toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Winterstetter, A.; Grodent, M.; Kini, V.; Ragaert, K.; Vrancken, K.C.M. url  doi
openurl 
  Title A review of technological solutions to prevent or reduce marine plastic litter in developing countries Type A1 Journal article
  Year 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 13 Issue 9 Pages 4894  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Growing global plastic production combined with poor waste collection has led to increasing amounts of plastic debris being found in oceans, rivers and on shores. The goal of this study is to provide an overview on currently available technological solutions to tackle marine plastic litter and to assess their potential use in developing countries. To compile an inventory of technological solutions, a dedicated online platform was developed. A total of 51 out of initially 75 submitted solutions along the plastics value chain were assessed by independent experts. Collection systems represent more than half of the shortlisted solutions. A quarter include processing and treatment technologies, either as a stand-alone solution (30%) or, more commonly, in combination with a first litter capturing step. Ten percent offer digital solutions. The rest focuses on integrated waste management solutions. For each stage in the source-to-sea spectrum-land, rivers, sea-two illustrative examples are described in detail. This study concludes that the most cost-effective type of solution tackles land-based sources of marine litter and combines technology with people-oriented practices, runs on own energy sources, connects throughout the plastics value chain with a convincing valorization plan for captured debris, and involves all relevant stakeholders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650920900001 Publication Date 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.789 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.789  
  Call Number UA @ admin @ c:irua:178368 Serial 7396  
Permanent link to this record
 

 
Author Courtens, E.N.P.; Spieck, E.; Vilchez-Vargas, R.; Bode, S.; Boeckx, P.; Schouten, S.; Jauregui, R.; Pieper, D.H.; Vlaeminck, S.E.; Boon, N. pdf  url
doi  openurl
  Title A robust nitrifying community in a bioreactor at 50 degrees C opens up the path for thermophilic nitrogen removal Type A1 Journal article
  Year 2016 Publication The ISME journal : multidisciplinary journal of microbial ecology Abbreviated Journal  
  Volume 10 Issue 9 Pages 2293-2303  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of C-13-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198 +/- 10 and 894 +/- 81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386664600019 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7362 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:138184 Serial 7397  
Permanent link to this record
 

 
Author Gielis, J.; Tavkhelidze, I.; Ricci, P.E. pdf  doi
openurl 
  Title About “bulky” links generated by generalized Möbius-Listing bodies GML2n Type A2 Journal article
  Year 2013 Publication Journal of mathematical sciences Abbreviated Journal  
  Volume 193 Issue 3 Pages 449-460  
  Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, we consider the bulky knots and bulky links, which appear after cutting of a Generalized MöbiusListing GMLn2 body (with the radial cross section a convex plane 2-symmetric figure with two vertices) along a different Generalized MöbiusListing surfaces GMLn2 situated in it. The aim of this report is to investigate the number and geometric structure of the independent objects that appear after such a cutting process of GMLn2 bodies. In most cases we are able to count the indices of the resulting mathematical objects according to the known classification for the standard knots and links.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2013-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1072-3374; 1573-8795 ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:110953 Serial 7404  
Permanent link to this record
 

 
Author Tavkhelidze, I.; Cassisa, C.; Gielis, J.; Ricci, P.E. pdf  doi
openurl 
  Title About “bulky” links, generated by generalized Möbius Listing's bodies GML3n Type A1 Journal article
  Year 2013 Publication Matematica e applicazioni : atti della Accademia nazionale dei Lincei Abbreviated Journal  
  Volume 24 Issue 1 Pages 11-38  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the present paper we consider the “bulky knots'' and ”bulky links'', which appear after cutting a Generalized Möbius Listing's GMLn3 body (whose radial cross section is a plane 3-symmetric figure with three vertices) along different Generalized Möbius Listing's surfaces GMLn2 situated in it. This article is aimed to investigate the number and geometric structure of the independent objects appearing after such a cutting process of GMLn3 bodies. In most cases we are able to count the indices of the resulting mathematical objects according to the known tabulation for Knots and Links of small complexity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316567700002 Publication Date 2013-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1120-6357 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:107174 Serial 7405  
Permanent link to this record
 

 
Author Tavkhelidze, I.; Gielis, J.; Pinelas, S. file  openurl
  Title About some methods of analytic representation and classification of a wide set of geometric figures with “complex” configuration Type A3 Journal article
  Year 2020 Publication Sn – 1512-0066 Abbreviated Journal  
  Volume 34 Issue Pages 81-84  
  Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174475 Serial 7406  
Permanent link to this record
 

 
Author Beames, A.; Broekx, S.; Heijungs, R.; Lookman, R.; Boonen, K.; Van Geert, Y.; Dendoncker, K.; Seuntjens, P. pdf  doi
openurl 
  Title Accounting for land-use efficiency and temporal variations between brownfield remediation alternatives in life-cycle assessment Type A1 Journal article
  Year 2015 Publication Journal of cleaner production Abbreviated Journal  
  Volume 101 Issue Pages 109-117  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The latest life-cycle assessment methods account for land use, due to the production, use and disposal of products and services, in terms of ecosystem damage. The process of brownfield remediation converts otherwise idle urban space into productive space. The value to ecosystems in this context is of course limited since the brownfield site remains urban. When evaluating brownfield remediation technologies, the availability of space on-site is dependent on the duration of time required by the remediation technology to reach the remediation target. Remediation technology alternatives tend to vary largely in terms of duration. Comparative life-cycle assessments of remediation technologies, to date, present the large variations between alternatives in terms of remediation duration but do not translate this into an impact or parameter. The restored subsurface zone is often defined as a functional unit, when in fact the surface area is the resource restored by the remediation service. The economic benefits of making land resources available are particularly important considerations in the context of brownfield remediation. The research proposes an innovative impact assessment approach that allows land to be considered as a finite resource. The method is applied in a comparative life-cycle assessment of two potential remediation scenarios for an idle brownfield in the Brussels region of Belgium. The results show that there is a trade-off between greenhouse gas emissions and land availability and that both are largely dependent on the efficiency of the contaminant extraction mechanism. The results also raise the question as to whether the economic valuation of land, like precious metals and fossil fuels, provides an accurate reflection of the true value of the resource. Considering land as a resource at the midpoint level is also relevant in other urban contexts where competition exists between different land-uses, where urban sprawl is detrimental to undeveloped areas and where urban intensification is a policy objective. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356988200010 Publication Date 2015-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127010 Serial 7412  
Permanent link to this record
 

 
Author Jochems, P.; Mueller, T.; Satyawali, Y.; Diels, L.; Dejonghe, W.; Hanefeld, U. pdf  doi
openurl 
  Title Active site titration of immobilized beta-galactosidase for the determination of active enzymes Type A1 Journal article
  Year 2015 Publication Biochemical engineering journal Abbreviated Journal  
  Volume 93 Issue Pages 137-141  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the present study, an active site titration method is demonstrated, to determine the amount of active enzyme (beta-galactosidase), immobilized on a support. Two types of supports were investigated, viz, amino acrylic resin and a mixed matrix membrane. Furthermore, 2',4'-dinitrophenyl 2-deoxy-2-fluoro-beta-D-galactopyranoside was used as an inhibitor for the active site titration of immobilized beta-galactosidase obtained from Kluyveromyces lactis. Using the active site titration, approximately 8.3 mg of active enzyme was found on 1 g of dried commercially available SPRIN imibond, which is an amino acrylic resin with covalently bound beta-galactosidase obtained from K. lactis. However, this method, in its present form, was not effective on the mixed matrix membranes due to the irreversible partial adsorption of the leaving group (2',4'-dinitrophenolate) by the membrane. This observation implied that it is important to investigate interactions between the support and the used inhibitor and leaving group. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347362100018 Publication Date 2014-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-703x; 1873-295x ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:123763 Serial 7417  
Permanent link to this record
 

 
Author Satyawali, Y.; Seuntjens, P.; Van Roy, S.; Joris, I.; Vangeel, S.; Dejonghe, W.; Vanbroekhoven, K. pdf  doi
openurl 
  Title The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers Type A1 Journal article
  Year 2011 Publication Journal of contaminant hydrology Abbreviated Journal  
  Volume 123 Issue 3/4 Pages 83-93  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. (C) 2010 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288979100001 Publication Date 2010-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:105591 Serial 7419  
Permanent link to this record
 

 
Author Koch, K.; Samson, R.; Denys, S. pdf  url
doi  openurl
  Title Aerodynamic characterisation of green wall vegetation based on plant morphology : an experimental and computational fluid dynamics approach Type A1 Journal article
  Year 2019 Publication Biosystems engineering Abbreviated Journal  
  Volume 178 Issue Pages 34-51  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The installation of urban green infrastructure, particularly green walls, has proven to be an effective strategy for the mitigation of particulate matter (PM) pollution and the urban heat island effect. For the interaction between vegetation, PM and the local microclimate, wind flow is the main driving force. In order to investigate these interactions in detail, it is important to know how air flows through vegetation. This study proposes a method based on the DarcyForchheimer equation, where vegetation is considered as a porous medium and several plant species and the effects of plant morphological characteristics are examined both experimentally and using computer simulations. Results showed that the DarcyForchheimer model is a simple and robust way to describe air flow through vegetation regardless of its morphology. This research provides a new vision on studying aerodynamic properties of vegetation in relation to their morphology and provides opportunities for model the interaction between vegetation and its environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456902300003 Publication Date 2018-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1537-5110 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155994 Serial 7421  
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.; Vlaeminck, S.E. pdf  openurl
  Title The age of wastewater mining : selection for sludge with a maximum capture potential for organics in a high-rate contact stabilization system Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151144 Serial 7428  
Permanent link to this record
 

 
Author Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. pdf  doi
openurl 
  Title Airborne bacteria in the atmosphere : presence, purpose, and potential Type A1 Journal article
  Year 2016 Publication Atmospheric environment : an international journal Abbreviated Journal  
  Volume 139 Issue Pages 214-221  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379093900021 Publication Date 2016-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:133711 Serial 7432  
Permanent link to this record
 

 
Author Firmansyah, I.; Carsjens, G.J.; de Ruijter, F.J.; Zeeman, G.; Spiller, M. url  doi
openurl 
  Title An integrated assessment of environmental, economic, social and technological parameters of source separated and conventional sanitation concepts : a contribution to sustainability analysis Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 295 Issue Pages 113131  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery and reuse from domestic wastewater has become an important subject for the current development of sanitation technologies and infrastructures. Different technologies are available and combined into sanitation concepts, with different performances. This study provides a methodological approach to evaluate the sustainability of these sanitation concepts with focus on resource recovery and reuse. St. Eustatius, a small tropical island in the Caribbean, was used as a case study for the evaluation. Three source separation-communityon-site and two combined sewerage island-scale concepts were selected and compared in terms of environmental (net energy use, nutrient recovery/reuse, BOD/COD, pathogens, and GHG emission, land use), economic (CAPEX and OPEX), social cultural (acceptance, required competences and education), and technological (flexibility/ adaptability, reliability/continuity of service) indicators. The best performing concept, is the application of Upflow Anaerobic Sludge Bed (UASB) and Trickling Filter (TF) at island level for combined domestic wastewater treatment with subsequent reuse in agriculture. Its overall average normalised score across the four categories (i. e., average of average per category) is about 15% (0.85) higher than the values of the remaining systems and with a score of 0.73 (conventional activated sludge – centralised level), 0.77 (UASB-septic tank (ST)), 0.76 (UASB-TF – community level), and 0.75 (ST – household level). The higher score of the UASB-TF at community level is mainly due to much better performance in the environmental and economic categories. In conclusion, the case study provides a methodological approach that can support urban planning and decision-making in selecting more sustainable sanitation concepts, allowing resource recovery and reuse in small island context or in other contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000681105800003 Publication Date 2021-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180488 Serial 7437  
Permanent link to this record
 

 
Author Bia, P.; Caratelli, D.; Mescia, L.; Gielis, J. pdf  url
doi  openurl
  Title Analysis and synthesis of supershaped dielectric lens antennas Type A1 Journal article
  Year 2015 Publication IET microwaves, antennas and propagation Abbreviated Journal  
  Volume 9 Issue 14 Pages 1497-1504  
  Keywords A1 Journal article; Engineering sciences. Technology; Mass communications; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel class of supershaped dielectric lens antennas, whose geometry is described by the three-dimensional (3D) Gielis formula, is introduced and analysed. To this end, a hybrid modelling approach based on geometrical and physical optics is adopted in order to efficiently analyse the multiple wave reflections occurring within the lens and to evaluate the relevant impact on the radiation properties of the antenna under analysis. The developed modelling procedure has been validated by comparison with numerical results already reported in the literature and, afterwards, applied to the electromagnetic characterisation of Gielis dielectric lens antennas with shaped radiation pattern. Furthermore, a dedicated optimisation algorithm based on quantum particle swarm optimisation has been developed for the synthesis of 3D supershaped lens antennas with single feed, as well as with beamforming capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364491200002 Publication Date 2015-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-8725 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:128659 Serial 7441  
Permanent link to this record
 

 
Author de Jong van Coevorden, C.M.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title Application of Gielis transformation to the design of metamaterial structures Type A1 Journal article
  Year 2018 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 963 Issue Pages Unsp 012008  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this communication, the use of Gielis transformation to design more compact metamaterial unit cells is explored. For this purpose, transformed complementary split ring resonators and spiral resonators are coupled to micro-strip lines and theirbehaviour is investigated. The obtained results confirm that the useof the considered class of supershaped geometries enables the synthesis of very compact scalable microwave components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000435022800008 Publication Date 2018-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588; 1742-6596 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:150947 Serial 7475  
Permanent link to this record
 

 
Author Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S. pdf  url
doi  openurl
  Title Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street Type A1 Journal article
  Year 2021 Publication Atmospheric Environment Abbreviated Journal Atmos Environ  
  Volume 246 Issue Pages 118127  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The correct prediction of air pollutants dispersed in urban areas is of paramount importance to safety, public health and a sustainable environment. Vehicular traffic is one of the main sources of nitrogen oxides (NO ) and particulate matter (PM), strongly related to human morbidity and mortality. In this study, the pollutant level and distribution in a section of one of the main road arteries of Antwerp (Belgium, Europe) are analyzed. The assessment is performed through computational fluid dynamics (CFD), acknowledged as a powerful tool to predict and study dispersion phenomena in complex atmospheric environments. The two main traffic lanes are modeled as emitting sources and the surrounding area is explicitly depicted. A Reynolds-averaged Navier–Stokes (RANS) approach specific for Atmospheric Boundary Layer (ABL) simulations is employed. After a validation on a wind tunnel urban canyon test case, the dispersion within the canopy of two relevant urban pollutants, nitrogen dioxide (NO) and particulate matter with an aerodynamic diameter smaller than 10 m (PM10), is studied. An experimental field campaign led to the availability of wind velocity and direction data, as well as PM10 concentrations in some key locations within the urban canyon. To accurately predict the concentration field, a relevant dispersion parameter, the turbulent Schmidt number, , is prescribed as a locally variable quantity. The pollutant distributions in the area of interest – exhibiting strong heterogeneity – are finally demonstrated, considering one of the most frequent and concerning wind directions. Possible local remedial measures are conceptualized, investigated and implemented and their outcomes are directly compared. A major goal is, by realistically reproducing the district of interest, to identify the locations inside this intricate urban canyon where the pollutants are stagnating and to analyze which solution acts as best mitigation measure. It is demonstrated that removal by electrostatic precipitation (ESP), an active measure, and by enhancing the dilution process through wind catchers, a passive measure, are effective for local pollutant removal in a realistic urban canyon. It is also demonstrated that the applied ABL methodology resolves some well known problems in ABL dispersion modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613550100003 Publication Date 2020-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.629 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.629  
  Call Number UA @ admin @ c:irua:173917 Serial 7477  
Permanent link to this record
 

 
Author Wang, D.; Liu, Y.; Ngo, H.H.; Zhang, C.; Yang, Q.; Peng, L.; He, D.; Zeng, G.; Li, X.; Ni, B.-J. pdf  url
doi  openurl
  Title Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation Type A1 Journal article
  Year 2017 Publication Bioresource technology Abbreviated Journal  
  Volume 238 Issue Pages 343-351  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%.However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402485500042 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144155 Serial 7489  
Permanent link to this record
 

 
Author Mao, D.; Lookman, R.; van de Weghe, H.; Vanermen, G.; de Brucker, N.; Diels, L. doi  openurl
  Title Aqueous solubility calculation for petroleum mixtures in soil using comprehensive two-dimensional gas chromatography analysis data Type A1 Journal article
  Year 2009 Publication Journal of chromatography : A Abbreviated Journal  
  Volume 1216 Issue 14 Pages 2873-2880  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLCGCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000264730900020 Publication Date 2008-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9673 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:76414 Serial 7492  
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Kulkarni, S.R.; Vandewalle, L.; Perreault, P.; Goel, C.; Heynderickx, G.J.; van Geem, K.M.; Marin, G.B. pdf  doi
openurl 
  Title Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor Type A1 Journal article
  Year 2019 Publication Powder technology Abbreviated Journal  
  Volume 354 Issue Pages 410-422  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Processes requiring intensive interfacial momentum, mass and heat exchange between gases and particulate solids can be greatly enhanced by operating in a centrifugal field. This is realized in the Gas-Solid Vortex Reactor (GSVR) with centrifugal accelerations up to two orders of magnitude higher than the Earth's gravitational acceleration. Here, the flow patterns of two 1g-Geldart B-type particles are experimentally assessed, over the gas inlet velocity range 82–126 m s−1, in an 80 mm diameter and 15 mm height GSVR. The particles are monosized aluminum spheres of 0.5 mm diameter, and walnut shell in the sieve fraction 0.50–0.56 mm and aspect ratio 1.3 ± 0.2. Two dimensional Particle Image Velocimetry combined with Digital Image Analysis and pressure measurements revealed that periodic fluctuations in solids azimuthal and radial velocity between gas inlet slots are strongly related to the average solids azimuthal velocity and bed uniformity. Aluminum particles feature steeper changes in azimuthal velocity and more attenuated changes in radial velocity than walnut shell particles. Within the assessed gas inlet velocity range the solids bed of aluminum exhibits average azimuthal velocities and bed voidages 40–50% and ≈10% lower than those of walnut shell. The aerodynamic response time of the particles, i.e. ρsdp2/18μg, emerged as an important parameter to assess the influence of the carrier gas jet on the radial deflection of the particles and the interaction solids bed-outer wall. Too low aerodynamic response time relates to nonuniformity in bed voidage due to solids radial velocity fluctuations. Excessive aerodynamic response time indicates low solids azimuthal velocities due to solids bed-outer wall friction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000490625500041 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-5910 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:162120 Serial 7543  
Permanent link to this record
 

 
Author Van Winckel, T.; De Clippeleir, H.; Mancell-Egala, A.; Rahman, A.; Wett, B.; Bott, C.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S. openurl 
  Title Balancing flocs and granules by external selectors to increase capacity in high-rate activated sludge systems Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 6 p. T2 - WEFTEC.16, 24 - 28 September 2016, New O  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151122 Serial 7548  
Permanent link to this record
 

 
Author de Baerdemaeker, T.; Lemmens, B.; Dotremont, C.; Fret, J.; Roef, L.; Goiris, K.; Diels, L. pdf  doi
openurl 
  Title Benchmark study on algae harvesting with backwashable submerged flat panel membranes Type A1 Journal article
  Year 2013 Publication Bioresource technology Abbreviated Journal  
  Volume 129 Issue Pages 582-591  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The feasibility of algae harvesting with submerged flat panel membranes was investigated as pre-concentration step prior to centrifugation. Polishing of the supernatant coming from the centrifuge was evaluated as well. The effect of membrane polymer (polyvinyl chloride [PVC], polyethersulfone polyvinyl-pyrollidone [PES-PVP], poly vinylidene fluoride [PVDF]), pore size (microfiltration [MF], ultrafiltration [UF]), algae cell concentrations and species were investigated at lab-scale. In addition, backwashing as fouling control was compared to standard relaxation. PVDF was the superior polymer, and UF showed better fouling resistance. Backwashing outperformed relaxation in fouling control. The backwashable membranes allowed up to 300% higher fluxes compared to commercial flat panel benchmark (PVC) membranes. Estimations on energy consumption for membrane filtration followed by centrifugation revealed relatively low values of 0.169 kW h/kg of dry weight of algae compared to 0.5 kW h/kg for algae harvesting via classical centrifuge alone. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000324566000079 Publication Date 2012-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111203 Serial 7554  
Permanent link to this record
 

 
Author Blondiaux, E.; Bomon, J.; Smolen, M.; Kaval, N.; Lemière, F.; Sergeyev, S.; Diels, L.; Sels, B.; Maes, B.U.W. url  doi
openurl 
  Title Bio-based aromatic amines from lignin-derived monomers Type A1 Journal article
  Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 7 Issue 7 Pages 6906-6916  
  Keywords A1 Journal article; Engineering sciences. Technology; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A new approach to synthesize valuable 3,4-dialkoxyanilines and alkyl propionates from lignin-derived 4-propylguaiacol and -catechol with overall isolated yields up to 65% has been described. The strategy is based on the introduction of nitrogen via a Beckmann rearrangement. Amino introduction therefore coincides with a C-defunctionalization reaction; overall a replacement of the propyl chain by an amino group is obtained. The process only requires cheap bulk chemicals as reagents/reactants and does not involve column chromatography to purify the reaction products. Furthermore, all carbon atoms from the biorenewable lignin-derived monomers are transformed into valuable compounds. Greenness was assessed by performing a Green Metrics analysis on two dialkoxyanilines. A comparison was made with literature routes for these compounds starting from a petrochemical substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000463462100050 Publication Date 2019-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159378 Serial 7556  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages 6501-6514  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Nunez Manzano, M.; Gonzalez Quiroga, A.; Perreault, P.; Madanikashani, S.; Vandewalle, L.A.; Marin, G.B.; Heynderickx, G.J.; Van Geem, K.M. pdf  url
doi  openurl
  Title Biomass fast pyrolysis in an innovative gas-solid vortex reactor : experimental proof of concept Type A1 Journal article
  Year 2021 Publication Journal Of Analytical And Applied Pyrolysis Abbreviated Journal J Anal Appl Pyrol  
  Volume 156 Issue Pages 105165-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Biomass fast pyrolysis has been considered one of the best alternatives for the thermal conversion of biomass into bio-oil. This work introduces a new reactor technology for biomass fast pyrolysis, the Gas-Solid Vortex Reactor (GSVR), to obtain high bio-oil yields. The GSVR was designed to decrease the residence time of the pyrolysis vapors; thus, the secondary cracking reactions are reduced, to enhance the segregation of the char and the unreacted biomass and to improve the heat transfer rate. Biomass fast pyrolysis experiments have been carried out for the first time in a Gas-Solid Vortex Reactor (GSVR) at 773 K, using softwood (pine) and hardwood (poplar) as feedstock. Char yields as low as 10 wt. % in the GSVR were comparable to those reported for the same feedstocks processed in conventional fluidized bed reactors. The yields of non-condensable gases in the range of 15–17 wt. % were significantly lower than those reported for other commonly used biomass fast pyrolysis reactors. Two-dimensional gas chromatography (GC × GC) revealed noticeable differences at the molecular level between the bio-oils from the GSVR and bio-oils from other reactors. The aromatics in the pine bio-oil consist almost entirely (85 wt. %) of guaiacols. For poplar bio-oils no predominant group of aromatics was found, but phenolics, syringols, and catechols were the most pronounced. The experimental results highlight the advantages of the GSVR for biomass pyrolysis, reaching stable operation in around 60 s, removing the formed char selectively during operation, and enabling fast entrainment of pyrolysis vapors. Results indicate a great potential for increasing yield and selectivity towards guaiacols in softwood (e.g., pine) bio-oil. Likewise, decreasing pyrolysis temperature could increase the yield of guaiacols and syringols in hardwood (e.g., poplar) bio-oil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663091200002 Publication Date 2021-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-2370 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.471 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.471  
  Call Number UA @ admin @ c:irua:178743 Serial 7562  
Permanent link to this record
 

 
Author Xie, Y. url  openurl
  Title Bioreactor strategies for sustainable nitrogen cycling based on mineralization/nitrification, partial nitritation/anammox or sulfur-based denitratation Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages iv, 205 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the biogeochemical flows on Earth, the reactive nitrogen (Nr) level has three times surpassed the safe boundary. The severe transgression of this boundary goes against sustainable planetary development. The modern food production process excessively relies on synthetic Nr fertilizers from the Haber– Bosch process. However, the massive loss of valuable nitrogen resources (i.e., 78-89%) from agriculture has been causing severe nitrogen cascade. Besides, the domestic wastewater in some local areas is discharged without proper treatment, making it a nonnegligible source of Nr pollution for local water bodies. Anthropogenic activities keep pumping out Nr pollution via point-source and non-point-source (NPS) emissions. Compared to the NPS emissions, point sources give visible and identified waste streams. It is vital to intervene the nitrogen cascade from point sources and facilitate humanity back to the safe Nr boundary. The collected and collectible Nr streams from food production, waste management, and recycling secondary raw materials can be used as waste-based fertilizers for agricultural cultivation. Besides the well-investigated recovery of inorganic Nr, organic Nr accounts for a massive Nr proportion on the Earth. Proper handling and treatment make these useful organic fertilizers for soil-based cultivation. However, these organic Nr fertilizers cannot directly apply to fertigation or hydroponic cultivation systems, and further biological conversion via nitrogen mineralization and nitrification to nitrate is essential. Besides the direct Nr cycling, the indirect Nr cycling ‘over the atmosphere’ should also be considered. In this way, the nitrogen cycle can be completed via converting the waste Nr back to nitrogen gas (i.e., Nr removal) and then synthesizing into Nr again. The municipal wastewater treatment plants receive a vast amount of low-strength Nr wastewater (mainly as ammonium) daily. Compared to the conventional nitrification/denitrification process, partial nitritation/anammox (PN/A) is considered a resource- and cost-effective technology for wastewater with a low COD/N ratio. Moreover, the novel autotrophic denitratation/anammox process could be a good Nr removal process for wastewater containing both ammonium and nitrate. This Ph.D. thesis aimed to develop Nr recovery, conversion, and removal bioreactor strategies for different types of waste streams and biomass. Nr recovery was investigated on high-strength Nr waste streams for fertigation or hydroponic applications in Chapters 2 and 3. On the other hand, Nr removal was studied on the medium- to low-strength Nr waste streams in Chapters 4 and 5. In Chapter 2, a novel mineralization and nitrification system was proposed, producing nutrient solutions from solid organic fertilizers for hydroponic systems. Batch tests showed that aerobic incubation at 35°C could realize the NO₃⁻-N production efficiency above 90% from a novel microbial fertilizer. Subsequently, in the stirred tank bioreactor test, NO₃⁻-N production efficiency stabilized in a range of 44-51% under the influent loading rate of 400 mg TN L⁻¹ d⁻¹ at a 5-day HRT. Using Ca(OH)₂ and Mg(OH)₂ as pH control reagents generated the nutrient solutions with different P, Ca, and Mg nutrient levels. After modeling the nutrient balancing process, the proportion of organic-sourced NO₃⁻-N in the Hoagland nutrient solution (HNS) of Ca(OH)₂ scenario was 92.7%, while only 37.4% in the Mg(OH)₂ scenario. Compared to commercial scenarios, the total costs of the organic-sourced HNS can be cost-competitive for hydroponic cultivation. In Chapter 3, the Nr recovery as nitrate (NO₃⁻-N) from diluted human urine (around 670 mg N L⁻¹) was explored in a trickling filter (TF) for the first time. A novel concept of in-situ integrating the TF system into hydroponic systems was proposed as meaningful progress towards sustainable agriculture. The difference between synthetic and real urine in nitrification efficiency was found to be negligible. The full nitrification of alkalinized real urine was realized in the pH-controlled TF by calcium hydroxide (Ca(OH)₂) at around pH 6. The TF could handle different urine collection batches and maintain relatively stable nitrification performance, with NO₃⁻-N production efficiency and rate of 88±3% and 136±4 mg N L⁻¹ d⁻¹, respectively. The optimal HLR to realize this nitrification performance was 2 m³ m⁻² h⁻¹, with energy consumption of 1.8 kWh electricity kg⁻¹ NO₃⁻-N production. Ca(OH)₂, as a cheap base, its triple advantages on urine alkalinization, full nitrification, and macronutrient supplementation were successfully demonstrated in our proposed concept. In Chapter 4, towards more sustainable wastewater treatment, the feasibility of one-stage partial nitritation/anammox (PN/A) was investigated in three parallel packed-bed trickling filters (TFs), with three types of carrier materials of different specific surface areas. Synthetic wastewater containing 100-250 mg NH₄⁺-N L⁻¹ was tested to mimic medium-strength household waste streams after carbon removal. Interestingly, the cheap carrier based on expanded clay achieved similar rates as commercially used plastic carrier materials. The top passive ventilation combined with an optimum hydraulic loading rate of 1.8 m³ m⁻² h⁻¹ could reach approximately 60% total nitrogen (TN) removal at a rate of 300 mg N L⁻¹ d⁻¹. A relatively low NO₃⁻-N production (13%) via PN/A was achieved in TFs. Most of the TN removal took place in the top compartment, where anammox activity was the highest. Energy consumption estimation (0.78 kWh electricity g⁻¹ N removed) suggested that the proposed process could be a suitable low-cost alternative for nitrogen removal. In Chapter 5, coupling sulfur-driven denitratation (SDN) with anammox was proposed to treat the wastewater containing both NO₃⁻-N and NH₄⁺-N, like the secondary effluents of mainstream PN/A processes. To explore the feasibility of sufficient and stable NO₂⁻-N accumulation via SDN in the long term, the effects of pH setpoints, residual NO₃⁻-N level, and biomass-specific NO₃⁻-N loading rate (BSNLR) were investigated. Alternating the pH setpoints between 7.0 and 8.5 could temporarily stimulate the NO₂⁻-N accumulation. Both the residual NO₃⁻-N and BSNLR showed highly positive correlations with the NO₂⁻-N accumulation efficiency. Under the control of pH 8.5, 1.0±0.8 mg NO₃⁻-N L⁻¹ and 150±42 mg NO₃⁻-N g⁻¹ VSS d⁻¹, SDN could produce 6.4±1.0 mg NO₂⁻-N L⁻¹ in the short term. Thiobacillus members may play a crucial role in managing the NO₂⁻-N accumulation, but the reduction of abundance and possible adaptation significantly impaired the efficacy of control strategies in the long run. Overall, novel technologies have been proposed to sustainably convert Nr in waste streams and biomass. The decision for Nr recovery versus removal and synthesis should be based on specific cases with the best environmental, economic, and human-health sustainability. In the future, the Nr management concepts should be further improved to make the nitrogen cycle more sustainable with higher resource use efficiency and less Nr emissions to the environment. Although the thesis is mainly focused on limited types of Nr waste streams, it pointed out the direction of sustainable Nr management and could facilitate the Nr back to the safe boundary in the long run.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182099 Serial 7563  
Permanent link to this record
 

 
Author Tang, T.; Strokal, M.; van Vliet, M.T.H.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y. url  doi
openurl 
  Title Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide Type A1 Journal article
  Year 2019 Publication Current Opinion in Environmental Sustainability Abbreviated Journal  
  Volume 36 Issue Pages 39-48  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Global water quality (WQ) modeling is an emerging field. In this article, we identify the missing linkages between global and basin/local-scale WQ models, and discuss the possibilities to fill these gaps. We argue that WQ models need stronger linkages across spatial scales. This would help to identify effective scale-specific WQ management options and contribute to future development of global WQ models. Two directions are proposed to improve the linkages: nested multiscale WQ modeling towards enhanced water management, and development of next-generation global WQ models based-on basin/local-scale mechanistic understanding. We highlight the need for better collaboration among WQ modelers and policy-makers in order to deliver responsive water policies and management strategies across scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460234600006 Publication Date 2018-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1877-3435 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158643 Serial 7568  
Permanent link to this record
 

 
Author Shi, P.; Yu, K.; Niinemets, Ü.; Gielis, J. url  doi
openurl 
  Title Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae) Type A1 Journal article
  Year 2021 Publication Forests Abbreviated Journal Forests  
  Volume 12 Issue 1 Pages 41  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000611074700001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1999-4907 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.951 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.951  
  Call Number UA @ admin @ c:irua:174473 Serial 7572  
Permanent link to this record
 

 
Author Ilgrande, C.; Christiaens, M.; Clauwaert, P.; Vlaeminck, S.E.; Boon, N. openurl 
  Title Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in Life Support Systems Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 74-79  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The development cost-effective life support technologies is a highly relevant topic for space biology. Currently, food and water supply during space flights is currently restricted by technical and economic constraints: daily water consumption of an average crew of 6 members is about 72 L, with an estimated cost of 2,160,000 d-1. To reduce these costs and sustain long term space missions, the European Space Agency designed MELiSSA, an artificial ecosystem based on 5 compartments for the recycling gas, liquid and solid waste (Lasseur et al., 2011). In the CI stage, crew and inedible solid waste is fermented by thermophilic anaerobic bacteria, producing volatile fatty acids (VFAs), CO2 and ammonium (NH4+). In the CII compartment the VFAs are converted into edible biomass, using the photoheterotroph Rodospirillum rubrum. Afterwards, the nitrifying CIII unit converts toxic levels of ammonia/ammonium into nitrate, which enables the effluent to be fed to the photoautotrohopic CIV stage, that provides food and oxygen for the crew (Godia et al., 2002). The highest nitrogen flux in a Life Support System is human urine. As nitrate is the preferred form of nitrogen fertilizer for hydroponic plant cultivation, urine nitrification is an essential process in the MELiSSA loop. The development of the Additional Unit for Water Treatment or Urine NItrification ConsortiUM (UNICUM) requires the selection and characterization of the microorganisms that will be used. The key microorganisms in the biological treatment of urine are heterotrophs, for the hydrolysis of urea into ammonia and carbon dioxide, Ammonia Oxidizing Bacteria (AOB), for the ammonia oxidation into nitrite and Nitrite Oxidizing Bacteria (NOB), for the conversion of nitrite into nitrate. The strains were selected according to predefined safety (non sporogenic and BSL 1) and metabolic (Ks, μmax) criteria. To evaluate functional consortia for space applications, ureolysis, nitritation and nitratation of the selected microorganisms and synthetic communities were elucidated. Additionally, urine is a matrix with a high salt content. Unhydrolised urine's EC ranges from 1.1 to 33.9 mS/cm, the mean value being 21.5 mS/cm (Marickar, 2010), while hydrolysed urine can reach higher levels, up to 75 mS/cm. This conditions could inhibit microbial metabolism, therefore the effect of salinity on urine nitrification was also elucidated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151151 Serial 7573  
Permanent link to this record
 

 
Author Alloul, A.; Ganigue, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Capture-ferment-upgrade : a three-step approach for the valorization of sewage organics as commodities Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue 12 Pages 6729-6742  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent(-1) day(-1) in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent(-1) day(-1). Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436018900004 Publication Date 2018-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN (up) Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151968 Serial 7574  
Permanent link to this record
 

 
Author Düking, R.; Gielis, J.; Liese, W. openurl 
  Title Carbon flux and carbon stock in a bamboo stand and their relevance for mitigating climate change Type A3 Journal article
  Year 2011 Publication Bamboo Science & Culture Abbreviated Journal  
  Volume 24 Issue 1 Pages 1-6  
  Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this report we describe the basics of biological carbon fixation in bamboo forests. Confusing carbon stock with carbon flux has led to false expectations on the significance of bamboo forests as carbon sinks. Furthermore, misunderstandings about the growth of bamboo culms can lead to highly exaggerated expectations on the productivity of bamboo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1535-7635 ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:91091 Serial 7578  
Permanent link to this record
 

 
Author Sóti, V. url  openurl
  Title Catalytic detoxification of lignocellulose hydrolyzate Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages XXVII, 243 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract The present PhD research investigated the possibility of catalytic detoxification of poplar wood based and steam exploded lignocellulosic hydrolyzate with different types of laccase enzymes, with special focus on ethanol and lactic acid products at industrially relevant parameters: high final product concentration, high initial substrate loading and integrated processes. The simultaneous saccharification and fermentation (SSF) process was taken as a base case and five types of laccases were thoroughly investigated on their utilization potential. Phenolic removal from the liquid xylose rich fraction (XRF) was higher with fungal laccases (65-90 %) compared to approximately 30 % removal with bacterial laccase. Moreover, the optimal pH of fungal laccases was close to pH 4.5, the optimum for cellulase, while the bacterial laccase worked at basic pH. Integrating laccase treatment and hydrolysis together showed that fungal laccases have negative impact on final sugar concentration, while bacterial laccase had a strong positive effect. Although bacterial laccase removed less phenol and although its optimal conditions are difficult to integrate with hydrolysis, its enhancing effect on cellulase activity makes it a better candidate for application. The presence of the solid fraction (SF) alters the phenolic concentration evolution significantly, thus screening experiments with the liquid fraction alone do not provide sufficient information for the combined process. Magnetic Cross-Linked Enzyme Aggregates (m-CLEAs) immobilization was assessed for bacterial laccase. m-CLEAs decreased phenolic concentration faster at every pH compared to free bacterial laccase; however, the removal was caused by adsorption rather than by enzyme activity. Although the size of m-CLEAs particles are in the µm range, around 90 % of the initial catalyst mass was recycled from a dense (15 % substrate loading) mixture via magnetic separation. The high recycling rate is promising; m-CLEAs immobilization method can have industrial utilization potential. Minimum sugar revenue (MSR) estimations show that currently hardwood based MSR is 70 % more expensive than corn grain based MSR. About 7-10 fold cellulase activity increase will be needed until MSR will be competitive with corn grain MSR. However, m-CLEAs cellulase can already be competitive if the corn prices are in the higher regime of last year’s prices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:180125 Serial 7584  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: