toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Weng, Y.; Jia, Z.; Ding, L.; Muraishi, S.; Wu, X.; Liu, Q. url  doi
openurl 
  Title The multiple orientation relationships and morphology of beta phase in Al-Mg-Si-Cu alloy Type A1 Journal article
  Year 2018 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 767 Issue 767 Pages 81-89  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The orientation relationships (ORs), segregation behavior and morphologies of beta precipitate in an over aged Al-Mg-Si-Cu alloy are systematically characterized by atomic resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Six different ORs and two morphologies, i.e. rod-and lath-like are revealed for beta precipitates, and Cu segregation at the (beta/alpha-Al interface is observed in all these precipitates. The rod-like beta precipitate has multiple beta-angles ranging from 6.1 to 14.1 degrees and non-uniform Cu segregation at the (beta/alpha-Al interface, while the lath-like beta precipitate has a constant beta-angle of 0 degrees and a periodic Cu segregation. These different ORs are explained to be attributable to the rotation of QP lattice, a near-hexagonal network of Si columns formed within beta precipitates, which causes different lattice matching of beta with alpha-Al lattice. These findings provide new insights in controlling the precipitation hardening and mechanical properties of this type of alloys. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000446316500011 Publication Date 2018-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 4 Open Access OpenAccess  
  Notes ; This work was supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDJDCL001910611 and No. 2017CDJQJ308822), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51421001) and the program of China Sponsorship Council (No. 201706050125). ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:154720 Serial 5131  
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J. url  doi
openurl 
  Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 23129-23142  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000447471700038 Publication Date 2018-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 27 Open Access OpenAccess  
  Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:154731 Serial 5121  
Permanent link to this record
 

 
Author Tessier, M.D.; Baquero, E.A.; Dupont, D.; Grigel, V.; Bladt, E.; Bals, S.; Coppel, Y.; Hens, Z.; Nayral, C.; Delpech, F. url  doi
openurl 
  Title Interfacial oxidation and photoluminescence of InP-Based core/shell quantum dots Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 6877-6883  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide colloidal quantum dots (QDs) are emerging as an efficient cadmium-free alternative for optoelectronic applications. Recently, syntheses based on easy-to-implement aminophosphine precursors have been developed. We show by solid-state nuclear magnetic resonance spectroscopy that this new approach allows oxide-free indium phosphide core or core/shell quantum dots to be made. Importantly, the oxide-free core/shell interface does not help in achieving higher luminescence efficiencies. We demonstrate that in the case of InP/ZnS and InP/ZnSe QDs, a more pronounced oxidation concurs with a higher photoluminescence efficiency. This study suggests that a II-VI shell on a III-V core generates an interface prone to defects. The most efficient InP/ZnS or InP/ZnSe QDs are therefore made with an oxide buffer layer between the core and the shell: it passivates these interface defects but also results in a somewhat broader emission line width.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000447237800031 Publication Date 2018-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 74 Open Access OpenAccess  
  Notes ; The authors thank L. Biadala and C. Delerue for fruitful discussion. Z.H. acknowledges support by the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656), by Research Foundation Flanders (Project 17006602), and by Ghent University (GOA No. 01G01513). Z.H., M.D.T., and D.D. acknowledge the Strategisch Initiatief Materialen in Vlaanderen of Agentschap Innoveren en Ondernemen (SIM VLAIO), vzw (SBO-QDOCCO, ICON-QUALIDI). This work was supported by the Universite Paul Sabatier, the Region Midi-Pyrenees, the CNRS, the Institut National des Sciences Appliquees of Toulouse, and the Agence Nationale pour la Recherche (Project ANR-13-IS10-0004-01). E.A.B. is grateful to Marie Curie Actions and Campus France for a PRESTIGE postdoc fellowship (FP7 /2007-2013) under REA Grant Agreement PCOFUND-GA-2013-609102. E.B. acknowledges financial support from Research Foundation Flanders (FWO). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:154732UA @ admin @ c:irua:154732 Serial 5109  
Permanent link to this record
 

 
Author Karakulina, O.M.; Demortière, A.; Dachraoui, W.; Abakumov, A.M.; Hadermann, J. url  doi
openurl 
  Title In Situ Electron Diffraction Tomography Using a Liquid-Electrochemical Transmission Electron Microscopy Cell for Crystal Structure Determination of Cathode Materials for Li-Ion batteries Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 10 Pages 6286-6291  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that changes in the unit cell structure of lithium battery cathode materials during electrochemical cycling in liquid electrolyte can be determined for particles of just a few hundred nanometers in size using in situ transmission electron microscopy (TEM). The atomic coordinates, site occupancies (including lithium occupancy), and cell parameters of the materials can all be reliably quantified. This was achieved using electron diffraction tomography (EDT) in a sealed electrochemical cell with conventional liquid electrolyte (LP30) and LiFePO4 crystals, which have a well-documented charged structure to use as reference. In situ EDT in a liquid environment cell provides a viable alternative to in situ X-ray and neutron diffraction experiments due to the more local character of TEM, allowing for single crystal diffraction data to be obtained from multiphased powder samples and from submicrometer- to nanometer-sized particles. EDT is the first in situ TEM technique to provide information at the unit cell level in the liquid environment of a commercial TEM electrochemical cell. Its application to a wide range of electrochemical experiments in liquid environment cells and diverse types of crystalline materials can be envisaged.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447355400024 Publication Date 2018-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access Not_Open_Access: Available from 08.09.2019  
  Notes O.M. Karakulina, A.M. Abakumov and J. Hadermann acknowledge support from FWO under grant G040116N. A. Demortière wants to thank the French network on the electrochemical energy storage (RS2E), the Store-Ex Labex, for the financial support. Finally, the Fonds Européen de Développement Régional (FEDER), CNRS, Région Hauts-de-France, and Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for funding. Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:154750 Serial 5063  
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M. url  doi
openurl 
  Title Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 20 Pages 23112-23122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445220500071 Publication Date 2018-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 36 Open Access OpenAccess  
  Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 50 Open Access OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A. pdf  url
doi  openurl
  Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
  Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 740-741 Issue Pages 274-284  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453494500029 Publication Date 2018-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020  
  Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094  
  Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Schryvers, D.; Verwerft, M. pdf  url
doi  openurl
  Title Characterization of (Ti,Mo,Cr)C nanoprecipitates in an austenitic stainless steel on the atomic scale Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 164 Issue Pages 90-98  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanometer sized (Ti,Mo,Cr)C (MX-type) precipitates that grew in a 24% cold worked Ti-stabilized austenitic stainless steel (grade DIN 1.4970, member of the 15-15Ti austenitic stainless steels) after heat treatment were fully characterized with transmission electron microscopy (TEM), probe corrected high angle annular dark field scanning transmission electron microscopy (HR-HAADF STEM), and atom probe tomography (APT). The precipitates shared the cube-on-cube orientation with the matrix and were facetted on {111} planes, yielding octahedral and elongated octahedral shapes. The misfit dislocations were believed to have Burgers vectors a/6<112> which was verified by geometrical phase analysis (GPA) strain mapping of a matrix-precipitate interface. The dislocations were spaced five to seven atomic

planes apart, on average slightly wider than expected for the lattice parameters of steel and TiC. Quantitative atom probe tomography analysis of the precipitates showed that precipitates were significantly enriched in Mo, Cr and V, and that they were hypostoichiometric with respect to C. These findings were consistent with a reduced lattice parameter. The precipitates were found primarily on Shockley

partial dislocations originating from the original perfect dislocation network. These novel findings could contribute to the understanding of how TiC nanoprecipitates interact with point defects and matrix dislocations. This is essential for the application of these Ti-stabilized steels in high temperature environments or fast spectrum nuclear fission reactors.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456902800008 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 2 Open Access Not_Open_Access: Available from 12.10.2020  
  Notes This work was supported by ENGIE [contract number 2015-AC- 007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07- 051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program in development at SCKCEN, Belgium. Special thanks to Dr. H. Mezerji and Dr. T. Altantzis for the work on the FEI Titan microscope.We also want to thank Ms. J. Burns for the help on the FIB and Dr. Y. Wu at CAES for conducting the APT measurements. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @c:irua:154873UA @ admin @ c:irua:154873 Serial 5060  
Permanent link to this record
 

 
Author Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A. pdf  url
doi  openurl
  Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
  Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett  
  Volume Issue Pages 2884-2890  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453805100005 Publication Date 2018-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-8195 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access: Available from 06.11.2019  
  Notes C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:155046 Serial 5067  
Permanent link to this record
 

 
Author Korneychuk, S.; Guzzinati, G.; Verbeeck, J. pdf  url
doi  openurl
  Title Measurement of the Indirect Band Gap of Diamond with EELS in STEM Type A1 Journal article
  Year 2018 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 215 Issue 22 Pages 1800318  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, a simple method to measure the indirect band gap of diamond with electron energy loss spectroscopy (EELS) in transmission electron microscopy (TEM) is showed. The authors discuss the momentum space resolution achievable with EELS and the possibility of deliberately selecting specific transitions of interest. Based on a simple 2 parabolic band model of the band structure, the authors extend our predictions from the direct band gap case discussed in previous work, to the case of an indirect band gap. Finally, the authors point out the emerging possibility to partly reconstruct the band structure with EELS exploiting our simplified model of inelastic scattering and support it with experiments on diamond.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450818100004 Publication Date 2018-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 6 Open Access Not_Open_Access  
  Notes S.K. and J.V. acknowledge funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. Financial support via the Methusalem “NANO” network is acknowledged. G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint”; Methusalem “NANO” network; Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO); Hercules fund from the Flemish Government; Approved Most recent IF: 1.775  
  Call Number EMAT @ emat @UA @ admin @ c:irua:155402 Serial 5138  
Permanent link to this record
 

 
Author Lak, A.; Cassani, M.; Mai, B.T.; Winckelmans, N.; Cabrera, D.; Sadrollahi, E.; Marras, S.; Remmer, H.; Fiorito, S.; Cremades-Jimeno, L.; Litterst, F.J.; Ludwig, F.; Manna, L.; Teran, F.J.; Bals, S.; Pellegrino, T. pdf  url
doi  openurl
  Title Fe2+Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 18 Pages 6856-6866  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+ deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO sub-domains as well as structural defects. This phase transformation causes a tenfold increase in the magnetic losses of the nanocubes, which remains exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of the particles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under cellular and intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance under cellular and intracellular conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451102100028 Publication Date 2018-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access OpenAccess  
  Notes This work is partially funded by the European Research Council (starting grant ICARO, Contract No. 678109 and COLOURATOM-335078), Spanish Ministry of Economy and Competitiveness (MAT2016-81955-REDT, SEV-2016-0686, MAT2017-85617-R) Comunidad de Madrid (NANOFRONTMAG-CM, S2013/MIT-2850), the European COST Action TD1402 (RADIOMAG), and Ramon y Cajal subprogram (RYC-2011-09617). Financial support from the Deutsche Forschungsgemeinschaft, DFG Priority Program 1681 (LU800/4-3). S.B. and N.W. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project funding G038116N. A.L. acknowledges the Alexander von Humboldt Foundation for the Postdoctoral Research Fellow funding. Mr Emilio J. Artés from the Advanced Instrumentation Unit (iMdea Nanociencia) is acknowledged for his technical assistance. L. M acknowledges the predoctoral fellowship funded from Comunidad de Madrid (PEJD-2017-PRE/IND-4189). Authors thank Tiziano Catelani and Doriana Debellis for the preparation of TEM cell samples (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_Sara Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:155439UA @ admin @ c:irua:155439 Serial 5072  
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K. pdf  doi
openurl 
  Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
  Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun  
  Volume 8 Issue 3 Pages 1311-1320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448887900089 Publication Date 2018-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-6859; 2159-6867 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.01 Times cited 1 Open Access  
  Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01  
  Call Number UA @ admin @ c:irua:155521 Serial 5364  
Permanent link to this record
 

 
Author Feld, A.; Weimer, A.; Kornowski, A.; Winckelmans, N.; Merkl, J.-P.; Kloust, H.; Zierold, R.; Schmidtke, C.; Schotten, T.; Riedner, M.; Bals, S.; Weller, P.D., Horst url  doi
openurl 
  Title Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation Type A1 Journal article
  Year 2018 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 152-162  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein we demonstrate that meticulous and in-depth analysis of the reaction mechanisms of nanoparticle formation is rewarded by full control of size, shape and crystal structure of superparamagnetic iron oxide nanocrystals during synthesis. Starting from two iron sources – iron(II)- and iron(III) carbonate -a strict separation of oleate formation from the generation of reactive pyrolysis products and concomitant nucleation of iron oxide nanoparticles was achieved. This protocol enabled us to analyze each step of nanoparticle formation independently in depth. Progress of the entire reaction was monitored via matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and gas chromatography (GC) gaining insight into the formation of various iron oleate species prior to nucleation. Interestingly, due to the intrinsic strongly reductive pyrolysis conditions of the oleate intermediates and redox process in early stages of the synthesis, pristine iron oxide nuclei were composed exclusively from wustite, irrespective of the oxidation state of the iron source. Controlling the reaction conditions provided a very broad range of size- and shape defined monodisperse iron oxide nanoparticles. Curiously, after nucleation star shaped nanocrystals were obtained, which underwent metamorphism towards cubic shaped particles. EELS tomography revealed ex post oxidation of the primary wustite nanocrystal providing a full 3D image of Fe2+ and Fe3+ distribution within. Overall, we developed a highly flexible synthesis, yielding multigram amounts of well-defined iron oxide nanocrystals of different sizes and morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456749900017 Publication Date 2018-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 54 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 192346071 – SFB 986 and the excellence cluster ‘The Hamburg Centre for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale’ (by grant EXC 1074) S.B. and N.W. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the Research Foundation Flanders (FWO, Belgium) through Project fundings G038116N. Dr. Volker Sauerland for his support in calibrating the MALDI-TOF spectra. Almut Bark for measuring XRD (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:155716UA @ admin @ c:irua:155716 Serial 5073  
Permanent link to this record
 

 
Author Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 22792-22801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars’ plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453248100010 Publication Date 2018-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 55 Open Access OpenAccess  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. The authors acknowledge funding from European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M. and M.Z. and MUMMERING 765604 to S.B. and M.Z.). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS).; Ecas_sara Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:155718UA @ admin @ c:irua:155718 Serial 5071  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S. url  doi
openurl 
  Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue Pages 155  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000020 Publication Date 2018-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074  
Permanent link to this record
 

 
Author Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D. pdf  url
doi  openurl
  Title Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
  Year 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 22 Pages 225105  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453254000025 Publication Date 2018-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access  
  Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068  
  Call Number EMAT @ emat @c:irua:155742 Serial 5135  
Permanent link to this record
 

 
Author Kutukov, P.; Rumyantseva, M.; Krivetskiy, V.; Filatova, D.; Batuk, M.; Hadermann, J.; Khmelevsky, N.; Aksenenko, A.; Gaskov, A. url  doi
openurl 
  Title Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors Type A1 Journal Article
  Year 2018 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 8 Issue 11 Pages 917  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract To obtain a nanocrystalline SnO2 matrix and mono- and bimetallic nanocomposites SnO2/Pd, SnO2/Pt, and SnO2/PtPd, a flame spray pyrolysis with subsequent impregnation was used. The materials were characterized using X-ray diffraction (XRD), a single-point BET method, transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The electronic state of the metals in mono- and bimetallic clusters was determined using X-ray photoelectron spectroscopy (XPS). The active surface sites were investigated using the Fourier Transform infrared spectroscopy (FTIR) and thermo-programmed reduction with hydrogen (TPR-H-2) methods. The sensor response of blank SnO2 and nanocomposites had a carbon monoxide (CO) level of 6.7 ppm and was determined in the temperature range 60-300 degrees C in dry (Relative Humidity (RH) = 0%) and humid (RH = 20%) air. The sensor properties of the mono- and bimetallic nanocomposites were analyzed on the basis of information on the electronic state, the distribution of modifiers in SnO2 matrix, and active surface centers. For SnO2/PtPd, the combined effect of the modifiers on the electrophysical properties of SnO2 explained the inversion of sensor response from n- to p-types observed in dry conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451316100052 Publication Date 2018-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access Not_Open_Access  
  Notes This research was funded by the Russian Ministry of Education and Sciences (Agreement No. 14.613.21.0075, RFMEFI61317X0075). Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:155767 Serial 5139  
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
  Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 47 Issue 44 Pages 15783-15790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450208000019 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 4.029 Times cited Open Access Not_Open_Access  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029  
  Call Number EMAT @ emat @c:irua:155771 Serial 5137  
Permanent link to this record
 

 
Author Samaee, V.; Gatti, R.; Devincre, B.; Pardoen, T.; Schryvers, D.; Idrissi, H. url  doi
openurl 
  Title Dislocation driven nanosample plasticity: new insights from quantitative in-situ TEM tensile testing Type A1 Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages 12012  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Intrinsic dislocation mechanisms in the vicinity of free surfaces of an almost FIB damage-free single crystal Ni sample have been quantitatively investigated owing to a novel sample preparation method combining twin-jet electro-polishing, in-situ TEM heating and FIB. The results reveal that the small-scale plasticity is mainly controlled by the conversion of few tangled dislocations, still present after heating, into stable single arm sources (SASs) as well as by the successive operation of these sources. Strain hardening resulting from the operation of an individual SAS is reported and attributed to the decrease of the length of the source. Moreover, the impact of the shortening of the dislocation source on the intermittent plastic flow, characteristic of SASs, is discussed. These findings provide essential information for the understanding of the regime of ‘dislocation source’ controlled plasticity and the related mechanical size effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460200900001 Publication Date 2018-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 9 Open Access Not_Open_Access  
  Notes Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaee also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Dr. Ruth Schwaiger is acknowledged for providing the Ni foils used to prepare the in-situ TEM tensile specimens. Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @c:irua:155772 Serial 5136  
Permanent link to this record
 

 
Author Samaee, V. url  openurl
  Title In-situ transmission electron microscopic nanomechanical investigations of Ni Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 172 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156143 Serial 8075  
Permanent link to this record
 

 
Author Gkanatsiou, A.; Lioutas, C.B.; Frangis, N.; Polychroniadis, E.K.; Prystawko, P.; Leszczynski, M.; Altantzis, T.; Van Tendeloo, G. url  doi
openurl 
  Title Influence of 4H-SiC substrate miscut on the epitaxy and microstructure of AlGaN/GaN heterostructures Type A1 Journal article
  Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal Mat Sci Semicon Proc  
  Volume 91 Issue Pages 159-166  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract AlGaN/GaN heterostructures were grown on “on-axis” and 2° off (0001) 4H-SiC substrates by metalorganic vapor phase epitaxy (MOVPE). Structural characterization was performed by transmission electron microscopy. The dislocation density, being greater in the on-axis case, is gradually reduced in the GaN layer and is forming

dislocation loops in the lower region. Steps aligned along [11̅00] in the off-axis case give rise to simultaneous defect formation. In the on-axis case, an almost zero density of steps is observed, with the main origin of defects probably being the orientation mismatch at the grain boundaries between the small not fully coalesced AlN grains. V-shaped formations are observed in the AlN nucleation layer, but are more frequent in the off-axis case, probably enhanced by the presence of steps. These V-shaped formations are completely overgrown by the GaN layer, during the subsequent deposition, presenting AlGaN areas in the walls of the defect, indicating an interdiffusion between the layers. Finally, at the AlGaN/GaN heterostructure surface in the on-axis case, V-shapes are observed, with the AlN spacer and AlGaN (21% Al) thickness on relaxed GaN exceeding the critical thickness for relaxation. On the other hand, no relaxation in the form of V-shape creation is observed in the off-axis case, probably due to the smaller AlGaN thickness (less than 21% Al). The AlN spacer layer, grown in between the heterostructure, presents a uniform thickness and clear interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454537700022 Publication Date 2018-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.359 Times cited 1 Open Access Not_Open_Access  
  Notes Funding: This work was supported by the IKY Fellowships of Excellence for Postgraduate Studies in Greece-SIEMENS Program; the Greek General Secretariat for Research and Technology, contract SAE 013/8–2009SE 01380012; and the JU ENIAC Project LAST POWER Large Area silicon carbide Substrates and heteroepitaxial GaN for POWER device applications [grant number 120218]. Also part of the research leading to these results has received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a post-doctoral grant. Approved Most recent IF: 2.359  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156200 Serial 5149  
Permanent link to this record
 

 
Author Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis Type A1 Journal article
  Year 2019 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 12 Issue 1 Pages 33-39  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene-graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N-2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453629900004 Publication Date 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 7 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing. ; Approved Most recent IF: 7.354  
  Call Number UA @ admin @ c:irua:156210 Serial 5265  
Permanent link to this record
 

 
Author Marikutsa, A.; Yang, L.; Rumyantseva, M.; Batuk, M.; Hadermann, J.; Gaskov, A. pdf  url
doi  openurl
  Title Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts Type A1 Journal article
  Year 2018 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 277 Issue Pages 336-346  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline tungsten oxide with variable particle size and surface area was synthesized by aqueous deposition and heat treatment for use in resistive gas sensors. Surface modification with 1 wt.% Pd and Ru was performed by impregnation to improve the sensitivity to CO and ammonia. Acid and oxidation surface sites were evaluated by temperature-programmed techniques using probe molecules. The surface acidity dropped with increasing particle size, and was weakly affected by additives. Lower crystallinity of WO3 and the presence of Ru species favoured temperature-programmed reduction of the materials. Modifying WO3 increased its sensitivity, to CO at ambient condition for modification by Pd and to NH3 at elevated temperature for Ru modification. An in situ infrared study of the gas – solid interaction showed that the catalytic additives change the interaction route of tungsten oxide with the target gases and make the reception of detected molecules independent of the semiconductor oxide matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453066700042 Publication Date 2018-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156219 Serial 8513  
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Aguilera, I.; Yashina, L., V; Tsukanova, D.Y.; Freyse, F.; Chaika, A.N.; Callaert, C.; Abakumov, A.M.; Hadermann, J.; Varykhalov, A.; Rienks, E.D.L.; Bihlmayer, G.; Blugel, S.; Rader, O. url  doi
openurl 
  Title Anomalous behavior of the electronic structure of (Bi1-xInx)2Se3across the quantum phase transition from topological to trivial insulator Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal  
  Volume 98 Issue 23 Pages 235110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using spin- and angle-resolved photoemission spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi1-xInx)(2)Se-3)(2)Se-3 bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing x, we observe how a surface gap opens at the Dirac point of the initially gapless topological surface state of Bi2Se3, leading to the existence of massive fermions. The surface gap monotonically increases for a wide range of x values across the topological and trivial sides of the quantum-phase transition. By means of photon-energy-dependent measurements, we demonstrate that the gapped surface state survives the inversion of the bulk bands which occurs at a critical point near x = 0.055. The surface state exhibits a nonzero in-plane spin polarization which decays exponentially with increasing x, and which persists in both the topological and trivial insulator phases. Our calculations reveal qualitative agreement with the experimental results all across the quantum-phase transition upon the systematic variation of the spin-orbit coupling strength. A non-time-reversal symmetry-breaking mechanism of bulk-mediated scattering processes that increase with decreasing spin-orbit coupling strength is proposed as explanation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452322800003 Publication Date 2018-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156240 Serial 7462  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Altantzis, T.; Gombac, V.; Fornasiero, P.; Maccato, C. url  doi
openurl 
  Title Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO2Nanomaterials Type A1 Journal Article
  Year 2018 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 57 Issue 23 Pages 14564-14573  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses,from heterogeneous catalysis to gas sensing, owing to its

structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasmaassisted process starting from a fluorinated manganese(II)

molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and

morphology revealed the formation of F-doped, oxygendeficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature (TG). Whereas phase-pure β-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vislight activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452344400016 Publication Date 2018-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access Not_Open_Access  
  Notes The present work was financially supported by Padova University DOR 2016−2018 and P-DiSC #03BIRD2016- UNIPD projects. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium) and to Dr. Giorgio Carraro (Department of Chemical Sciences, Padova University, Italy) for valuable support and experimental assistance. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:156245 Serial 5147  
Permanent link to this record
 

 
Author Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A.F.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B.; Feldmann, J.; Polavarapu, L. pdf  url
doi  openurl
  Title Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3(X = Cl, Br, I) nanorods Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 57 Pages 16094-16098  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Post-synthetic shape-transformation processes provide access to colloidal nanocrystal morphologies that are unattainable by direct synthetic routes. Herein, we report our finding about the ligand-induced fragmentation of CsPbBr3 perovskite nanowires (NWs) into low aspect-ratio CsPbX3 (X = Cl, Br and I) nanorods (NRs) during halide ion exchange reaction with PbX2-ligand solution. The shape transformation of NWs-to-NRs resulted in an increase of photoluminescence efficiency owing to a decrease of nonradiative decay rates. Importantly, we found that the perovskite NRs exhibit single photon emission as revealed by photon antibunching measurements, while it is not detected in parent NWs. This work not only reports on the quantum light emission of low aspect ratio perovskite NRs, but also expands our current understanding of shape-dependent optical properties of perovskite nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452235600024 Publication Date 2018-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 70 Open Access OpenAccess  
  Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T. and K.W.), by the Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement COMPASS No. 691185 and by LMU Munich's Institutional Strategy LMU excellent (L.P., J.F.). M.F., P.T. and B.L. acknowledge the financial support from the French National Agency for Research, the French Excellence Initiative (Idex Bordeaux, LAPHIA Program) and the Institut Universitaire de France. E.B. and S.B. acknowledge the financial support from the European Research Council Starting Grant # 335078-COLOURATOMS. L.P. thank the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:156246 Serial 5283  
Permanent link to this record
 

 
Author Abakumov, M.A.; Semkina, A.S.; Skorikov, A.S.; Vishnevskiy, D.A.; Ivanova, A.V.; Mironova, E.; Davydova, G.A.; Majouga, A.G.; Chekhonin, V.P. pdf  doi
openurl 
  Title Toxicity of iron oxide nanoparticles : size and coating effects Type A1 Journal article
  Year 2018 Publication Journal of biochemical and molecular toxicology Abbreviated Journal  
  Volume 32 Issue 12 Pages e22225  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Toxicological research of novel nanomaterials is a major developmental step of their clinical approval. Since iron oxide magnetic nanoparticles have a great potential in cancer treatment and diagnostics, the investigation of their toxic properties is very topical. In this paper we synthesized bovine serum albumin-coated iron oxide nanoparticles with different sizes and their polyethylene glycol derivative. To prove high biocompatibility of obtained nanoparticles the number of in vitro toxicological tests on human fibroblasts and U251 glioblastoma cells was performed. It was shown that albumin nanoparticles' coating provides a stable and biocompatible shell and prevents cytotoxicity of magnetite core. On long exposure times (48 hours), cytotoxicity of iron oxide nanoparticles takes place due to free radical production, but this toxic effect may be neutralized by using polyethylene glycol modification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452532300008 Publication Date 2018-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-6670 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156269 Serial 8684  
Permanent link to this record
 

 
Author Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A. url  doi
openurl 
  Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
  Year 2018 Publication Nanomaterials Abbreviated Journal  
  Volume 8 Issue 10 Pages 801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451174100057 Publication Date 2018-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156335 Serial 7842  
Permanent link to this record
 

 
Author Barreca, D.; Gri, F.; Gasparotto, A.; Carraro, G.; Bigiani, L.; Altantzis, T.; Žener, B.; Lavrenčič Štangar, U.; Alessi, B.; Padmanaban, D.B.; Mariotti, D.; Maccato, C. url  doi
openurl 
  Title Multi-functional MnO2nanomaterials for photo-activated applications by a plasma-assisted fabrication route Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue 1 Pages 98-108  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates by plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(II) diamine diketonate precursor. Growth experiments yielded -MnO2 nanosystems with hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation enabled also a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454327500037 Publication Date 2018-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 7 Open Access OpenAccess  
  Notes Padova University DOR 2016–2017, P-DiSC #03BIRD2016-UNIPD projects, HERALD Cost Action MP1402 – 37831 and ACTION post-doc fellowship are acknowledged for financial support. T.A. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO). Thanks are also due to Prof. Sara Bals (EMAT, University of Antwerp, Belgium), Prof. Romana Cerc Korošec and to Dr. Lev Matoh (University of Ljubljana, Slovenia), and to Prof. Elza Bontempi (Brescia University, Italy). The work was also supported by EPSRC (award EP/R008841/1, EP/M024938/1). Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156388 Serial 5148  
Permanent link to this record
 

 
Author Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Tendeloo, G.; Van Aert, S.; Bals, S. url  doi
openurl 
  Title Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment Type A1 Journal article
  Year 2019 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 19 Issue 19 Pages 477-481  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation−reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455561300061 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 82 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 335078 COLOURATOM to S.B. and Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M., and Q.X. and MUMMERING 765604 to S.B. and Q.X.). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, and G.0267.18N), postdoctoral grants to T.A. and A.D.B, and an FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship to Y.Z. (12U4917N). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (Grant MAT2017-86659-R). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. ecas_sara Realnano 815128; sygma Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @UA @ admin @ c:irua:156390 Serial 5150  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: