toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ortiz-Aguayo, D.; Ceto, X.; De Wael, K.; del Valle, M. url  doi
openurl 
  Title Resolution of opiate illicit drugs signals in the presence of some cutting agents with use of a voltammetric sensor array and machine learning strategies Type A1 Journal article
  Year 2022 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 357 Issue Pages (down) 131345  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract In the present work, the resolution and quantification of mixtures of different opiate compounds in the presence of common cutting agents using an electronic tongue (ET) is evaluated. More specifically, ternary mixtures of heroin, morphine and codeine were resolved in the presence of caffeine and paracetamol. To this aim, an array of three carbon screen-printed electrodes were modified with different ink-like solutions of graphite, cobalt (II) phthalocyanine and palladium, and their responses towards the different drugs were characterized by means of square wave voltammetry (SWV). Developed sensors showed a good performance with good linearity at the mu M level, LODs between 1.8 and 5.3 mu M for the 3 actual drugs, and relative standard deviation (RSD) ca. 2% for over 50 consecutive measurements. Next, a quantitative model that allowed the identification and quantification of the individual substances from the overlapped voltammograms was built using partial least squares regression (PLS) as the modeling tool. With this approach, quantification of the different drugs was achieved at the mu M level, with a total normalized root mean square error (NRMSE) of 0.084 for the test subset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000745113900003 Publication Date 2021-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:185446 Serial 8922  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages (down) 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Slaets, J.; Loenders, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based dry reforming of CH4: Plasma effects vs. thermal conversion Type A1 Journal Article
  Year 2024 Publication Fuel Abbreviated Journal Fuel  
  Volume 360 Issue Pages (down) 130650  
  Keywords A1 Journal Article; Plasma kinetics Computer modelling Dry reforming of methane; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In this work we evaluate the chemical kinetics of dry reforming of methane in warm plasmas (1000–4000 K) using modelling with a newly developed chemistry set, for a broad range of parameters (temperature, power density and CO2/CH4 ratio). We compare the model against thermodynamic equilibrium concentrations, serving as validation of the thermal chemical kinetics. Our model reveals that plasma-specific reactions (i.e., electron impact collisions) accelerate the kinetics compared to thermal conversion, rather than altering the overall kinetics pathways and intermediate products, for gas temperatures below 2000 K. For higher temperatures, the kinetics are dominated by heavy species collisions and are strictly thermal, with negligible influence of the electrons and ions on the overall kinetics. When studying the effects of different gas mixtures on the kinetics, we identify important intermediate species, side reactions and side products. The use of excess CO2 leads to H2O formation, at the expense of H2 formation, and the CO2 conversion itself is limited, only approaching full conversion near 4000 K. In contrast, full conversion of both reactants is only kinetically limited for mixtures with excess CH4, which also gives rise to the formation of C2H2, alongside syngas. Within the given parameter space, our model predicts the 30/70 ratio of CO2/CH4 to be the most optimal for syngas formation with a H2/CO ratio of 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138077700001 Publication Date 2023-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 – SCOPE ERC Synergy project), the Catalisti-ICON project BluePlasma (Project No. HBC.2022.0445), the FWO-SBO project PlasMaCatDESIGN (FWO Grant ID S001619N), the Independent Research Fund Denmark (Project No. 0217-00231B) and through long-term structural funding (Methusalem). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. We also thank Bart Wanten, Roel Michiels, Pepijn Heirman, Claudia Verheyen, dr. Senne Van Alphen, dr. Elise Vervloessem, dr. Kevin van ’t Veer, dr. Joshua Boothroyd, dr. Omar Biondo and dr. Eduardo Morais for their expertise and feedback regarding the kinetics scheme. Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number PLASMANT @ plasmant @c:irua:201669 Serial 8973  
Permanent link to this record
 

 
Author Alloul, A.; Moradvandi, A.; Puyol, D.; Molina, R.; Gardella, G.; Vlaeminck, S.E.; De Schutter, B.; Abraham, E.; Lindeboom, R.E.F.; Weissbrodt, D.G. url  doi
openurl 
  Title A novel mechanistic modelling approach for microbial selection dynamics : towards improved design and control of raceway reactors for purple bacteria Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 390 Issue Pages (down) 129844-129849  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple phototrophic bacteria (PPB) show an underexplored potential for resource recovery from wastewater. Raceway reactors offer a more affordable full-scale solution on wastewater and enable useful additional aerobic processes. Current mathematical models of PPB systems provide useful mechanistic insights, but do not represent the full metabolic versatility of PPB and thus require further advancement to simulate the process for technology development and control. In this study, a new modelling approach for PPB that integrates the photoheterotrophic, and both anaerobic and aerobic chemoheterotrophic metabolic pathways through an empirical parallel metabolic growth constant was proposed. It aimed the modelling of microbial selection dynamics in competition with aerobic and anaerobic microbial community under different operational scenarios. A sensitivity analysis was carried out to identify the most influential parameters within the model and calibrate them based on experimental data. Process perturbation scenarios were simulated, which showed a good performance of the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001094606700001 Publication Date 2023-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:200035 Serial 8905  
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 337 Issue Pages (down) 129819  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386500001 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:176353 Serial 7762  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; De Paepe, J.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Comparison of typical nitrite oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 387 Issue Pages (down) 129607-129609  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In mainstream partial nitritation/anammox (PN/A), suppression of nitrite oxidizing bacteria (NOB) and mitigation of N2O emissions are two essential operational goals. The N2O emissions linked to three typical NOB suppression strategies were tested in a covered rotating biological contactor (RBC) biofilm system at 21 degrees C: (i) low dissolved oxygen (DO) concentrations, and treatments with (ii) free ammonia (FA), and (iii) free nitrous acids (FNA). Low emerged DO levels effectively minimized NOB activity and decreased N2O emissions, but NOB adaptation appeared after 200 days of operation. Further NOB suppression was successfully achieved by periodic (3 h per week) treatments with FA (29.3 & PLUSMN; 2.6 mg NH3-N L-1) or FNA (3.1 & PLUSMN; 0.3 mg HNO2-N L-1). FA treatment, however, promoted N2O emissions, while FNA did not affect these. Hence, biofilm PN/A should be operated at relatively low DO levels with periodic FNA treatment to maximize nitrogen removal efficiency while avoiding high greenhouse gas emissions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001063180200001 Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access: Available from 21.02.2024  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:199051 Serial 8843  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Watson, G.; Ciocarlan, R.-G.; Verbruggen, S.W.; Cool, P.; Van Der Voort, P.; Perreault, P. pdf  url
doi  openurl
  Title Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials Type A1 Journal article
  Year 2023 Publication Fuel Abbreviated Journal  
  Volume 354 Issue Pages (down) 129403-129418  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Methane (CH4) clathrate hydrates have gained much attention in the ever-growing search for novel energy storage methods; however, they are currently limited due to their poor water-to-hydrate conversions and slow formation kinetics. To surmount these bottlenecks, significant research has been centered on the design of novel methods (porous media). In this vein, the present work explores two hydrophobic mesoporous solids, an alkyl-grafted mesoporous silica (SBA-15 C8) and a periodic mesoporous organosilica (Ring-PMO), in their ability to promote CH4 clathrates. Both materials have shown to facilitate CH4 clathrate formation at mild operating conditions (6 MPa and 269–276 K). The study revealed that the maximal CH4 storage capacities are strongly linked to the critical/optimal quantity of water in the system which was determined to be at 130% and 200% of the pore volume for SBA-15 C8 and Ring-PMO, respectively. Up to 90% and 95% of the maximum water-to-hydrate conversions were achieved in 90 min at the lowest experimental temperature and critical water content for SBA-15 C8 and Ring-PMO, respectively. At these conditions, SBA-15 C8 and Ring-PMO showed a maximum gas uptake of 98.2 and 101.2 mmol CH4/mol H2O, respectively. Both the materials exhibited no chemical or morphological changes post-clathrate formations (characterized using FT-IR, N2 sorption, XRD, and TEM), inferring their viability as clathrate promoters for multiple cycles. An integrated multistep model was considered adequate for representing the hydrate crystallization kinetics and fits well with the experimental kinetic data with a low average absolute deviation in water-to-hydrate conversions among the three distinct kinetic models analyzed. Overall, the results from this study demonstrate hydrophobic porous materials as effective promoters of CH4 clathrates, which could make clathrate-based CH4 storage and transport technology industrially viable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001059413200001 Publication Date 2023-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access: Available from 07.02.2024  
  Notes Approved Most recent IF: 7.4; 2023 IF: 4.601  
  Call Number UA @ admin @ c:irua:197987 Serial 8829  
Permanent link to this record
 

 
Author Zhu, W.; Van Tendeloo, M.; Alloul, A.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Feasibility of a return-sludge nursery concept for mainstream anammox biostimulation : creating optimal conditions for anammox to recover and grow in a parallel tank Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 385 Issue Pages (down) 129359-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To overcome limiting anammox activity under sewage treatment conditions, a return-sludge nursery concept is proposed. This concept involves blending sludge reject water treated with partial nitritation with mainstream effluent to increase the temperature, N levels, and electrical conductivity (EC) of the anammox nursery reactor, which sludge periodically passes through the return sludge line of the mainstream system. Various nursery frequencies were tested in two 2.5 L reactors, including 0.5-2 days of nursery treatment per 3.5-14 days of the total operation. Bioreactor experiments showed that nursery increased nitrogen removal rates during mainstream operation by 33-38%. The increased anammox activity can be partly (35-60%) explained by higher temperatures. Elevated EC, higher nitrogen concentrations, and a putative synergy and/or unknown factor were responsible for 15-16%, 12-14%, and 10-36%, respectively. A relatively stable microbial community was observed, dominated by a “Candidatus Brocadia” member. This new concept boosted activity and sludge growth, which may facilitate mainstream anammox implementations based on partial nitritation/anammox or partial nitrification/denitratation/anammox.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031586400001 Publication Date 2023-06-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:198259 Serial 8866  
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 329 Issue Pages (down) 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author Omranian, S.R.; Geluykens, M.; Van Hal, M.; Hasheminejad, N.; Rocha Segundo, I.; Pipintakos, G.; Denys, S.; Tytgat, T.; Fraga Freitas, E.; Carneiro, J.; Verbruggen, S.; Vuye, C. pdf  url
doi  openurl
  Title Assessing the potential of application of titanium dioxide for photocatalytic degradation of deposited soot on asphalt pavement surfaces Type A1 Journal article
  Year 2022 Publication Construction and building materials Abbreviated Journal Constr Build Mater  
  Volume 350 Issue Pages (down) 128859-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is known that pollutants and their irreparable influence can considerably jeopardize the environment and human health. Such disastrous, growing, hazardous particles urged researchers to find effective ways and diminish their destructive impacts and preserve our planet. This study evaluates the potential of incorporating Titanium Dioxide (TiO2) semiconductor nanoparticles on asphalt pavements to degrade pollutants without compromising bitumen performance. Accordingly, the Response Surface Method (RSM) was employed to develop an experimental matrix based on the central composite design. Image Analysis (IA) was used to determine the rate of soot degradation (as pollutant representative) using MATLAB and ImageJ software. Confocal Laser Scanning Microscopy (CLSM), Fourier Transform Infrared spectroscopy (FTIR), and Dynamic Shear Rheometer (DSR) were finally carried out to estimate the effects of adding different percentages of TiO2 on the micro -structural features and dispersion of the TiO2, chemical fingerprinting, and rheological performance of the bituminous binder. The results showed a promising potential of TiO2 to degrade soot (over 50%) during the conducted experiments. In addition, the RSM outcomes showed that applying a higher amount of TiO2 is more efficient for pollutant degradation. Finally, no negative impact was observed, neither on the rheological behavior nor on the aging susceptibility of the bitumen, even though the homogenous dispersion of the TiO2 was clearly captured via CLSM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000848227000001 Publication Date 2022-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:189820 Serial 7128  
Permanent link to this record
 

 
Author Xie, Y.; Jia, M.; De Wilde, F.; Daeninck, K.; De Clippeleir, H.; Verstraete, W.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Feasibility of packed-bed trickling filters for partial nitritation/anammox : effects of carrier material, bottom ventilation openings, hydraulic loading rate and free ammonia Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 373 Issue Pages (down) 128713-128719  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4–2.2 m3 m−2 h−1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m−2 h−1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d−1, 30 °C) and achieve relatively low NO3–-N accumulation (13%). Likely FA levels of around 1.3–3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000945892500001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:193652 Serial 7306  
Permanent link to this record
 

 
Author Zhao, Z.X.; Ma, X.; Cao, S.; Li, Y.Y.; Zeng, C.Y.; Wang, D.X.; Yao, X.; Deng, Z.J.; Zhang, X.P. pdf  doi
openurl 
  Title Identification of nano-width variants in a fully monoclinic martensitic Ni50Ti50 alloy by scanning electron microscope-based transmission Kikuchi diffraction and improved groupoid structure approach Type A1 Journal article
  Year 2020 Publication Materials Letters Abbreviated Journal Mater Lett  
  Volume 281 Issue Pages (down) 128624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-width martensite plates in a fully martensitic Ni50Ti50 alloy are indexed successfully by using the off-axis transmission Kikuchi diffraction in scanning electron microscope (i.e., SEM-based TKD). The data obtained by SEM-TKD are effectively interpreted using an improved approach based on the framework of the theoretical groupoid structure method, where the equivalent variants transformed from the monoclinic variants are introduced to calculate all theoretical axis/angle pairs of rotation, and to formulate a complete list of source martensite to target martensite pairs. Consequently, B19' monoclinic martensite variants in NiTi alloys are identified unambiguously, by using numerical comparison between the experimental and theoretical rotation components, without the reference of retained parent phase. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581134200033 Publication Date 2020-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grant Nos. 51571092 and 51401081, and Guangdong Provincial Natural Science Foundation under Grant Nos. 2018B0303110012 and 2017A030313323. ; Approved Most recent IF: 3; 2020 IF: 2.572  
  Call Number UA @ admin @ c:irua:173509 Serial 6540  
Permanent link to this record
 

 
Author Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Van Passel, S.; Kurban, A.; Lopez-Carr, D. pdf  doi
openurl 
  Title Rethinking resilient agriculture : from Climate-Smart Agriculture to Vulnerable-Smart Agriculture Type A1 Journal article
  Year 2021 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume 319 Issue Pages (down) 128602  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Climate-Smart Agriculture (CSA) is seeking to overcome the food security problem and develop rural livelihoods while minimizing negative impacts on the environment. However, when such synergies exist, the situation of small-scale farmers is often overlooked, and they are unable to implement new practices and technologies. Therefore, the main aim of this study is to improve CSA by adding the neglected but very important element “small-scale farmer”, and introduce Vulnerable-Smart Agriculture (VSA) as a complete version of CSA. VSA indicates, based on the results of this study, that none of the decisions made by policymakers can be realistic and functional as long as the voice of the farmers influenced by their decisions is not heard. Therefore, to identify different levels for possible interventions and develop VSA monitoring indicators, a new conceptual framework needs to be developed. This study proposed such a framework consisting of five elements: prediction of critical incidents by farmers, measuring the consequences of incidents, identifying farmers' coping strategies, assessing farmers' livelihood capital when facing an incident, and adapting to climate incidents. The primary focus of this study is on farmers' learning and operational preparation to deal with tension and disasters at farm level. Understanding the implications of threats from climate change and the recognizing of coping mechanisms will contribute to an increase in understanding sustainable management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728681500005 Publication Date 2021-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.715 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.715  
  Call Number UA @ admin @ c:irua:184869 Serial 6942  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
  Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A  
  Volume 640 Issue Pages (down) 128521  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Elservier Place of Publication Editor  
  Language Wos 000765946900002 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number DuEL @ duel @c:irua:185704 Serial 6908  
Permanent link to this record
 

 
Author Papini, G.; Muys, M.; Van Winckel, T.; Meerburg, F.A.; Van Beeck, W.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Boosting aerobic microbial protein productivity and quality on brewery wastewater : impact of anaerobic acidification, high-rate process and biomass age Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 368 Issue Pages (down) 128285  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Consortia of aerobic heterotrophic bacteria (AHB) are appealing as sustainable alternative protein ingredient for aquaculture given their high nutritional qualities, and their production potential on feed-grade industrial wastewater. Today, the impacts of pre-treatment, bioprocess choice and key parameter settings on AHB productivity and nutritional properties are unknown. This study investigated for the first time AHB microbial protein production effects based on (i) raw vs anaerobically fermented brewery wastewater, (ii) high-rate activated sludge (HRAS) without vs with feast-famine conditions, and (iii) three short solid retention time (SRT): 0.25, 0.50 and 1.00 d. High biomass (4.4–8.0 g TSS/L/d) and protein productivities (1.9–3.2 g protein/L/d) were obtained while achieving COD removal efficiencies up to 98 % at SRT 0.50 d. The AHB essential amino acid (EAA) profiles were above rainbow trout requirements, excluding the S-containing EAA, highlighting the AHB biomass replacement potential for unsustainable fishmeal in salmonid diets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000902092100009 Publication Date 2022-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:191780 Serial 7133  
Permanent link to this record
 

 
Author Ben Abdallah, M.A.; Bacchi, A.; Parisini, A.; Canossa, S.; Bergamonti, L.; Balestri, D.; Kamoun, S. pdf  url
doi  openurl
  Title Crystal structure, vibrational, electrical, optical and DFT study of C₂H₁0N₂(IO₃)₂.HIO₃ Type A1 Journal article
  Year 2020 Publication Journal Of Molecular Structure Abbreviated Journal J Mol Struct  
  Volume 1215 Issue Pages (down) 128254-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The reinvestigation of the EDA-HIO3-H2O system using a different stoichiometric ratio gives rise to a new iodate salt C2H10N2(IO3)(2 center dot)HIO3 denoted as EBIMIA. In this study, we reported the structural properties of ethylenediammonium bis iodate mono iodic acid using X-ray powder and single crystal diffraction at room temperature. The Hirshfeld and the potential energy surface analysis reveal that I center dot center dot center dot O and N-H center dot center dot center dot O are the most noticeable interactions that took place inside the crystal and contribute to the cohesion and stability of the synthesized compound. The DSC measurement shows that this iodate salt undergoes two structural phase transitions, the first occurs at T = 290 K while the second occurs at T = 363 K. However, the dielectric analysis confirms only the second transition because it lies in the studied temperature domain 338-413K. Besides, the impedance data obey a circuit model consisting of a parallel combination of a bulk resistance and CPE. The frequency dispersion of the conductivity follows Jonscher's law and the charge carrier transport may be interpreted using the correlation barrier hopping mechanism (CBH). Finally, the electronic properties and the vibrational analysis of this novel iodate salt are studied using DFT and compared to the experimental data given by the FT-IR, Raman and UV-visible spectroscopies. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537221300012 Publication Date 2020-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes ; The authors are grateful to Pr. Giovani Predieri, Pr. Pier Paolo Lottici, and Pr. Danilo Bersani, for their help with the vibrational measurement. Moreover, authors wish to thank, Pr. Salvatore Vantaggio and Dr. Silvio Scaravonati for their contribution in carrying out the impedance spectroscopy measurements. The authors acknowledge also the Analytical Chemistry, Cultural Heritage, Inorganic Chemistry and Crystallography Unit (SCVSA department, university of Parma, Italy) and the Tunisian Ministry of Higher Education and Scientific Research (LR11ES46) for their support. ; Approved Most recent IF: 3.8; 2020 IF: 1.753  
  Call Number UA @ admin @ c:irua:170148 Serial 6480  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages (down) 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S. pdf  url
doi  openurl
  Title Development of a novel type activated carbon fiber filter for indoor air purification Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 417 Issue Pages (down) 128109  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel type of activated carbon fiber filter was developed for indoor air purification. The filter is equipped with electrodes for thermo-electrical regeneration at the point of saturation. The electrodes are arranged in such a way that the filter forms a pleated structure with an electrode in the tip of each pleat. This allows for a uniform temperature distribution on the filter surface during the regeneration process and the pleated structure reduces the overall pressure drop across the filter. The latter was validated by Computational Fluid Dynamics, using Darcy-Forchheimer parameters derived in previous work. The CFD model was further used to perform a virtual sensitivity study in search for the optimal ACF filter design by varying the pleat length, pleat height and filter thickness. Finally, adsorption and desorption properties were investigated with acetaldehyde and toluene as model compounds. Freundlich and Langmuir adsorption parameters, derived in previous work were successfully validated with a Multiphysics model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653229500132 Publication Date 2020-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:174105 Serial 7800  
Permanent link to this record
 

 
Author Buyle, M.; Maes, B.; Van Passel, S.; Boonen, K.; Vercalsteren, A.; Audenaert, A. pdf  doi
openurl 
  Title Ex-ante LCA of emerging carbon steel slag treatment technologies : fast forwarding lab observations to industrial-scale production Type A1 Journal article
  Year 2021 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume 313 Issue Pages (down) 127921  
  Keywords A1 Journal article; Engineering sciences. Technology; Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract The valuable properties of carbon steel slag are currently underexploited. To date, research mainly focusses on valorising a single property of the slag. In this study an ex-ante life cycle assessment (LCA) was applied to evaluate the environmental profile of a novel technological pathway aimed at the extraction of chromium from carbon steel slag in combination with high quality valorisation of the residual matrix material. A comparison with current practice was made, not only by calculating the environmental impact of the lab scale observations, but more importantly by estimating the impact on an industrial scale. Practical guidance on ex-ante LCA is limited, so this study contributes by incorporating simulations on thermodynamic behaviour, complemented with empirical calculation rules and including information derived from similar technologies to perform the upscaling. These principles of ex-ante LCA were applied to the lab results of two consecutive research iterations. Substantial improvements of the environmental profile were observed: ex-ante results turned out to be a factor 20 lower compared to the results from the lab observations after the first iteration and had decreased by a factor 2 compared to the small pilot scale of the second iteration. All upscaled results are better than those from the worst case reference scenario (landfill). Based on the experience gained after this iterative research cycle, a practical recommendation is that at a low technology readiness level using more simple calculation rules in combination with a flowsheet based on elementary design principles for processes at an industrial scale is a more efficient way of modelling compared to a fully-fledged process design from the start.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000693416000002 Publication Date 2021-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.715 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.715  
  Call Number UA @ admin @ c:irua:179313 Serial 6922  
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O.; Gaskov, A.M. pdf  url
doi  openurl
  Title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers Type A1 Journal article
  Year 2020 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 307 Issue Pages (down) 127624  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508110400059 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access Not_Open_Access  
  Notes This work was supported by RFBR grants No. 18-03-00091 and No. 18-03-00580. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:166449 Serial 6343  
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M. url  doi
openurl 
  Title Reply to “Comment on `Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence'” Type Editorial
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 12 Pages (down) 127402  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract In the Comment, the authors state that the separation of the relative and center of mass variables in our work is not correct. Here we point out that there is a typographical error, i.e., qi instead of -e, in two of our equations which, when corrected, makes the Comment redundant. Within the ansatzes mentioned in our paper all our results are correct, in contrast to the claims of the Comment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519990800011 Publication Date 2020-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167680 Serial 6594  
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d. url  doi
openurl 
  Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 127 Issue 12 Pages (down) 127202  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704665000010 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 17 Open Access OpenAccess  
  Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @c:irua:182595 Serial 6824  
Permanent link to this record
 

 
Author Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. pdf  url
doi  openurl
  Title Green walls for mitigating urban particulate matter pollution : a review Type A1 Journal article
  Year 2021 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree  
  Volume 59 Issue Pages (down) 127014  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution caused by particulate matter (PM) is a well-known health issue in urban environments. Urban green infrastructure offers opportunities as a nature-based solution to urban PM pollution. Green walls have advantages over other types of urban green infrastructure, since they can be applied to the enormous available wall area in cities and since they do not interfere with the prevailing ventilation resulting in elevated PM levels. However, this has raised questions about the effectiveness of GW in removing PM and this could explain the limited applicability of green walls to tackle PM pollution. Nevertheless, it is suggested that green walls have a significant unexploited potential and this review article aims to address current knowledge gaps and to propose future research requirements for the implementation of green walls to mitigate urban PM pollution. An in-depth analysis is given of the mechanisms behind PM deposition and the influence of vegetation properties on this process, as well as the practices followed to model PM dispersion and deposition. It was suggested that particle deposition on green walls depends on the green wall species, pollution level, and the residence time of PM in a street (canyon). Rainfall plays an important role in the PM pathway, although it is not a necessary requirement to sustain PM deposition on plant leaves. There are still some discrepancies in the literature about the ideal plant characteristics for PM deposition in terms of the macro- and microstructures that require further investigation, especially in comparison with tree and shrub species. In addition, extensively validated models are required to accurately calculate the impact of green walls on air flow and the PM concentration on site.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632597600001 Publication Date 2021-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.113 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.113  
  Call Number UA @ admin @ c:irua:175581 Serial 8011  
Permanent link to this record
 

 
Author Misko, V.R.; Savel'ev, S.; Rakhmanov, A.L.; Nori, F. url  doi
openurl 
  Title Nonuniform self-organized dynamical states in superconductors with periodic pinning Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 96 Issue 12 Pages (down) 127004-127004,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and nonstationary) two-dimensional dynamical structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000236467000064 Publication Date 2006-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:94690 Serial 2364  
Permanent link to this record
 

 
Author Koch, K.; Ysebaert, T.; Denys, S.; Samson, R. pdf  doi
openurl 
  Title Urban heat stress mitigation potential of green walls: A review Type A1 Journal article
  Year 2020 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree  
  Volume 55 Issue Pages (down) 126843-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cities with resilience to climate change appear to be a vision of the future, but are inevitable to ensure the quality of life for citizens and to avoid an increase in civilian mortality. Urban green infrastructure (UGI), with the focus on vertical green, poses a beneficial mitigation and adaptation strategy for challenges such as climate change through cooling effects on building and street level. This review article explores recent literature regarding this considerable topic and investigates how green walls can be applied to mitigate this problem. Summary tables (see additional information) and figures are presented that can be used by policy makers and researchers to make informed decisions when installing green walls in built-up environments. At last, knowledge gaps are uncovered that need further investigation to exploit the benefits at its best.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000593921600001 Publication Date 2020-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access  
  Notes Approved Most recent IF: 6.4; 2020 IF: 2.113  
  Call Number UA @ admin @ c:irua:172985 Serial 6650  
Permanent link to this record
 

 
Author Blansaer, N.; Alloul, A.; Verstraete, W.; Vlaeminck, S.E.; Smets, B.F. pdf  url
doi  openurl
  Title Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation : impact of organic loading rate, hydraulic retention time and water composition Type A1 Journal article
  Year 2022 Publication Bioresource technology Abbreviated Journal Bioresource Technol  
  Volume 348 Issue Pages (down) 126806-126809  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) form an interesting group of microbes for resource recovery from wastewater. Solid/liquid separation is key for biomass and value-added products recovery, yet insights into PNSB aggregation are thus far limited. This study explored the effects of organic loading rate (OLR), hydraulic retention time (HRT) and water composition on the aggregation of Rhodobacter capsulatus in an anaerobic upflow photobioreactor. Between 2.0 and 14.6 gCOD/(L.d), the optimal OLR for aggregation was 6.1 gCOD/(L.d), resulting in a sedimentation flux of 5.9 kgTSS/(m2.h). With HRT tested between 0.04 and 1.00 d, disaggregation occurred at the relatively long HRT (1 d), possibly due to accumulation of thus far unidentified heat-labile metabolites. Chemical oxygen demand (COD) to nitrogen ratios (6–35 gCOD/gN) and the nitrogen source (ammonium vs. glutamate) also impacted aggregation, highlighting the importance of the type of wastewater and its pre-treatment. These novel insights to improve purple biomass separation pave the way for cost-efficient PNSB applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000800442200008 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4  
  Call Number UA @ admin @ c:irua:185843 Serial 7123  
Permanent link to this record
 

 
Author Ackerman, M.L.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M.; Singh, S. url  doi
openurl 
  Title Anomalous dynamical behavior of freestanding graphene membranes Type A1 Journal article
  Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 117 Issue 117 Pages (down) 126801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report subnanometer, high-bandwidth measurements of the out-of-plane (vertical) motion of atoms in freestanding graphene using scanning tunneling microscopy. By tracking the vertical position over a long time period, a 1000-fold increase in the ability to measure space-time dynamics of atomically thin membranes is achieved over the current state-of-the-art imaging technologies. We observe that the vertical motion of a graphene membrane exhibits rare long-scale excursions characterized by both anomalous mean-squared displacements and Cauchy-Lorentz power law jump distributions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000383171800010 Publication Date 2016-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 46 Open Access  
  Notes ; The authors thank Theodore L. Einstein, Michael F. Shlesinger, and Woodrow L. Shew for their careful reading of the manuscript and insightful comments. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. P. M. T. was supported by the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. M.N.-A. was supported by Iran Science Elites Federation (ISEF) under Grant No. 11/66332. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:137125 Serial 4347  
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; De Wael, K. pdf  doi
openurl 
  Title Conductive imprinted polymers for the direct electrochemical detection of beta-lactam antibiotics: The case of cefquinome Type A1 Journal article
  Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 297 Issue 297 Pages (down) 126786  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A biomimetic sensor for cefquinome (CFQ) was designed at multi-walled carbon nanotubes modified graphite screen-printed electrodes (MWCNTs-G-SPEs) as a proof-of-concept for the creation of a sensors array for beta-lactam antibiotics detection in milk. The sensitive and selective detection of antibiotic residues in food and environment is a fundamental step in the elaboration of prevention strategies to fight the insurgence of antimicrobial resistance (AMR) as recommended by authorities around the world (EU, WHO, FDA). The detection strategy is based on the characteristic electrochemical fingerprint of the target antibiotic cefquinome. A conducive electropolymerized molecularly imprinted polymer (MIP) coupled with MWCNTs was found to be the optimal electrode modifier, able to provide an increased selectivity and sensitivity for CFQ detection. The design of CFQ-MIP was facilitated by the rational selection of the monomer, 4-aminobenzoic acid (4-ABA). The electropolymerization process of 4-ABA have not been fully elucidated yet; for this reason a thorough study and optimization of electropolymerization conditions was performed to obtain a conducive and stable poly(4-ABA) film. The modified electrodes were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and cyclic voltammetry (CV). CFQ-MIP were synthesized at MWCNT-G-SPEs by electropolyrnerization in pH approximate to 1 (0.1 M sulphuric acid) with a monomer:template ratio of 5:1. Two different analytical protocols were tested (single and double step detection) to minimize unspecific adsorptions and improve the sensitivity. Under optimal conditions, the lowest CFQ concentration detectable by square wave voltammetry (SWV) at the modified sensor was 50 nM in 0.1 M phosphate buffer pH 2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000478562700020 Publication Date 2019-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 4 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223. This work was also supported by FWO. ; Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:161777 Serial 5549  
Permanent link to this record
 

 
Author Mercer, Er.; Van Alphen, S.; van Deursen, Cf.a.m.; Righart, Tw.h.; Bongers, Wa.; Snyders, R.; Bogaerts, A.; van de Sanden, Mc.m.; Peeters, Fj.j. url  doi
openurl 
  Title Post-plasma quenching to improve conversion and energy efficiency in a CO2 microwave plasma Type A1 Journal article
  Year 2023 Publication Fuel Abbreviated Journal  
  Volume 334 Issue Pages (down) 126734  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Transforming CO2 into value-added chemicals is crucial to realizing a carbon–neutral economy, and plasma-based conversion, a Power-2-X technology, offers a promising route to realizing an efficient and scalable process. This paper investigates the effects of post-plasma placement of a converging–diverging nozzle in a vortex-stabilized 2.45 GHz CO2 microwave plasma reactor to increase energy efficiency and conversion. The CDN leads to a 21 % relative increase in energy efficiency (31 %) and CO2 conversion (13 %) at high flow rates and near-atmospheric conditions. The most significant performance improvement was seen at low flow rates and sub-atmospheric pressure (300 mbar), where energy efficiency was 23 % and conversion was 28 %, a 71 % relative increase over conditions without the CDN. Using CFD simulations, we found that the CDN produces a change in the flow geometry, leading to a confined temperature profile at the height of the plasma, and forced extraction of CO to the post-CDN region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891307400008 Publication Date 2022-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 810182 – SCOPE ERC Synergy project) and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. In addition, this work has been carried out as part of the Plasma Power to Gas research program with reference 15325, which is by the Netherlands Organization for Scientific Research (NWO) and Alliander N.V. Approved Most recent IF: 7.4; 2023 IF: 4.601  
  Call Number PLASMANT @ plasmant @c:irua:192784 Serial 7235  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title On the kinetics and equilibria of plasma-based dry reforming of methane Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 405 Issue Pages (down) 126630  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma reactors are interesting for gas-based chemical conversion but the fundamental relation between the plasma chemistry and selected conditions remains poorly understood. Apparent kinetic parameters for the loss and formation processes of individual components of gas conversion processes, can however be extracted by performing experiments in an extended residence time range (2–75 s) and fitting the gas composition to a firstorder kinetic model of the evolution towards partial chemical equilibrium (PCE). We specifically investigated the differences in kinetic characteristics and PCE state of the CO2 dissociation and CH4 reforming reactions in a dielectric barrier discharge reactor (DBD), how these are mutually affected when combining both gases in the dry reforming of methane (DRM) reaction, and how they change when a packing material (non-porous SiO2) is added to the reactor. We find that CO2 dissociation is characterized by a comparatively high reaction rate of 0.120 s−1 compared to CH4 reforming at 0.041 s−1; whereas CH4 reforming reaches higher equilibrium conversions, 82% compared to 53.6% for CO2 dissociation. Combining both feed gases makes the DRM reaction to proceed at a relatively high rate (0.088 s−1), and high conversion (75.4%) compared to CO2 dissociation, through accessing new chemical pathways between the products of CO2 and CH4. The addition of the packing material can also distinctly influence the conversion rate and position of the equilibrium, but its precise effect depends strongly on the gas composition. Comparing different CO2:CH4 ratios reveals the delicate balance of the combined chemistry. CO2 drives the loss reactions in DRM, whereas CH4 in the mixture suppresses back reactions. As a result, our methodology provides some of the insight necessary to systematically tune the conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621197700003 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; grant number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:172458 Serial 6411  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: