyes with time-of-flight static secondary ion mass spectrometry and related techniques Type A1 Journal article
  Year 2005 Publication Journal of mass spectrometry Abbreviated Journal J Mass Spectrom  
  Volume 40 Issue 5 Pages 615-627  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chichester Editor  
  Language Wos 000229355400006 Publication Date 2005-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1076-5174;1096-9888; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.422 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.422; 2005 IF: 3.574  
  Call Number UA @ lucian @ c:irua:60084 Serial 422  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
  Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A  
  Volume 126 Issue 20 Pages 3080-3089  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000804119800003 Publication Date 2022-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.9  
  Call Number UA @ admin @ c:irua:189023 Serial 7146  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A. doi  openurl
  Title Modeling of the synthesis and subsequent growth of nanoparticles in dusty plasmas Type A1 Journal article
  Year 2007 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us  
  Volume 11 Issue Pages 21-36  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000246372200003 Publication Date 2008-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1093-3611; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:63996 Serial 2136  
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M. doi  openurl
  Title Modeling PECVD growth of nanostructured carbon materials Type A1 Journal article
  Year 2009 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us  
  Volume 13 Issue 3/4 Pages 399-412  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present here some of our modeling efforts for PECVD growth of nanostructured carbon materials with focus on amorphous hydrogenated carbon. Experimental data from an expanding thermal plasma setup were used as input for the simulations. Attention was focused both on the film growth mechanism, as well as on the hydrocarbon reaction mechanisms during growth of the films. It is found that the reaction mechanisms and sticking coefficients are dependent on the specific surface sites, and the structural properties of the growth radicals. The film growth results are in correspondence with the experiment. Furthermore, it is found that thin a-C:H films can be densified using an additional H-flux towards the substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274202300012 Publication Date 2010-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1093-3611; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:80991 Serial 2138  
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Herrebout, D.; Kolev, I.; Madani, M.; Neyts, E. doi  openurl
  Title Numerical modeling for a better understanding of gas discharge plasmas Type A1 Journal article
  Year 2005 Publication High temperature material processes Abbreviated Journal High Temp Mater P-Us  
  Volume 9 Issue 3 Pages 321-344  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000231634100001 Publication Date 2005-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1093-3611; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:55832 Serial 2398  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Atanasov, I.; Hou, M. url  doi
openurl 
  Title Calculation of binary and ternary metallic immiscible clusters with icosahedral structures Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume Issue Pages 115415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, core-shell Ag-Co, Ag-Cu, and “onionlike” Cu-Co equilibrium configurations were predicted in the case of isolated face centered cubic (fcc) bimetallic clusters, and three shell onionlike configurations were predicted in the case of ternary metallic clusters with spherical and truncated octahedral morphologies. In the present paper, immiscible binary CuCo and ternary AgCuCo clusters with icosahedral structures are studied as functions of their size and composition. Clusters studied are formed by 13, 55, 147, 309, and 561 atoms corresponding to the five smallest possible closed shell icosahedral structures. An embedded atom model potential is used to describe their cohesion. Equilibrium configurations are investigated by means of Metropolis Monte Carlo free energy minimization in the (NPT) canonical ensemble. Most simulations are achieved at 10 and 300 K. The effect of temperature on segregation ordering is systematically investigated. Selected cases are used to identify the effect of size and composition on melting. In contrast with fcc clusters, homogeneous onionlike configurations of binary clusters are not predicted. When it is allowed by the composition, a complete outer shell is formed by Cu in binary Cu-Co clusters and by Ag in ternary Ag-Cu-Co clusters. Depending on temperature, Co may precipitate into decahedral groups under the Cu vertices of the icosahedra in binary clusters, while the Co-Cu configuration in ternary clusters drastically depends on the Ag coating. Despite the multicomponent character of the clusters and the immiscibility of the species forming them, for most compositions and sizes, equilibrium structures remain close to perfectly icosahedral at 10 K as well as at 300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800167 Publication Date 2008-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:104033 Serial 4517  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Carbon clusters: from ring structures to nanographene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 19 Pages 195414,1-195414,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The lowest-energy configurations of Cn(n≤55) clusters are obtained using the energy-minimization technique with the conjugate gradient method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground-state configuration consists of a single ring for small number of C atoms and multiring structures are found with increasing n, which can be in planar, bowl-like or caplike form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground-state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphenelike configuration. Trigonal clusters are never the ground state while hexagonal-shaped clusters are only the ground state when they have zigzag edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278142000103 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83385 Serial 278  
Permanent link to this record
 

 
Author Compemolle, S.; Pourtois, G.; Sorée, B.; Magnus, W.; Chibotaru, L.F.; Ceulemans, A. doi  openurl
  Title Conductance of a copper-nanotube bundle interface: impact of interface geometry and wave-function interference Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 19 Pages 193406,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000256971600032 Publication Date 2008-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:70215 Serial 479  
Permanent link to this record
 

 
Author Nishio, K.; Lu, A.K.A.; Pourtois, G. url  doi
openurl 
  Title Low-strain Si/O superlattices with tunable electronic properties : ab initio calculations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 165303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose that low-strain Si/O superlattices can be constructed by connecting reconstructed Si{001} surfaces by Si-O-Si bridges. Ab initio calculations show that our models are energetically more favorable than all the models proposed so far. The part of our Si/O superlattice model is experimentally accessible just by oxidizing a Si( 001) substrate. To complete our Si/O superlattice model, we propose a three-step method. We also explore the potential of our Si/O superlattice models for new materials used in future Si electronics. We find that the location of the channel where the carriers travel can be controlled between the interfaces and the Si layers by the insertion of O atoms into the Si-Si dimers. By revealing the origins of the interface electron and hole states, we find that similar interface states should be easily achieved for Si slabs and Si substrates. Interestingly, the interface electrons and holes have small effective masses in the direction parallel to the channel and large effective masses in the direction normal to the channel, which makes the Si/O superlattices attractive to be used for channel materials. We also find that the valley splitting of Si is enhanced by the formation of the Si/O/Si interfaces, which is ideal for developing Si-based qubits. Our findings open new perspectives to design and control the electronic properties of Si.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352986700002 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125998 Serial 1852  
Permanent link to this record
 

 
Author Scarrozza, M.; Pourtois, G.; Houssa, M.; Heyns, M.; Stesmans, A. url  doi
openurl 
  Title Oxidation of the GaAs(001) surface : insights from first-principles calculations Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 19 Pages 195307-195307,8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We performed a detailed investigation of the oxidation of the technologically relevant GaAs(001)-beta 2(2x4) surface via density functional calculations. The purpose is to gain insights on the atomistic mechanisms and local bondings that underlie the degradation of the surface properties once exposed to oxygen. The study comprises the adsorption of single O atoms, through the sampling of several adsorption sites, and the subsequent formation of the O adsorbate at increasing coverage by taking into account multiple-atom adsorption. Based on the evaluation of the energetics and the structural properties of the atomistic models generated, the results here reported delineate a consistent picture of the initial stage of the surface oxidation: (i) at low coverage, in the limit of single O insertions, oxygen is incorporated on the surface forming a twofold-bridging Ga-O-As bond; (ii) at increasing coverage, as multiple O atoms are involved, this is accompanied by the formation of a threefold-coordinated bond (with two Ga and one As atoms); (iii) the latter has important implications regarding the electronic properties of the adsorbate since this O bonding may result in the formation of As dangling bonds. Moreover, a clear trend of increased energy gain for the incorporation of neighboring O atoms compared to single O insertions indicates that the formation of oxide clusters is favored over a regime of uniform oxidation. Our findings provide a detailed description of the O bonding and stress the importance of modeling the adsorption of multiple O atoms for an accurate description of the surface oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303755700006 Publication Date 2012-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99122 Serial 2538  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Theoretical study of the stable states of small carbon clusters Cn (n=210) Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 23 Pages 235433,1-235433,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Both even- and odd-numbered neutral carbon clusters Cn (n=210) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found, and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n5 the linear isomer is the most stable one while for n>5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n=210) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n=25.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262245400119 Publication Date 2008-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76006 Serial 3613  
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Neyts, E.C.; Thijsse, B.J.; Stesmans, A. url  doi
openurl 
  Title Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 13 Pages 134301-134301,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Monte Carlo (MC) methods have a long-standing history as partners of molecular dynamics (MD) to simulate the evolution of materials at the atomic scale. Among these techniques, the uniform-acceptance force-bias Monte Carlo (UFMC) method [ G. Dereli Mol. Simul. 8 351 (1992)] has recently attracted attention [ M. Timonova et al. Phys. Rev. B 81 144107 (2010)] thanks to its apparent capacity of being able to simulate physical processes in a reduced number of iterations compared to classical MD methods. The origin of this efficiency remains, however, unclear. In this work we derive a UFMC method starting from basic thermodynamic principles, which leads to an intuitive and unambiguous formalism. The approach includes a statistically relevant time step per Monte Carlo iteration, showing a significant speed-up compared to MD simulations. This time-stamped force-bias Monte Carlo (tfMC) formalism is tested on both simple one-dimensional and three-dimensional systems. Both test-cases give excellent results in agreement with analytical solutions and literature reports. The inclusion of a time scale, the simplicity of the method, and the enhancement of the time step compared to classical MD methods make this method very appealing for studying the dynamics of many-particle systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302290500001 Publication Date 2012-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97160 Serial 3809  
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.; Jacob, W.; Lakiere, F.; van Daele, A.; Silaev, E.; Kaplun, L. doi  openurl
  Title Characterization of double structure tabular microcrystals of silver halide emulsions by means of electron energy-loss spectroscopy, zero-loss electron spectroscopic imaging and energy dispersive X-ray microanalysis Type A1 Journal article
  Year 1995 Publication Microscopy, microanalysis, microstructures Abbreviated Journal  
  Volume 6 Issue 1 Pages 79-88  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Ivry Editor  
  Language Wos A1995QY30300008 Publication Date 2003-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1154-2799; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:8457 Serial 322  
Permanent link to this record
 

 
Author van Vaeck, L.; van Espen, P.; Gijbels, R.; Baykut, G.; Laukien, F.H. doi  openurl
  Title A new electrostatic transfer line for improved transmission in Fourier transform laser microprobe mass spectrometry with external ion source Type A1 Journal article
  Year 2000 Publication European mass spectrometry Abbreviated Journal Eur Mass Spectrom  
  Volume 6 Issue Pages 277-287  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Chemometrics (Mitac 3)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher I.M. Place of Publication Chichester Editor  
  Language Wos 000165327900008 Publication Date 2007-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1356-1049; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:34088 Serial 2312  
Permanent link to this record
 

 
Author Bogaerts, A.; Kozak, T.; van Laer, K.; Snoeckx, R. pdf  url
doi  openurl
  Title Plasma-based conversion of CO2: current status and future challenges Type A1 Journal article
  Year 2015 Publication Faraday discussions Abbreviated Journal Faraday Discuss  
  Volume 183 Issue 183 Pages 217-232  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.  
  Address Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Antwerp, Belgium. annemie.bogaerts@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000365914900013 Publication Date 2015-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.588 Times cited 89 Open Access  
  Notes We thank R. Aerts and W. van Gaens for setting up the experimental systems and for the interesting results obtained during their PhD study in our group. We also acknowledge nancial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Fund for Scientic Research Flanders (FWO) and the EU-FP7-ITN network “RAPID”. Approved Most recent IF: 3.588; 2015 IF: 4.606  
  Call Number c:irua:130318 Serial 3983  
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403945500005 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 17 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302  
  Call Number c:irua:134841 Serial 4107  
Permanent link to this record
 

 
Author Bogaerts, A.; Wang, W.; Berthelot, A.; Guerra, V. pdf  url
doi  openurl
  Title Modeling plasma-based CO2conversion: crucial role of the dissociation cross section Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055016  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-based CO2 conversion is gaining increasing interest worldwide. A large research effort is devoted to improving the energy efficiency. For this purpose, it is very important to understand the underlying mechanisms of the CO2 conversion. The latter can be obtained by computer modeling, describing in detail the behavior of the various plasma species and all relevant chemical processes. However, the accuracy of the modeling results critically depends on the accuracy of the assumed input data, like cross sections. This is especially true for the cross section of electron impact dissociation, as the latter process is believed

to proceed through electron impact excitation, but it is not clear from the literature which excitation channels effectively lead to dissociation. Therefore, the present paper discusses the effect of different electron impact dissociation cross sections reported in the literature on the calculated CO2 conversion, for a dielectric barrier discharge (DBD) and a microwave (MW) plasma. Comparison is made to experimental data for the DBD case, to elucidate which cross section might be the most realistic. This comparison reveals that the cross sections proposed

by Itikawa and by Polak and Slovetsky both seem to underestimate the CO2 conversion. The cross sections recommended by Phelps with thresholds of 7 eV and 10.5 eV yield a CO2 conversion only slightly lower than the experimental data, but the sum of both cross sections overestimates the values, indicating that these cross sections represent dissociation, but most probably also include other (pure excitation) channels. Our calculations indicate that the choice of the electron impact dissociation cross section is crucial for the DBD, where this process is the dominant mechanism for CO2 conversion. In the MW plasma, it is only significant at pressures up to 100 mbar, while it is of minor importance for higher pressures, when dissociation proceeds mainly through collisions of CO2 with heavy particles.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384030600001 Publication Date 2016-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 57 Open Access  
  Notes The authors would like to thank R Snoeckx and S Heijkers for the interesting discussions. This research was supported by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska-Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the FWO project (grant G.0383.16N), and the Network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7), supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. VG was partially supported by the Portuguese FCT— Fundação para a Ci Approved Most recent IF: 3.302  
  Call Number c:irua:135070 Serial 4111  
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385494000006 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access  
  Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281  
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 065012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386605100002 Publication Date 2016-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access  
  Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286  
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 015003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column.

The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The

back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000419253000001 Publication Date 2016-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 9 Open Access OpenAccess  
  Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:138993 Serial 4337  
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z. pdf  url
doi  openurl
  Title Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398327900002 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535  
Permanent link to this record
 

 
Author Tennyson, J.; Rahimi, S.; Hill, C.; Tse, L.; Vibhakar, A.; Akello-Egwel, D.; Brown, D.B.; Dzarasova, A.; Hamilton, J.R.; Jaksch, D.; Mohr, S.; Wren-Little, K.; Bruckmeier, J.; Agarwal, A.; Bartschat, K.; Bogaerts, A.; Booth, J.-P.; Goeckner, M.J.; Hassouni, K.; Itikawa, Y.; Braams, B.J.; Krishnakumar, E.; Laricchiuta, A.; Mason, N.J.; Pandey, S.; Petrovic, Z.L.; Pu, Y.-K.; Ranjan, A.; Rauf, S.; Schulze, J.; Turner, M.M.; Ventzek, P.; Whitehead, J.C.; Yoon, J.-S. url  doi
openurl 
  Title QDB: a new database of plasma chemistries and reactions Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055014  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF6/CF4/O2 and SF6/CF4/N2/H2 are presented as examples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398394500001 Publication Date 2017-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 18 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142206 Serial 4549  
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Investigations of discharge and post-discharge in a gliding arc: a 3D computational study Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study we quantitatively investigate for the first time the plasma characteristics of an argon gliding arc with a 3D model. The model is validated by comparison with available experimental data from literature and a reasonable agreement is obtained for the calculated gas temperature and electron density. A complete arc cycle is modeled from initial ignition to arc decay. We investigate how the plasma characteristics, i.e., the electron temperature, gas temperature,

reduced electric field, and the densities of electrons, Ar+ and Ar2+ ions and Ar(4s) excited states, vary over one complete arc cycle, including their behavior in the discharge and post-discharge. These plasma characteristics exhibit a different evolution over one arc cycle, indicating that either the active discharge stage or the post-discharge stage can be beneficial for certain applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399278100002 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access OpenAccess  
  Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). SR Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142204 Serial 4550  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: