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Abstract

A novel class of supershaped dielectric lens antennas, whose geometry is described

by the three-dimensional Gielis’ formula, is introduced and analyzed. To this end, a

hybrid modeling approach based on geometrical and physical optics is adopted in or-

der to efficiently analyze the multiple wave reflections occurring within the lens and to

evaluate the relevant impact on the radiation properties of the antenna under analysis.

The developed modeling procedure has been validated by comparison with numerical

results already reported in the literature and, afterwords, applied to the electromag-

netic characterization of Gielis’ dielectric lens antennas with shaped radiation pattern.

Furthermore, a dedicated optimization algorithm based on quantum particle swarm

optimization (QPSO) has been developed for the synthesis of 3-D supershaped lens

antennas with single feed, as well as with beam–forming capabilities.
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Keywords– Lens antennas, Gielis’ formula, high–frequency techniques, quantum particle

swarm optimization.

Introduction

Dielectric lens antennas are widely used in various applications such as radar [1], millimeter

wave imaging [2], radio-astronomy [3], as well as broadband wireless communications at high

frequencies [4]. The attractive features of this class of antennas primarily consists in the beam

collimating/shaping capability, combined with both mechanical and thermal stability, that

eases the integration in densely populated electronic circuits.

In the literature, a great deal of attention has been devoted to dielectric lenses antennas

with canonical (elliptical, spherical, or hyperbolic) and rotationally symmetric shapes [5,6],

optimized in order to enhance the directivity of the antenna and eventually the Gaussicity of

the radiated beam. Few studies deal with lens antennas featuring a more complex geometry

[7, 8]. The effect of multiple internal wave reflections has been investigated only in lens

antennas with classical and rotationally symmetric shapes [9], [10], [11].

The goal of this research is to present a detailed study of a new class of supershaped

dielectric lens antennas whose geometry is described by the so–called Gielis’ formula [12,13].

This formula, which generalizes the polar equation of the ellipse, allows the modeling of an

extremely wide range of natural objects (plants, stems, starfish, shells, flowers, and more)

alongside man–made structures, in a simple and analytical way adjusting a reduced number

of parameters. This, in turn, translates into the possibility to automatically reshape the

lens profile so that any automated optimization procedure could be conveniently adopted to

identify the geometrical parameters yielding optimal antenna performance.

In the presented contribution, the radiation properties of the mentioned antennas are

investigated by means of a dedicated high–frequency technique based on optical ray approx-
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imation [14]. In particular, geometrical optics (GO) is adopted to analyze the electromag-

netic field propagation within the lens region. In doing so, the contribution of the multiple

internal reflections is properly taken into account, so enhancing the accuracy of the modeling

procedure especially when dielectric materials with relatively large permittivity are consid-

ered in the design. In this case, the common hypothesis that the energy content relevant

to higher order reflected rays can be neglected is not applicable. Finally, by virtue of the

equivalence principle and in accordance with the physical optics (PO) approach [14], the far

field outside the lens can be evaluated by radiation in free space of the equivalent electric and

magnetic current densities on the lens surface. In the developed methodology, these currents

are calculated by applying the local Fresnel transmission coefficients along the lens surface to

the electromagnetic field evaluated using GO approach. A quantum–inspired version of the

Particle Swarm Optimization (PSO) algorithm, namely the Enhanced Weighted Quantum

Particle Swarm Optimization (EWQPSO) has specifically developed to perform the design

of the supershaped lens antennas yielding optimal antenna performance. Contrary to genetic

algorithm and other heuristic techniques, PSO avoids the use of complicated evolutionary

operators, is characterized by reduced computational burden and complexity, allows a more

efficient global and local exploration of the search space [15]. In combination with the men-

tioned asymptotic modeling technique, the EWQPSO procedure allows the recovering, in a

time–effective way and with reduced computational cost, of the optimal Gielis’ parameters

characterizing the lens shape.

1 Antenna modeling approach

As shown in Fig. 1, the typical antenna structure considered in this study consists of an

electrically large dielectric lens placed at the center of a perfectly conducting metal disk,

with radius rd, acting as a ground plane and, at the same time, as a shield useful to reduce
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Figure 1: Geometry of a dielectric lens antenna. The reference coordinate system used to express

the electromagnetic field quantities is also shown.

the back–scattered radiation. The lens is illuminated by the far–field pattern generated by

a given electromagnetic source, such as open–ended waveguides, horn antennas or coaxial

probes [16].

Under the assumptions of GO theory, the electric field outside the lens region can be

conveniently evaluated as:

Et =
∑
m

Em
t (1)

where

Em
t = Em

t∥

(
n̂× k̂m

t

)
× k̂m

t∥∥∥(n̂× k̂m
t

)
× k̂m

t

∥∥∥ + Em
t⊥

n̂× k̂m
t∥∥∥n̂× k̂m
t

∥∥∥ (2)

is the transmitted electric field contribution pertaining to the m–th internal reflection pro-

cess. In (2), n̂ denotes the unit vector normal to the lens surface, k̂m
t = km

t /
∥∥∥k̂m

t

∥∥∥ is

the unit vector of the transmitted wave corresponding to the m–th internal reflection with∥∥∥k̂m
t

∥∥∥ = 2πnd/λ0, nd being the refractive index in the dielectric material forming the lens, λ0

being the operating wavelength in the vacuum. In particular, Em
t∥ and Em

t⊥ are the parallel

and orthogonal components, respectively, of the transmitted wave contribution due to the

m–th reflected beam. These field quantities are determined by multiplying the parallel, Em
i∥ ,

and orthogonal, Em
i⊥, components of the incident electric field, Em

i , on the lens surface with

the proper Fresnel transmission coefficients. The evaluation of both Em
i∥ and Em

i⊥ is carried
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out using the following equations [7]:

Em
i⊥ = Em

i · n̂× k̂m
i∥∥∥n̂× k̂m
i

∥∥∥ (3)

Em
i∥ = Em

i ·

(
n̂× k̂m

i

)
× k̂m

i∥∥∥(n̂× k̂m
i

)
× k̂m

i

∥∥∥ (4)

The incident electric field Em
i (P) at the point P on the lens surface is directly computed by

using the far–field pattern of the source if m = 1. On the other hand, for m > 1, Em
i (Pm) is

derived starting from the m–th reflected wave contribution as:

Em
i (Pm) = Em−1

r (Pm−1)e
jkid (5)

where kid is the electric length between the observation point Pm and the point P at which

the reflection takes place. The reflected field Em−1
r (Pm−1) appearing in (5) is given by:

Em−1
r (Pm−1) = Em−1

r∥

(
n̂× k̂m−1

r

)
× k̂m−1

r∥∥∥(n̂× k̂m−1
r

)
× k̂m−1

r

∥∥∥ + Em−1
r⊥

n̂× k̂m−1
r∥∥∥n̂× k̂m−1
r

∥∥∥ (6)

where the parallel, Em−1
r∥ , and orthogonal Em−1

r⊥ components of the (m−1)–th reflected wave

are computed by multiplying the corresponding components of the Em−1
i with the proper

Fresnel reflection coefficients. In (3)–(4), k̂m
i = km

i /∥km
i ∥ is the unit vector of the incident

wave.

Once the GO electromagnetic field has been evaluated, the equivalent electric, Js, and

magnetic, Ms, current densities along the lens surface can be evaluated in a straightfor-

ward manner. These currents density, according to the PO formulation, allow the calcula-

tion of the electromagnetic far–field radiated by the lens antenna at the observation point

PFF(rFF, θFF, ϕFF) by considering the integral expression [7]:

EFF = j
e−jk0rFF

2λ0rFF

∫
S

[η0Js × û0 −Ms(P)]× û0e
jk0r · û0dS (7)

where S is the lens surface, η0 is the characteristic impedance of the vacuum, rFF is the

distance between the observation point PFF and the origin of the coordinate system, r is the
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vector pointing from the point on the lens P to PFF, and û0 is the unit vector corresponding

to r. In this way, the directivity of the considered radiating system can be obtained by the

following expression:

h(θFF, ϕFF) =
4πr2FF∥EFF∥2

η0Ptot

(8)

with Ptot being the total power radiated by the lens.

As an alternative to the GO–PO method, a full–GO approach has been, also, developed.

In this case, the antenna far field is computed straightforwardly by enforcing the power

conservation at the interface of the lens by means of the following formula [7]:

h [α (θ, ϕ) , β (θ, ϕ)] =
Kgt(θ, ϕ) sinϕ

sinα

[
∂α

∂θ

∂β

∂ϕ
− ∂α

∂ϕ

∂β

∂θ

] (9)

which provides the intensity of the radiated field in outgoing direction (α, β) from a given

point on the lens having spherical coordinates (θ, ϕ). In (9), gt(θ, ϕ) is the intensity of

outgoing transmitted electromagnetic field outside the lens, evaluated as:

gt(θ, ϕ) = ∥Et∥2 (10)

Finally, K is the normalization constant defined as:

K =
Far field radiated power

Lens outgoing power
=

∫ 2π

0

∫ π/2

0
h(α, β)dαdβ∫ 2π

0

∫ π/2

0
gt(θ, ϕ) sin θdθdϕ

(11)

The full-GO method is much faster but less accurate than the combined GO–PO method,

and therefore it is just adopted for a preliminary, rough analysis of the considered radiating

structure.

In the proposed study, the geometry of the lens is described by the three–dimensional

extension of the so–called superformula, introduced by Gielis, in order to describe complex

natural and abstract shapes in a simple and analytical way [12]. In particular, upon assuming

a Cartesian coordinate system, the general Gielis’ surface can be described in terms of the
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following parametric equations [17]:

x = R(ν)R(µ) cos ν cosµ (12)

y = R(ν)R(µ) sin ν cosµ (13)

z = R(µ) sinµ (14)

where

R(ν) =

(∣∣∣∣cos m1ν
4

a1

∣∣∣∣n1

+

∣∣∣∣sin m2ν
4

a2

∣∣∣∣n2
)− 1

b1

(15)

R(µ) =

(∣∣∣∣cos m3µ
4

a3

∣∣∣∣n3

+

∣∣∣∣sin m4µ
4

a4

∣∣∣∣n4
)− 1

b2

(16)

In (12)–(16) µ ∈ [0, π/2] and ν ∈ [−π, π] denote convenient angle parameters. Moreover,

np,mp, bq ∈ R+ (positive real numbers), p = 1 . . . 4 and q = 1 . . . 2 and ap ∈ R+
0 (strictly

positive real numbers) are selected in such a way that the surface of the lens is closed and

characterized, at any point, by curvature radius larger than the working wavelength, in

accordance with the GO formulation. The conventional spherical angles θ and ϕ (see Fig.1)

are obtained from (12)–(14) as:

θ = cos−1
(z
r

)
(17)

ϕ = tan−1
(y
x

)
(18)

where r =
√

x2 + y2 + z2.

2 Model validation

The developed GO–PO ray–tracing and tube–tracing procedures have been validated by com-

parison with the full–wave Finite Integration Technique (FIT) adopted in the commercially

available electromagnetic solver CST Microwave Studio. To this end, a supershaped lens an-

tenna with refractive index nd = 1.42 (electric permittivity εrd = 2.02), having a maximum

radius rmax = 20 cm and described by the following Gielis parameters n1 = n2 = n3 = n4 = 4,
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a1 = a2 = a3 = a4 = 1, m1 = m2 = m3 = m4 = 2, b1 = b2 = 2, has been analyzed. This

radiating structure has been optimized at frequency f = 10 GHz. In particular, to reduce

the back radiation level a metal disk with radius rp = 40 cm is used as a ground plane. The

antenna feeding is performed using a circular waveguide, having a diameter a = 4 cm and

filled up with the same dielectric material forming the lens. In addition, to enhance the

modeling accuracy, multiple reflection contributions (m = 3) have been taken into account.

In Fig. 2, the comparison between the normalized directivity of the antenna as computed by

the developed asymptotic techniques and the full–wave analysis based on FIT approach, is

shown. As it can be noticed, a closer agreement with the full–wave results is achieved by us-

ing the GO–PO tube–tracing procedure. However, it is important to stress that the rigorous

full–wave analysis is by far more demanding in terms of memory occupation and simulation

time as the size of the dielectric lens increases. As a matter of fact, using a workstation with

dual Intel Xeon E5645 processor, frequency of 2.4 GHz, the computational time and memory

allocation required by the full–wave solver are about 17400 s and 10.3GByte, respectively.

On the other hand, the developed design procedure is characterized by a computational time

and memory allocation of 6240 s and 2.5GByte, on the same workstation. The usefulness

of the proposed approach is apparent especially when antenna synthesis, typically entailing

a large number of optimization steps, is performed.

3 Synthesis of lens antenna

The Gielis superformula provides the possibility of automatically reshaping the lens profile

by acting on a reduced number of parameters. As result, any automated optimization

procedure can be conveniently adopted in order to identify the lens parameters yielding

optimal antenna characteristic. To this aim, a dedicated novel synthesis procedure based

on an improved version of the Weighted Quantum Particle Swarm Optimization (WQPSO),

8

Page 8 of 25

IET Review Copy Only

IET Microwaves, Antennas & Propagation



−90 −60 −30 0 30 60 90
−80

−70

−60

−50

−40

−30

−20

−10

0

θ (deg)

N
or

m
al

iz
ed

 D
ire

ct
iv

ity
 (

dB
)

 

 

ray−tracing
tube−tracing
CST

(a)

−90 −60 −30 0 30 60 90
−60

−50

−40

−30

−20

−10

0

θ  [deg]

N
or

m
al

iz
ed

 D
ire

ct
iv

ity
 [d

B
]

 

 

ray−tracing
tube−tracing
CST

(b)

Figure 2: a) H–plane and b) E–plane radiation pattern of a supershaped lens as evaluated by GO–

PO ray-tracing, GO–PO tube-tracing techniques, and the finite integration technique implemented

in the full–wave solver CST Microwave Studio.
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has been developed. We refer to the proposed enhanced optimization method as EWQPSO.

Contrary to the conventional PSO algorithm, the considered quantum–inspired version of

the PSO permits all particles to have a quantum behavior instead of the classical Newtonian

one. In this way, superior performance in terms of reduced computational times can be

achieved especially when a large number of parameters have to be optimized. Moreover,

the EWQPSO is easier to implement since no velocity vectors for particles are needed and,

therefore, a smaller set of parameters has to be dealt with.

In the conventional WQPSO presented in [18], each particles is located not just in a

fixed location, xj = [xj1, xj2 . . . , xjN ]
T , but probabilistically in complete N–dimension search

space according to a probability density function (pdf) obtained by solving the following

Schrodinger equation:

j~
∂Q(rj, t)

∂t
= Ĥ(rj)Q(rj, t) (19)

with ~ the Plank constant divided by 2π, and where Ĥ(r) denotes the time–independent

Hamiltonian operator that is:

Ĥ(rj) = − ~2

2m
∇2 + V (rj) (20)

where m denotes the mass of the particle (in the simulations equal to 1), and rj is the

N–dimension distance vector between the evaluated position xj of the j–th particle and the

position pj of the local attractor. In (20), V (rj) is the potential function defined as a Dirac

distribution centered in pj. In the following, let us denote the coordinate of the personal

best location of the j–th particle as xbj(t) and the global best location as xg(t). Under these

assumptions, each local attractor is positioned in:

pj(t) = φjxbj(t) + (I− φj)xg(t) (21)

with j = 1 . . .M , where M is the number of particles, and where φj is a M × N diagonal

matrix having diagonal elements values uniformly distributed in the interval [0, 1]. Upon
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solving (19), the pdf function Q(rj) and the updated position xj(t+1) of the general particles

are found to be, respectively:

Q(rj, t) =
1

Lj(t)
exp

{
−2

|r|
Lj(t)

}
(22)

xj(t+ 1) =


pj(t) +

Lj(t)

2
ln

(
1

uj

)
with ψj > 0

pj(t)−
Lj(t)

2
ln

(
1

uj

)
with ψj ≤ 0

(23)

where ψj and uj are two N×1 column vectors having elements values uniformly distributed

in the interval [0, 1], and Lj(t) is a N × 1 column vector denoting the standard deviation of

the probability density function of each particle evaluated as:

Lj(t) = 2β|m(t)− xj(t)| (24)

with β being the contraction–expansion coefficient, whose value ranges from 0.5 to 1. Gener-

ally, β is a function of the generation index. In the framework of the conventional WQPSO

algorithm, the mean best coordinates m(t) are evaluated as follows:

m(t) =
1

M

M∑
j=1

αjxbj(t) (25)

where αj is a suitable weighting coefficient linearly from 1.5, for the best particle, down to 0.5

for the worst one. The developed EWQPSO technique differs from the WQPSO prominently

in the definition of m(t). In particular, the following adaptive generation–dependent update

equation is used

m(t) =

∑M
j=1

(
1− F (xbj)

max [F (xb1) . . . F (xbM)]

)
xbj(t)∑M

j=1

(
1− F (xbj)

max [F (xb1) . . . F (xbM)]

) (26)

Each particle is relevant to a specific parameter affecting the shape and size of the lens

antenna, as well as the position of the feed and the refractive index of the material forming

the lens. In (26) the fitness function value F is evaluated as

F (xbj) =

Nθ∑
l=1

Nϕ∑
m=1

∣∣∣∣∣h
T

l,m − h
j

l,m

1 + h
T

l,m

∣∣∣∣∣ (27)
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where h
T
is the target normalized directivity, expressed in dB, and h

j
is the normalized

directivity, in dB, relevant to the j–th particle. In (27), Nθ and Nϕ denote the number

of points in which the azimuthal and polar coordinates are discretized, respectively. The

optimization procedure stops when the fitness value of the global best particle is smaller

than a given threshold (which in the current study has been set to 10−3) or, alternatively,

when the maximum number of particle generations is reached. The fitness function (27) has

been engineered in order to obtain reliable numerical results and a fast convergence of the

antenna directivity to the target one.

In order to enhance the effectiveness of the proposed lens synthesis tool, a dynamic

selection of the antenna analysis technique is performed. In particular, upon denoting the

maximum number of particle generations with gmax and current generation with g, the

optimization algorithm is based on three main steps. During the first step, when 1 ≤ g ≤

gmax/6, the full–GO technique is adopted. This methodology is computationally inexpensive

and fast, although less accurate and, therefore, it allows discarding efficiently the worst

antenna configurations during the firsts stages of the PSO procedure. As soon as the number

of generations increases (gmax/6 ≤ g ≤ gmax/3) and the particles tend to get closer to the

optimal lens geometry (second step), the GO–PO ray tracing method is used. This technique

provides a higher accuracy in the characterization of the best solution candidates, although

it requires larger computational resources and time because of the numerical burden related

to the evaluation of the equivalent electric and magnetic current densities. Finally, during

the third step, when gmax/3 ≤ g ≤ gmax, the GO–PO tube tracing method with conformal

tessellation of the lens surface is applied in order to achieve a more accurate modeling of

multiple internal reflections and, therefore, more rigorous characterization of the antenna

solutions. Of course, the use of the GO–PO methodology results in an extra computational

burden. It is to be stressed that the illustrated procedure has been adjusted heuristically by
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analyzing the features of the typical problem space for the synthesis of Gielis’ lens antennas.

The validation of the developed EWQPSO optimization tool has been carried out by

synthesizing a lens antenna featuring a flat–top radiation pattern at frequency f = 60 GHz

(see Fig. 3). The structure is assumed fed by a rectangular patch having dimensions a =

1.2 mm and b = 0.9 mm, working on the fundamental mode, and backed by a circular metal

ground plane with radius rp = 60 mm (see Fig. 1). A swarm of M = 24 particles has been

used for the optimization procedure carried out over gmax = 40 generations. The position

vector is x = [n1, n2,m1,m2, n3, n4,m3,m4, b1, b2, nd, rmin]
T . The multidimensional search

space has been restricted by assuming that the parameters n1, n2,m1,m2, n3, n4,m3,m4, b1, b2

can range from 1 to 5, nd can vary between 1.7 (εrd ≈ 2.9) and 3 (εrd ≈ 9), the minimum

lens radius rmin is assumed to range from 20 mm to 50 mm, whereas the Gielis’ parameters

a1, a2, a3, a4 are all set to 1. The location of the feeding patch is x = y = 0 (see Fig. 1).

Under these assumptions, by using the EWQPSO procedure, the optimal lens parameters

are found to be: n1 = 2.480, n2 = 2.297, m1 = 1.503, m2 = 1.609, n3 = 2.986, n4 = 1.779,

m3 = 1.948, m4 = 2.845, b1 = 4.638, b2 = 4.888, nd = 1.8 (εrd ≈ 3.2), rmin = 27.9 mm

corresponding to rmax = 29.8 mm. The resulting lens geometry is shown in Fig. 4. As it

appears from Fig. 3, the synthesized radiation patterns are in excellent agreement with the

target flat–top masks along both the E and H planes of the antenna. Moreover, it is clear that

accounting for the multiple wave reflections occurring within the lens is instrumental to the

enhancement of the modeling accuracy of the procedure. Fig. 5 shows the convergence rate

of the new optimization procedure (EWQPSO), the WQPSO and the classical PSO when

applied to the synthesis of the lens antenna illustrated in Fig. 4. Clearly, the EWQPSO

outperforms both the PSO and the conventional WQPSO for a given number of iterations,

accuracy and population size. Moreover, it is apparent that to obtain better accuracy the

EWQPSO converges faster than the aforementioned alternative techniques.
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Figure 3: a) H–plane and b) E–plane radiation pattern of a Gielis’ lens antenna synthesized by

means of the EWQPSO procedure. The target flat–top mask and simpler direct rays results are

also shown.

14

Page 14 of 25

IET Review Copy Only

IET Microwaves, Antennas & Propagation



 

Figure 4: Shape of the lens synthesized by means of the EWQPSO procedure in order to ensure

a flat–top radiation pattern at 60 GHz.
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Figure 5: Convergence rate of the EWQPSO, WQPSO, and the classical PSO when applied to

the synthesis of the lens antenna shown in Fig. 4. The same number of iterations and population

are adopted for the considered algorithms.
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Figure 6: Sketch of the linear patch antenna array used as feeding structure of a supershaped

antenna for 60 GHz wireless communications.

4 Numerical example

The design of a lens antenna with electronic beam–steering capability is detailed in this

section. As shown in Fig. 6, the feeding of the radiating structure is carried out by means

of a linear array of five patch antennas optimized in such a way as to achieve good return–

loss characteristics in combination with a reasonably small coupling level at the working

frequency f = 60 GHz. The geometry of the patch array is also illustrated in Fig. 6. The

dielectric substrate has a refractive index of 1.8, whereas the antenna element spacing is

set to be λ/2, with λ denoting the working wavelength in the dielectric lens. As shown

in Fig. 7, the radiation pattern of the basic array structure can be electronically steered

by changing the phase shift ∆ϕ between adjacent patches. It has been found out that the

array directivity ranges from 10.7 dBi for ∆ϕ = 0 to 11.0 dBi for ∆ϕ = 72◦ with a side–lobe

level (SLL) of −9 dBi at the maximum steering angle of 40◦. The antenna performance

in term of directivity, steering angle and SLL can be enhanced by integrating a suitable

dielectric lens (see Fig. 5), whose geometry has been optimized by means of the EWQPSO

technique presented in Section IV. To this end, a swarm of M = 24 particles has been used

for the optimization procedure carried out over gmax = 40 generations. The search domain

has been restricted by assuming that the lens parameters n1, n2,m1,m2, n3, n4,m3,m4, b1, b2

can range from 1 to 5, whereas the parameters a1, a2, a3, a4 are all set to 1. Furthermore,

the refractive index nd of the material forming the lens can vary between 1.7 to 3 and,

finally, the minimal lens radius rmin is assumed to range from 20 mm to 30 mm. Under these
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Figure 7: Radiation patterns of the patch antenna array without dielectric lens for different

beam-steering angles. Working frequency f = 60 GHz.

assumptions, by using the EWQPSO procedure, the optimal lens parameters are found to

be: nd = 1.76, rmin = 28.4 mm, n1 = 4.341, n2 = 4.054, m1 = 1.902, m2 = 2.072, n3 = 3.896,

n4 = 4.008, m3 = 1.875, m4 = 1.947, b1 = 2.398, b2 = 2.161 with the feeding patch array

being centered in the origin of the coordinate system. The resulting lens geometry is shown

in Fig. 8. The rotational asymmetry of the structure can be noticed. In Fig. 9 the H–

plane radiation pattern of the array for the excitation phase shifts ∆ϕ = 0, ∆ϕ = 72◦ and

∆ϕ = 144◦ is shown. As it can be noticed in Fig. 9, the considered antenna structure

is characterized by a SLL of −10 dBi for scanning angles up to 50◦. Furthermore, the lens

integration allows achieving a larger peak directivitiy value ranging from 18.3 dBi for ∆ϕ = 0

to 17.2 dBi for ∆ϕ = 144◦. It is important to notice in Fig. 9 the good agreement between

the results obtained by applying the proposed design approach and those computed by using

the commercial electromagnetic solver CST Microwave Studio.

5 Conclusion

A novel design procedure for supeshaped dielectric lens antennas has been presented. To this

end, a GO–PO formulation is used for modeling the multiple reflection processes occurring
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Figure 8: a) Optimal lens shape synthesized for electronic beam steering, at 60 GHz, of the patch

antenna array shown in Fig. 6. b) z=0 cutting plane, c) x=0 cutting plane, d) y=0 cutting plane.
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Figure 9: H–plane radiation pattern of a lens–integrated patch antenna array for different phase

excitations a) ∆ϕ = 0, b) ∆ϕ = 72◦, c) ∆ϕ = 144◦.
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within the lens. The proposed model has been validated by comparison with the results ob-

tained by means of the full–wave electromagnetic solver CST Microwave Studio. In order to

synthesize lens antennas featuring a given radiation mask, a dedicated EWQPSO optimiza-

tion procedure has been developed. By using the design tool one can retrieve the optimal

lens geometry, size, and material characteristics useful to achieve the desired antenna per-

formance. The applicability of the new optimization procedure was investigated by studying

the problem of synthesis of lens antennas having flat–top radiation characteristics as well

with electronic beam–steering capability for 60 GHz wireless communications. The perfor-

mance of the EWQPSO was shown to outperform both the WQPSO and the classical PSO

most of the time in the convergence rate as well as the final error level. The obtained results

have been found to be in good agreement with those computed by full–wave simulations.

The proposed design tool could be usefully adopted to design complex Gielis’ lens anten-

nas, for a wide variety of applications ranging from microwave imaging to the mm–wave

communications, where enhanced directivity, and complex radiation patterns are needed for

optimal radio coverage and illumination, improved efficiency, and reduced electromagnetic

interferences between devices sharing the same platform.

Appendix

In this appendix, the analytical expression of physical quantities used in the GO and PO

procedures is provided. The unit vector normal to the surface of the sphere is defined as

follows:

n̂ =

∂r
∂θ

× ∂r
∂ϕ∥∥∥∂r

∂θ
× ∂r

∂ϕ

∥∥∥ (28)
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where the derivatives of the radius vector r(θ, ϕ) are given by:

∂r

∂θ
=

∂r

∂θ
r̂+ rθ̂ (29)

∂r

∂ϕ
=

∂r

∂ϕ
r̂+ r sin θϕ̂ (30)

with

∂r

∂θ
=

∂r

∂µ

∂µ

∂θ
(31)

∂r

∂ϕ
=

∂r

∂ν
− tan γ

∂r

∂θ
(32)

γ = atan

(
∂θ

∂µ

)
(33)

Therefore, upon substituting (29)–(30) in (28) it follows that:

n̂ =
1∥∥∥∂r

∂θ
× ∂r

∂ϕ

∥∥∥

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ θ̂ ϕ̂

∂r
∂θ

r 0

∂r
∂ϕ

0 r sin θ

∣∣∣∣∣∣∣∣∣∣∣∣
=

r2 sin θr̂− r sin θ ∂r
∂θ
θ̂ − r ∂r

∂ϕ
ϕ̂∥∥∥∂r

∂θ
× ∂r

∂ϕ

∥∥∥ (34)

The unit vector tangent to the lens surface t̂ = trr̂+ tθθ̂ + tϕϕ̂ is given by:

t̂ = −
n̂×

(
n̂× k̂i

)
∥∥∥n̂×

(
n̂× k̂i

)∥∥∥ (35)

Upon using the identity A×B×C = B (A ·C) −C (A ·B) and introducing the incident

unit wave vector k̂i = kirr̂+ kiθθ̂ + kiϕϕ̂ one can obtain the following expression:

t̂ = −

[(
n̂ · k̂i

)
nr − kir

]
r̂+

[(
n̂ · k̂i

)
nθ − kiθ

]
θ̂ +

[(
n̂ · k̂i

)
nϕ − kiϕ

]
ϕ̂∥∥∥n̂×

(
n̂× k̂i

)∥∥∥ (36)

In this way the incidence and transmission angles θi and θt respectively, can be computed

as:

θi = tan−1

(
k̂i · t̂
k̂i · n̂

)
(37)

θt = sin−1 (nd sin θi) (38)
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The transmitted unit wave vector k̂t is:

k̂t = cos θtn̂+ sin θtt̂ =

(cos θtnr + sin θttr) r̂+ (cos θtnθ + sin θttθ) θ̂+

(cos θtnϕ + sin θttϕ) ϕ̂ (39)

In order to evaluate the antenna directivity, h(α, β), by means of the GO approach, the term

∂α
∂θ

∂β
∂ϕ

− ∂α
∂ϕ

∂β
∂θ

has to be calculated. The angle α is defined as follows:

α = cos−1 (ktz) (40)

so that the first derivative with respect to θ is found to be:

∂α

∂θ
= − 1√

1− k2
tz

∂ktz
∂θ

(41)

where ktz is the component along the z direction of the transmitted wave vector k̂t that is:
ktx

kty

ktz

 =


sin θ cosϕ cos θ cosϕ − sinϕ

sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0




ktr

ktθ

ktϕ

 (42)

Furthermore, it is straightforward to verify that:

∂α

∂ϕ
= − 1√

1− k2
tz

∂ktz
∂ϕ

(43)

The angle β is defined as follows:

β = tan−1

(
kty
ktx

)
(44)

so that:

∂β

∂θ
=

1

1−
(
kty
ktx

)2

(
ktx

∂kty
∂θ

− kty
∂ktx
∂θ

k2
tx

)
(45)

∂β

∂ϕ
=

1

1−
(
kty
ktx

)2

(
ktx

∂kty
∂ϕ

− kty
∂ktx
∂ϕ

k2
tx

)
(46)
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Finally, upon setting k̂t = ktrr̂+ ktθθ̂ + ktϕϕ̂, the following expressions can be derived:

∂ktz
∂θ

= − sin θ

(
ktr +

∂ktθ
∂θ

)
+ cos θ

(
∂ktr
∂θ

− ktθ

)
(47)

∂ktx
∂θ

= ktr cos θ sinϕ+ sin θ sinϕ
∂ktr
∂θ

− ktθ sin θ sinϕ+

cos θ sinϕ
∂ktθ
∂θ

+ cosϕ
∂ktϕ
∂θ

(48)

∂kty
∂θ

= ktr cos θ cosϕ+ sin θ cosϕ
∂ktr
∂θ

− ktθ sin θ cosϕ+

cos θ cosϕ
∂ktθ
∂θ

− sinϕ
∂ktϕ
∂θ

(49)

∂ktz
∂ϕ

= cos θ
∂ktr
∂ϕ

− sin θ
∂ktϕ
∂ϕ

(50)

∂ktx
∂ϕ

= −ktr sin θ sinϕ+ sin θ cosϕ
∂ktr
∂ϕ

− ktθ cos θ sinϕ+

cos θ cosϕ
∂ktθ
∂ϕ

− sinϕ
∂ktϕ
∂ϕ

− cosϕktϕ (51)

∂kty
∂ϕ

= ktr sin θ cosϕ+ sin θ sinϕ
∂ktr
∂ϕ

+ ktθ cos θ cosϕ+

cos θ sinϕ
∂ktθ
∂ϕ

+ cosϕ
∂ktϕ
∂ϕ

− sinϕktϕ (52)
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