toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bafekry, A.; Karbasizadeh, S.; Stampfl, C.; Faraji, M.; Hoat, D.M.; Sarsari, I.A.; Feghhi, S.A.H.; Ghergherehchi, M. url  doi
openurl 
  Title Two-dimensional Janus semiconductor BiTeCl and BiTeBr monolayers : a first-principles study on their tunable electronic properties via an electric field and mechanical strain Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 28 Pages 15216-15223  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of highly crystalline ultrathin BiTeCl and BiTeBr layered sheets [Debarati Hajra et al., ACS Nano, 2020, 14, 15626], herein for the first time, we carry out a comprehensive study on the structural and electronic properties of BiTeCl and BiTeBr Janus monolayers using density functional theory (DFT) calculations. Different structural and electronic parameters including the lattice constant, bond lengths, layer thickness in the z-direction, different interatomic angles, work function, charge density difference, cohesive energy and Rashba coefficients are determined to acquire a deep understanding of these monolayers. The calculations show good stability of the studied single layers. BiTeCl and BiTeBr monolayers are semiconductors with electronic bandgaps of 0.83 and 0.80 eV, respectively. The results also show that the semiconductor-metal transformation can be induced by increasing the number of layers. In addition, the engineering of the electronic structure is also studied by applying an electric field, and mechanical uniaxial and biaxial strain. The results show a significant change of the bandgaps and that an indirect-direct band-gap transition can be induced. This study highlights the positive prospect for the application of BiTeCl and BiTeBr layered sheets in novel electronic and energy conversion systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670553900001 Publication Date 2021-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179827 Serial 7042  
Permanent link to this record
 

 
Author Baskurt, M.; Nair, R.R.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Ultra-thin structures of manganese fluorides : conversion from manganese dichalcogenides by fluorination Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 17 Pages 10218-10224  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, it is predicted by density functional theory calculations that graphene-like novel ultra-thin phases of manganese fluoride crystals, that have nonlayered structures in their bulk form, can be stabilized by fluorination of manganese dichalcogenide crystals. First, it is shown that substitution of fluorine atoms with chalcogens in the manganese dichalcogenide host lattice is favorable. Among possible crystal formations, three stable ultra-thin structures of manganese fluoride, 1H-MnF2, 1T-MnF2 and MnF3, are found to be stable by total energy optimization calculations. In addition, phonon calculations and Raman activity analysis reveal that predicted novel single-layers are dynamically stable crystal structures displaying distinctive characteristic peaks in their vibrational spectrum enabling experimental determination of the corresponding phases. Differing from 1H-MnF2 antiferromagnetic (AFM) large gap semiconductor, 1T-MnF2 and MnF3 single-layers are semiconductors with ferromagnetic (FM) ground state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000641719700001 Publication Date 2021-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:178252 Serial 7043  
Permanent link to this record
 

 
Author Sozen, Y.; Yagmurcukardes, M.; Sahin, H. doi  openurl
  Title Vibrational and optical identification of GeO₂ and GeO single layers : a first-principles study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 37 Pages 21307-21315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the present work, the identification of two hexagonal phases of germanium oxides (namely GeO2 and GeO) through the vibrational and optical properties is reported using density functional theory calculations. While structural optimizations show that single-layer GeO2 and GeO crystallize in 1T and buckled phases, phonon band dispersions reveal the dynamical stability of each structure. First-order off-resonant Raman spectral predictions demonstrate that each free-standing single-layer possesses characteristic peaks that are representative for the identification of the germanium oxide phase. On the other hand, electronic band dispersion analysis shows the insulating and large-gap semiconducting nature of single-layer GeO2 and GeO, respectively. Moreover, optical absorption, reflectance, and transmittance spectra obtained by means of G(0)W(0)-BSE calculations reveal the existence of tightly bound excitons in each phase, displaying strong optical absorption. Furthermore, the excitonic gaps are found to be at deep UV and visible portions of the spectrum, for GeO2 and GeO crystals, with energies of 6.24 and 3.10 eV, respectively. In addition, at the prominent excitonic resonances, single-layers display high reflectivity with a zero transmittance, which is another indication of the strong light-matter interaction inside the crystal medium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697364300001 Publication Date 2021-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:181571 Serial 7044  
Permanent link to this record
 

 
Author Shi, W.; Pandey, T.; Lindsay, L.; Woods, L.M. doi  openurl
  Title Vibrational properties and thermal transport in quaternary chalcogenides : the case of Te-based compositions Type A1 Journal article
  Year 2021 Publication Physical review materials Abbreviated Journal  
  Volume 5 Issue 4 Pages 045401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vibrational thermal properties of CuZn2InTe4, AgZn2InTe4, and Cu2CdSnTe4, derived from binary II-VI zinc-blendes, are reported based on first-principles calculations. While the chalcogenide atoms in these materials have the same lattice positions, the cation atom arrangements vary, resulting in different crystal symmetries and subsequent properties. The compositional differences have important effects on the vibrational thermal characteristics of the studied materials, which demonstrate that low-frequency optical phonons hybridize with acoustic phonons and lead to enhanced phonon-phonon scattering and low lattice thermal conductivities. The phonon density of states, mode Gruneisen parameters, and phonon scattering rates are also calculated, enabling deeper insight into the microscopic thermal conduction processes in these materials. Compositional variations drive differences among the three materials considered here; nonetheless, their structural similarities and generally low thermal conductivities (0.5-4 W/mK at room temperature) suggest that other similar II-VI zinc-blende derived materials will also exhibit similarly low values, as also corroborated by experimental data. This, combined with the versatility in designing a variety of motifs on the overall structure, makes quaternary chalcogenides interesting for thermal management and energy conversion applications that require low thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655931400005 Publication Date 2021-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179140 Serial 7045  
Permanent link to this record
 

 
Author Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Vale Magalhaes, D.; Bals, S.; Hens, Z. url  doi
openurl 
  Title Cyan emission in two-dimensional colloidal Cs2CdCl4:SB3+ Ruddlesden-Popper phase nanoplatelets Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 11 Pages 17729-17737  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden-Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of similar to 20%. The emission was attributed to the Sb3+-doping within the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000747115200053 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and they would like to thank Andrew Fitch for assistance in using beamline ID22 (proposal HC-4098). Z.H. and S.B acknowledge funding from the Research Foundation − Flanders (FWO-Vlaanderen under the SBO − PROCEED project (No: S0002019N). Z.H. acknowledges Ghent University for funding (BOF-GOA 01G01019). S.B. is grateful to the European Research Council (ERC Consolidator Grant 815128, REALNANO). F.L. thanks Emanuela Sartori and Stefano Toso for the fruitful discussions. M.S. would like to thank Olivier Janssens for collecting XRPD data and Gabriele Pippia for helpful insights and discussions. Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:186465 Serial 7059  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R. pdf  url
doi  openurl
  Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
  Year 2021 Publication Materials Characterization Abbreviated Journal Mater Charact  
  Volume 178 Issue Pages 111234  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752582700001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.714  
  Call Number UA @ admin @ c:irua:186509 Serial 7061  
Permanent link to this record
 

 
Author Li, W.; Tong, W.; Yadav, A.; Bladt, E.; Bals, S.; Funston, A.M.; Etheridge, J. pdf  doi
openurl 
  Title Shape control beyond the seeds in gold nanoparticles Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 23 Pages 9152-9164  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In typical seed-mediated syntheses of metal nanocrystals, the shape of the nanocrystal is determined largely by the seed nucleation environment and subsequent growth environment (where “environment” refers to the chemical environment, including the surfactant and additives). In this approach, crystallinity is typically determined by the seeds, and surfaces are controlled by the environment(s). However, surface energies, and crystallinity, are both influenced by the choice of environment(s). This limits the permutations of crystallinity and surface facets that can be mixed and matched to generate new nanocrystal morphologies. Here, we control post-seed growth to deliberately incorporate twin planes during the growth stage to deliver new final morphologies, including twinned cubes and bipyramids from single-crystal seeds. The nature and number of twin planes, together with surfactant control of facet growth, define the final nanoparticle morphology. Moreover, by breaking symmetry, the twin planes introduce new facet orientations. This additional mechanism opens new routes for the synthesis of different morphologies and facet orientations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753956100012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 3 Open Access Not_Open_Access  
  Notes This work was supported by the Australian Research Council (ARC) Grants DP160104679 and CE170100026 and used microscopes at the Monash Centre for Electron Microscopy funded by ARC Grants LE0454166, LE110100223, and LE140100104. W.L. thanks the support of the Australian Government Research Training Program (RTP) scholarship. W.T. thanks the Australian Department of Education and Monash University for the IPRS and APA scholarships. E.B. acknowledges financial support and a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors thank Dr. Matthew Weyland and Dr. Tim Peterson for helpful discussions. A.Y. thanks the support from Post Graduation Publication Award (PPA) scholarship from Monash University. Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:187229 Serial 7065  
Permanent link to this record
 

 
Author Canossa, S.; Ferrari, E.; Sippel, P.; Fischer, J.K.H.; Pfattner, R.; Frison, R.; Masino, M.; Mas-Torrent, M.; Lunkenheimer, P.; Rovira, C.; Girlando, A. pdf  doi
openurl 
  Title Tetramethylbenzidine-TetrafluoroTCNQ (TMB-TCNQF(4)) : a narrow-gap semiconducting salt with room-temperature relaxor ferroelectric behavior Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 46 Pages 25816-25824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present an extension and revision of the spectroscopic and structural data of the mixed-stack charge-transfer (CT) crystal 3,3 ',5,5 '-tetramethylbenzidine-tetrafluorotetracyano-quinodimethane (TMB-TCNQF4), associated with new electric and dielectric measurements. Refinement of synchrotron structural data at low temperature has led to revise the previously reported C2/m structure. The revised structure is P2(1)/m, with two dimerized stacks per unit cell, and is consistent with the low temperature vibrational data. However, polarized Raman data in the low-frequency region also indicate that by increasing temperature above 200 K, the structure presents an increasing degree of disorder, mainly along the stack axis. X-ray diffraction data at room temperature have confirmed that the correct structure is P2(1)/ m -no phase transitions -but did not allow substantiating the presence of disorder. On the other hand, dielectric measurements have evidenced a typical relaxor ferroelectric behavior already at room temperature, with a peak in the real part of dielectric constant epsilon'(T,v) around 200 K and 0.1 Hz. The relaxor behavior is explained in terms of the presence of spin solitons separating domains of opposite polarity that yield to ferroelectric nanodomains. TMB-TCNQF(4) is confirmed to be a narrow-gap band semiconductor (Ea similar to 0.3 eV) with a room-temperature conductivity of similar to 10(-4) Omega(-1) cm(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000731170500008 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access Not_Open_Access  
  Notes A.G. thanks Prof. Pascale Foury-Leylekian for very helpful discussions about the crystallographic issues. R.F. thanks Prof. Anthony Linden for his help in the X-ray diffraction data collection. J.K.H.F. and P.L. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Center TRR80 (Augsburg, Munich). R.P. and M.M.-T. acknowledge support from the Marie Curie Cofund, Beatriu de Pinós Fellowships (Grant nos. AGAUR 2017 BP 00064). This work was also supported by the Spanish Ministry project GENESIS PID2019-111682RBI00, the “Severo Ochoa” Programme for Centers of Excellence in R&D (FUNFUTURE, CEX2019-000917-S), and the Generalitat de Catalunya (2017-SGR-918). The Elettra Synchrotron (CNR Trieste) is acknowledged for granting the beamtime at the single-crystal diffraction beamline XRD1 (Proposal ID 20185483). In Parma, the work has benefited from the equipment and support of the COMP-HUB Initiative, funded by the “Departments of Excellence” program of the Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:184866 Serial 7066  
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 1989-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000815310500001 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.457 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.457  
  Call Number UA @ admin @ c:irua:189468 Serial 7080  
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeek, J.; Pennycook, T.; Van Aert, S. pdf  url
doi  openurl
  Title Phase retrieval from 4-dimensional electron diffraction datasets Type P1 Proceeding
  Year 2021 Publication Proceedings T2 – IEEE International Conference on Image Processing (ICIP), SEP 19-22, 2021, Electr. network Abbreviated Journal  
  Volume Issue Pages 3453-3457  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present a computational imaging mode for large scale electron microscopy data, which retrieves a complex wave from noisy/sparse intensity recordings using a deep learning approach and subsequently reconstructs an image of the specimen from the Convolutional Neural Network (CNN) predicted exit waves. We demonstrate that an appropriate forward model in combination with open data frameworks can be used to generate large synthetic datasets for training. In combination with augmenting the data with Poisson noise corresponding to varying dose-values, we effectively eliminate overfitting issues. The U-NET[1] based architecture of the CNN is adapted to the task at hand and performs well while maintaining a relatively small size and fast performance. The validity of the approach is confirmed by comparing the reconstruction to well-established methods using simulated, as well as real electron microscopy data. The proposed method is shown to be effective particularly in the low dose range, evident by strong suppression of noise, good spatial resolution, and sensitivity to different atom types, enabling the simultaneous visualisation of light and heavy elements and making different atomic species distinguishable. Since the method acts on a very local scale and is comparatively fast it bears the potential to be used for near-real-time reconstruction during data acquisition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819455103114 Publication Date 2021-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 978-1-6654-4115-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189462 Serial 7089  
Permanent link to this record
 

 
Author Balashova, I.O.; Tolbin, A.Y.; Tarakanov, P.A.; Krot, A.R.; Fedorova, K., V; Sergeeva, I.A.; Trashin, S.A.; De Wael, K.; Pushkarev, V.E.; Koifman, M.O.; Ponomarev, G., V. url  doi
openurl 
  Title A covalently linked dyad based on zinc phthalocyanine and methylpheophorbide α : synthetic and physicochemical study Type A1 Journal article
  Year 2021 Publication Macroheterocycles Abbreviated Journal  
  Volume 14 Issue 1 Pages 40-50  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The first covalently linked conjugate of metal phthalocyaninate and chlorin e(6) derivative has been obtained by transesterification of alpha-ketomethyl ester in methylpheophorbide a with zinc(II) 2-(2-hydroxymethylbenzyloxy)-9(10),16(17),23(24)-tri-tert-butylphthalocyaninate under mild conditions. The dyad exhibits a panchromatic nature revealing both the phthalocyanine and pheophorbide derived bands in the UV-Vis absorption spectrum. The H-1 NMR spectroscopy data combined with theoretical calculations indicate the presence of spatial intramolecular interactions between the phthalocyanine, pheophorbide and spacer fragments of the dyad allowing to forecast its enhanced nonlinear optical properties, as well as the characteristic energy transfer from the excited pheophorbide subunit to the phthalocyanine core. Indeed, when excited in the UV-Vis range, the conjugate shows red fluorescence with the spectral maximum at 686 nm, which is close to the one of the initial zinc phthalocyaninate. Furthermore, the dyad effectively generates singlet oxygen and, in the presence of polyvinylpyrrolidone (PVP) as biocompatible solubilizer, forms stable micellar saline solutions with the particles ranged in size between 40 and 100 nm. These nanoparticles represent promising third-generation photosensitizing systems for application in theranostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659682000003 Publication Date 2021-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179196 Serial 7386  
Permanent link to this record
 

 
Author Bollen, E.; Pagan, B.R.; Kuijpers, B.; Van Hoey, S.; Desmet, N.; Hendrix, R.; Dams, J.; Seuntjens, P. url  doi
openurl 
  Title A database system for querying of river networks : facilitating monitoring and prediction applications Type A1 Journal article
  Year 2021 Publication Water Science And Technology-Water Supply Abbreviated Journal Water Sci Tech-W Sup  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing availability of real-time in situ measurements and remote sensing observations have the potential to contribute to the optimization of water resources management. Global challenges such as climate change, intensive agriculture and urbanization put a high pressure on our water resources. Due to recent innovations in measuring both water quantity and quality, river systems can now be monitored in real time at an unprecedented spatial and temporal scale. To interpret the sensor measurements and remote sensing observations additional data for example on: the location of the measurement, upstream and downstream catchment characteristics, horizontal ellipsis are required. In this paper, we present a data management system to support flow-path related functionality for decision making and prediction modelling. Adding meta data sets and facilitating (near) real-time processing of sensor data questions are key concepts for the systems. The potential of the database framework for hydrological applications is demonstrated using different applications for the river system of Flanders. In one, the database framework is used to simulate the daily discharge for each segment within a catchment using a simple data-driven approach. The presented system is useful for numerous applications including pollution tracking, alerting and inter-sensor validation in river systems, or related networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000729755100001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1606-9749 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.573 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.573  
  Call Number UA @ admin @ c:irua:184814 Serial 7387  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Perreault, P.; Lenaerts, S. pdf  doi
openurl 
  Title A new generalized empirical correlation for predicting methane hydrate equilibrium conditions in pure water Type A1 Journal article
  Year 2021 Publication Industrial & Engineering Chemistry Research Abbreviated Journal Ind Eng Chem Res  
  Volume 60 Issue 8 Pages 3474-3483  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This work contributes to a new generalized empirical correlation for predicting methane (CH4) hydrate equilibrium conditions in pure water. Unlike the conventional thermodynamic approach that involves complex reckoning, the proposed empirical equation is developed by regressing 215 experimental data points from the literature and validating with 45 data points for predicting methane hydrate equilibrium conditions in pure water. The new correlation is proposed for a temperature and pressure range of 273.2–303.48 K and 2.63–72.26 MPa, respectively. The accuracy and performance of the proposed correlation is quantitatively evaluated using statistical error analysis. The proposed correlation was able to estimate CH4 hydrate equilibrium conditions satisfactorily with an R2 of 0.99987. The overall error analysis for the proposed correlation shows fair agreement with the experimental data reported within the literature. Concurrently, the new correlation showed better performance in predicting equilibrium conditions compared to those calculated by other empirical correlations available in the literature within the investigated range. In addition, the proposed empirical equation is also checked to evaluate its efficacy in fitting each set of experimental binary/ternary methane hydrates (BTMH) and binary hydrogen hydrates (BHH) for an accurate representation of equilibrium data over a wide range of composition, pressure, and temperature conditions. A maximum percentage deviation of 0.58% and 0.24% was observed between experimental and calculated equilibrium conditions for BTMH and BHH, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626326200017 Publication Date 2021-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:175862 Serial 7394  
Permanent link to this record
 

 
Author Winterstetter, A.; Grodent, M.; Kini, V.; Ragaert, K.; Vrancken, K.C.M. url  doi
openurl 
  Title A review of technological solutions to prevent or reduce marine plastic litter in developing countries Type A1 Journal article
  Year 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 13 Issue 9 Pages 4894  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Growing global plastic production combined with poor waste collection has led to increasing amounts of plastic debris being found in oceans, rivers and on shores. The goal of this study is to provide an overview on currently available technological solutions to tackle marine plastic litter and to assess their potential use in developing countries. To compile an inventory of technological solutions, a dedicated online platform was developed. A total of 51 out of initially 75 submitted solutions along the plastics value chain were assessed by independent experts. Collection systems represent more than half of the shortlisted solutions. A quarter include processing and treatment technologies, either as a stand-alone solution (30%) or, more commonly, in combination with a first litter capturing step. Ten percent offer digital solutions. The rest focuses on integrated waste management solutions. For each stage in the source-to-sea spectrum-land, rivers, sea-two illustrative examples are described in detail. This study concludes that the most cost-effective type of solution tackles land-based sources of marine litter and combines technology with people-oriented practices, runs on own energy sources, connects throughout the plastics value chain with a convincing valorization plan for captured debris, and involves all relevant stakeholders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650920900001 Publication Date 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.789 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.789  
  Call Number UA @ admin @ c:irua:178368 Serial 7396  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Ab initio modeling of few-layer dilute magnetic semiconductors Type P1 Proceeding
  Year 2021 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2021, Dallas, TX Abbreviated Journal  
  Volume Issue Pages 141-145  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present a computational model to model the magnetic structure of two-dimensional (2D) dilute-magnetic-semiconductors (DMS) both the monolayers and multilayers using first-principles density functional theory (DFT), as well as their magnetic phase transition as a function of temperature using Monte-Carlo simulations. Using our method, we model the magnetic structure of bulk, bilayer, and monolayer MoS2 substitutionally doped with Fe atoms. We find that the out-of-plane interaction in bilayer MoS2 is weakly ferromagnetic, whereas in bulk MoS2 it is strongly anti-ferromagnetic. Finally, we show that the magnetic order is more robust in bilayer Fe-doped MoS2 compared to the monolayer and results in a room-temperature FM at an atomic substitution of 14-16%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000766985400034 Publication Date 2021-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 978-1-6654-0685-7 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:187291 Serial 7401  
Permanent link to this record
 

 
Author Gerrits, N. url  doi
openurl 
  Title Accurate simulations of the reaction of H₂ on a curved Pt crystal through machine learning Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 12 Issue 51 Pages 12157-12164  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Theoretical studies on molecule-metal surface reactions have so far been limited to small surface unit cells due to computational costs. Here, for the first time molecular dynamics simulations on very large surface unit cells at the level of density functional theory are performed, allowing a direct comparison to experiments performed on a curved crystal. Specifically, the reaction of D-2 on a curved Pt crystal is investigated with a neural network potential (NNP). The developed NNP is also accurate for surface unit cells considerably larger than those that have been included in the training data, allowing dynamical simulations on very large surface unit cells that otherwise would have been intractable. Important and complex aspects of the reaction mechanism are discovered such as diffusion and a shadow effect of the step. Furthermore, conclusions from simulations on smaller surface unit cells cannot always be transfered to larger surface unit cells, limiting the applicability of theoretical studies of smaller surface unit cells to heterogeneous catalysts with small defect densities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000734045900001 Publication Date 2021-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:184717 Serial 7413  
Permanent link to this record
 

 
Author Scolfaro, D.; Finamor, M.; Trinchao, L.O.; Rosa, B.L.T.; Chaves, A.; Santos, P., V.; Iikawa, F.; Couto, O.D.D., Jr. url  doi
openurl 
  Title Acoustically driven stark effect in transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 9 Pages 15371-15380  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 x 10(-5) meV/(kV/cm)(2), respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703553600129 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:182545 Serial 7415  
Permanent link to this record
 

 
Author Legrand, S. url  openurl
  Title Advanced chemical imaging of artworks Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 315 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Last century the field of heritage sciences expanded beyond imagination. The inventions of X-ray radiography and infrared reflectography allowed experts to investigate paintings below the surface as well. More recent developments led to the advent of the field of hyperspectral imaging, to which the advanced chemical imaging methods, used in this thesis work, belong. These techniques not only allow to identify the components present in artworks, but also to visualize their distribution over these objects. The resulting distribution maps permit a broader public to interpret the scientific data and to relate these results with the artwork itself. During this thesis work a range of flat artworks were investigated in a non-destructive manner using mainly two macroscopic imaging techniques: macroscopic X-ray fluorescence scanning and macroscopic Fourier transformed mid-infrared scanning in reflectance mode. The resulting images were sometimes supplemented with microscopic techniques on a minute selection of samples to fully understand the layer build-up, composition and distribution of these materials over the stratigraphy. Illuminated manuscripts pushed the interpretation of the macroscopic imaging techniques: due to the impossibility of sampling, all answers had to be obtained non-destructively. Documenting masterpieces such as the Ghent Altarpiece by means of chemical imaging techniques, helped the restoration team, assisted by the international commission to make the daring decision of manually removing the non-original paint layers. Scanning stained-glass windows allowed experts to document the panels, create situation reports, identify later infills and guide the restoration process in a more efficient manner. By initially applying non-destructive imaging techniques, many of the research/conservation questions could already be answered. Based on the resulting distribution maps, only a very limited amount of sampling was required to obtain a representative set to answer the remaining questions. In most cases the combination of multiple methods was necessary to fully understand the situation. A similar trend could be seen in the research field: the collaboration between divergent disciples was often required in order to explain all observations. In order to completely break through, the scanning speed of these techniques has to increase even more in order to cover an acceptable surface in one workday. Parallel with the operational speed, the (basic) data treatment should also be streamlined more in order to allow a broader user group to access the results. Once these two improvements are carried out, these techniques become accessible to a larger public.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176342 Serial 7420  
Permanent link to this record
 

 
Author Firmansyah, I.; Carsjens, G.J.; de Ruijter, F.J.; Zeeman, G.; Spiller, M. url  doi
openurl 
  Title An integrated assessment of environmental, economic, social and technological parameters of source separated and conventional sanitation concepts : a contribution to sustainability analysis Type A1 Journal article
  Year 2021 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 295 Issue Pages 113131  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery and reuse from domestic wastewater has become an important subject for the current development of sanitation technologies and infrastructures. Different technologies are available and combined into sanitation concepts, with different performances. This study provides a methodological approach to evaluate the sustainability of these sanitation concepts with focus on resource recovery and reuse. St. Eustatius, a small tropical island in the Caribbean, was used as a case study for the evaluation. Three source separation-communityon-site and two combined sewerage island-scale concepts were selected and compared in terms of environmental (net energy use, nutrient recovery/reuse, BOD/COD, pathogens, and GHG emission, land use), economic (CAPEX and OPEX), social cultural (acceptance, required competences and education), and technological (flexibility/ adaptability, reliability/continuity of service) indicators. The best performing concept, is the application of Upflow Anaerobic Sludge Bed (UASB) and Trickling Filter (TF) at island level for combined domestic wastewater treatment with subsequent reuse in agriculture. Its overall average normalised score across the four categories (i. e., average of average per category) is about 15% (0.85) higher than the values of the remaining systems and with a score of 0.73 (conventional activated sludge – centralised level), 0.77 (UASB-septic tank (ST)), 0.76 (UASB-TF – community level), and 0.75 (ST – household level). The higher score of the UASB-TF at community level is mainly due to much better performance in the environmental and economic categories. In conclusion, the case study provides a methodological approach that can support urban planning and decision-making in selecting more sustainable sanitation concepts, allowing resource recovery and reuse in small island context or in other contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000681105800003 Publication Date 2021-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.01 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.01  
  Call Number UA @ admin @ c:irua:180488 Serial 7437  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Analytical techniques for the detection of amphetamine-type substances in different matrices : a comprehensive review Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 145 Issue Pages 116447  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This current review focuses on contributions to amphetamine-type substances (ATS) analysis. This type of synthetic illicit drugs has been increasingly present worldwide reaching 5% of the market on illicit drugs in 2019. The increment of their production in many clandestine laboratories and easy distribution among society are two of the main concerns towards the battle against synthetic drugs. Therefore, the first part of this review details the classification and mechanism of action of ATS in the human body. Second, the pharmacological and toxicological effects of ATS on human health are described to motivate the need of early detection of ATS. Subsequently, the most used laboratory-based and portable methods are presented and critically discussed along the review. Finally, a careful discussion on the advantages and disadvantages of portable techniques employed on the field are addressed as potential tools for on-site ATS detection by law enforcement officers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723747000009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:183268 Serial 7460  
Permanent link to this record
 

 
Author Lauriks, T.; Longo, R.; Baetens, D.; Derudi, M.; Parente, A.; Bellemans, A.; van Beeck, J.; Denys, S. pdf  url
doi  openurl
  Title Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street Type A1 Journal article
  Year 2021 Publication Atmospheric Environment Abbreviated Journal Atmos Environ  
  Volume 246 Issue Pages 118127  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The correct prediction of air pollutants dispersed in urban areas is of paramount importance to safety, public health and a sustainable environment. Vehicular traffic is one of the main sources of nitrogen oxides (NO ) and particulate matter (PM), strongly related to human morbidity and mortality. In this study, the pollutant level and distribution in a section of one of the main road arteries of Antwerp (Belgium, Europe) are analyzed. The assessment is performed through computational fluid dynamics (CFD), acknowledged as a powerful tool to predict and study dispersion phenomena in complex atmospheric environments. The two main traffic lanes are modeled as emitting sources and the surrounding area is explicitly depicted. A Reynolds-averaged Navier–Stokes (RANS) approach specific for Atmospheric Boundary Layer (ABL) simulations is employed. After a validation on a wind tunnel urban canyon test case, the dispersion within the canopy of two relevant urban pollutants, nitrogen dioxide (NO) and particulate matter with an aerodynamic diameter smaller than 10 m (PM10), is studied. An experimental field campaign led to the availability of wind velocity and direction data, as well as PM10 concentrations in some key locations within the urban canyon. To accurately predict the concentration field, a relevant dispersion parameter, the turbulent Schmidt number, , is prescribed as a locally variable quantity. The pollutant distributions in the area of interest – exhibiting strong heterogeneity – are finally demonstrated, considering one of the most frequent and concerning wind directions. Possible local remedial measures are conceptualized, investigated and implemented and their outcomes are directly compared. A major goal is, by realistically reproducing the district of interest, to identify the locations inside this intricate urban canyon where the pollutants are stagnating and to analyze which solution acts as best mitigation measure. It is demonstrated that removal by electrostatic precipitation (ESP), an active measure, and by enhancing the dilution process through wind catchers, a passive measure, are effective for local pollutant removal in a realistic urban canyon. It is also demonstrated that the applied ABL methodology resolves some well known problems in ABL dispersion modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613550100003 Publication Date 2020-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.629 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.629  
  Call Number UA @ admin @ c:irua:173917 Serial 7477  
Permanent link to this record
 

 
Author Daems, E.; Dewaele, D.; Barylyuk, K.; De Wael, K.; Sobott, F. pdf  url
doi  openurl
  Title Aptamer-ligand recognition studied by native ion mobility-mass spectrometry Type A1 Journal article
  Year 2021 Publication Talanta Abbreviated Journal Talanta  
  Volume 224 Issue Pages 121917  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The range of applications for aptamers, small oligonucleotide-based receptors binding to their targets with high specificity and affinity, has been steadily expanding. Our understanding of the mechanisms governing aptamer-ligand recognition and binding is however lagging, stymieing the progress in the rational design of new aptamers and optimization of the known ones. Here we demonstrate the capabilities and limitations of native ion mobility-mass spectrometry for the analysis of their higher-order structure and non-covalent interactions. A set of related cocaine-binding aptamers, displaying a range of folding properties and ligand binding affinities, was used as a case study in both positive and negative electrospray ionization modes. Using carefully controlled experimental conditions, we probed their conformational behavior and interactions with the high-affinity ligand quinine as a surrogate for cocaine. The ratios of bound and unbound aptamers in the mass spectra were used to rank them according to their apparent quinine-binding affinity, qualitatively matching the published ranking order. The arrival time differences between the free aptamer and aptamer-quinine complexes were consistent with a small ligand-induced conformational change, and found to inversely correlate with the affinity of binding. This mass spectrometry-based approach provides a fast and convenient way to study the molecular basis of aptamer-ligand recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000600787800122 Publication Date 2020-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.162  
  Call Number UA @ admin @ c:irua:174086 Serial 7490  
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C. pdf  doi
openurl 
  Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 376 Issue Pages 137994  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761900003 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:177677 Serial 7491  
Permanent link to this record
 

 
Author Zhang, T.; Schilling, W.; Khan, S.U.; Ching, H.Y.V.; Lu, C.; Chen, J.; Jaworski, A.; Barcaro, G.; Monti, S.; De Wael, K.; Slabon, A.; Das, S. pdf  doi
openurl 
  Title Atomic-level understanding for the enhanced generation of hydrogen peroxide by the introduction of an aryl amino group in polymeric carbon nitrides Type A1 Journal article
  Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 11 Issue 22 Pages 14087-14101  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Heterogeneous catalysts are often & ldquo;black boxes & rdquo; due to the insufficient understanding of the detailed mechanisms at the catalytic sites. An atomic-level elucidation of the processes taking place in those regions is, thus, mandatory to produce robust and selective heterogeneous catalysts. We have improved the description of the whole reactive scenario for polymeric carbon nitrides (PCN) by combining atomic-level characterizations with magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, classical reactive molecular dynamics (RMD) simulations, and quantum chemistry (QC) calculations. We disclose the structure & minus;property relationships of an ad hoc modified PCN by inserting an aryl amino group that turned out to be very efficient for the production of H2O2. The main advancement of this work is the development of a difluoromethylene-substituted aryl amino PCN to generate H2O2 at a rate of 2.0 mM & middot;h & minus;1 under the irradiation of household blue LEDs and the identification of possible active catalytic sites with the aid of 15N and 19F MAS solid-state NMR without using any expensive labeling reagent. RMD simulations and QC calculations confirm and further extend the experimental descriptions by revealing the role and locations of the identified functionalities, namely, NH linkers, & minus;NH2 terminal groups, and difluoromethylene units, reactants, and products. <comment>Superscript/Subscript Available</comment  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000758012900020 Publication Date 2021-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.614  
  Call Number UA @ admin @ c:irua:187276 Serial 7534  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages 6501-6514  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Nunez Manzano, M.; Gonzalez Quiroga, A.; Perreault, P.; Madanikashani, S.; Vandewalle, L.A.; Marin, G.B.; Heynderickx, G.J.; Van Geem, K.M. pdf  url
doi  openurl
  Title Biomass fast pyrolysis in an innovative gas-solid vortex reactor : experimental proof of concept Type A1 Journal article
  Year 2021 Publication Journal Of Analytical And Applied Pyrolysis Abbreviated Journal J Anal Appl Pyrol  
  Volume 156 Issue Pages 105165-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Biomass fast pyrolysis has been considered one of the best alternatives for the thermal conversion of biomass into bio-oil. This work introduces a new reactor technology for biomass fast pyrolysis, the Gas-Solid Vortex Reactor (GSVR), to obtain high bio-oil yields. The GSVR was designed to decrease the residence time of the pyrolysis vapors; thus, the secondary cracking reactions are reduced, to enhance the segregation of the char and the unreacted biomass and to improve the heat transfer rate. Biomass fast pyrolysis experiments have been carried out for the first time in a Gas-Solid Vortex Reactor (GSVR) at 773 K, using softwood (pine) and hardwood (poplar) as feedstock. Char yields as low as 10 wt. % in the GSVR were comparable to those reported for the same feedstocks processed in conventional fluidized bed reactors. The yields of non-condensable gases in the range of 15–17 wt. % were significantly lower than those reported for other commonly used biomass fast pyrolysis reactors. Two-dimensional gas chromatography (GC × GC) revealed noticeable differences at the molecular level between the bio-oils from the GSVR and bio-oils from other reactors. The aromatics in the pine bio-oil consist almost entirely (85 wt. %) of guaiacols. For poplar bio-oils no predominant group of aromatics was found, but phenolics, syringols, and catechols were the most pronounced. The experimental results highlight the advantages of the GSVR for biomass pyrolysis, reaching stable operation in around 60 s, removing the formed char selectively during operation, and enabling fast entrainment of pyrolysis vapors. Results indicate a great potential for increasing yield and selectivity towards guaiacols in softwood (e.g., pine) bio-oil. Likewise, decreasing pyrolysis temperature could increase the yield of guaiacols and syringols in hardwood (e.g., poplar) bio-oil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663091200002 Publication Date 2021-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0165-2370 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.471 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.471  
  Call Number UA @ admin @ c:irua:178743 Serial 7562  
Permanent link to this record
 

 
Author Xie, Y. url  openurl
  Title Bioreactor strategies for sustainable nitrogen cycling based on mineralization/nitrification, partial nitritation/anammox or sulfur-based denitratation Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages iv, 205 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the biogeochemical flows on Earth, the reactive nitrogen (Nr) level has three times surpassed the safe boundary. The severe transgression of this boundary goes against sustainable planetary development. The modern food production process excessively relies on synthetic Nr fertilizers from the Haber– Bosch process. However, the massive loss of valuable nitrogen resources (i.e., 78-89%) from agriculture has been causing severe nitrogen cascade. Besides, the domestic wastewater in some local areas is discharged without proper treatment, making it a nonnegligible source of Nr pollution for local water bodies. Anthropogenic activities keep pumping out Nr pollution via point-source and non-point-source (NPS) emissions. Compared to the NPS emissions, point sources give visible and identified waste streams. It is vital to intervene the nitrogen cascade from point sources and facilitate humanity back to the safe Nr boundary. The collected and collectible Nr streams from food production, waste management, and recycling secondary raw materials can be used as waste-based fertilizers for agricultural cultivation. Besides the well-investigated recovery of inorganic Nr, organic Nr accounts for a massive Nr proportion on the Earth. Proper handling and treatment make these useful organic fertilizers for soil-based cultivation. However, these organic Nr fertilizers cannot directly apply to fertigation or hydroponic cultivation systems, and further biological conversion via nitrogen mineralization and nitrification to nitrate is essential. Besides the direct Nr cycling, the indirect Nr cycling ‘over the atmosphere’ should also be considered. In this way, the nitrogen cycle can be completed via converting the waste Nr back to nitrogen gas (i.e., Nr removal) and then synthesizing into Nr again. The municipal wastewater treatment plants receive a vast amount of low-strength Nr wastewater (mainly as ammonium) daily. Compared to the conventional nitrification/denitrification process, partial nitritation/anammox (PN/A) is considered a resource- and cost-effective technology for wastewater with a low COD/N ratio. Moreover, the novel autotrophic denitratation/anammox process could be a good Nr removal process for wastewater containing both ammonium and nitrate. This Ph.D. thesis aimed to develop Nr recovery, conversion, and removal bioreactor strategies for different types of waste streams and biomass. Nr recovery was investigated on high-strength Nr waste streams for fertigation or hydroponic applications in Chapters 2 and 3. On the other hand, Nr removal was studied on the medium- to low-strength Nr waste streams in Chapters 4 and 5. In Chapter 2, a novel mineralization and nitrification system was proposed, producing nutrient solutions from solid organic fertilizers for hydroponic systems. Batch tests showed that aerobic incubation at 35°C could realize the NO₃⁻-N production efficiency above 90% from a novel microbial fertilizer. Subsequently, in the stirred tank bioreactor test, NO₃⁻-N production efficiency stabilized in a range of 44-51% under the influent loading rate of 400 mg TN L⁻¹ d⁻¹ at a 5-day HRT. Using Ca(OH)₂ and Mg(OH)₂ as pH control reagents generated the nutrient solutions with different P, Ca, and Mg nutrient levels. After modeling the nutrient balancing process, the proportion of organic-sourced NO₃⁻-N in the Hoagland nutrient solution (HNS) of Ca(OH)₂ scenario was 92.7%, while only 37.4% in the Mg(OH)₂ scenario. Compared to commercial scenarios, the total costs of the organic-sourced HNS can be cost-competitive for hydroponic cultivation. In Chapter 3, the Nr recovery as nitrate (NO₃⁻-N) from diluted human urine (around 670 mg N L⁻¹) was explored in a trickling filter (TF) for the first time. A novel concept of in-situ integrating the TF system into hydroponic systems was proposed as meaningful progress towards sustainable agriculture. The difference between synthetic and real urine in nitrification efficiency was found to be negligible. The full nitrification of alkalinized real urine was realized in the pH-controlled TF by calcium hydroxide (Ca(OH)₂) at around pH 6. The TF could handle different urine collection batches and maintain relatively stable nitrification performance, with NO₃⁻-N production efficiency and rate of 88±3% and 136±4 mg N L⁻¹ d⁻¹, respectively. The optimal HLR to realize this nitrification performance was 2 m³ m⁻² h⁻¹, with energy consumption of 1.8 kWh electricity kg⁻¹ NO₃⁻-N production. Ca(OH)₂, as a cheap base, its triple advantages on urine alkalinization, full nitrification, and macronutrient supplementation were successfully demonstrated in our proposed concept. In Chapter 4, towards more sustainable wastewater treatment, the feasibility of one-stage partial nitritation/anammox (PN/A) was investigated in three parallel packed-bed trickling filters (TFs), with three types of carrier materials of different specific surface areas. Synthetic wastewater containing 100-250 mg NH₄⁺-N L⁻¹ was tested to mimic medium-strength household waste streams after carbon removal. Interestingly, the cheap carrier based on expanded clay achieved similar rates as commercially used plastic carrier materials. The top passive ventilation combined with an optimum hydraulic loading rate of 1.8 m³ m⁻² h⁻¹ could reach approximately 60% total nitrogen (TN) removal at a rate of 300 mg N L⁻¹ d⁻¹. A relatively low NO₃⁻-N production (13%) via PN/A was achieved in TFs. Most of the TN removal took place in the top compartment, where anammox activity was the highest. Energy consumption estimation (0.78 kWh electricity g⁻¹ N removed) suggested that the proposed process could be a suitable low-cost alternative for nitrogen removal. In Chapter 5, coupling sulfur-driven denitratation (SDN) with anammox was proposed to treat the wastewater containing both NO₃⁻-N and NH₄⁺-N, like the secondary effluents of mainstream PN/A processes. To explore the feasibility of sufficient and stable NO₂⁻-N accumulation via SDN in the long term, the effects of pH setpoints, residual NO₃⁻-N level, and biomass-specific NO₃⁻-N loading rate (BSNLR) were investigated. Alternating the pH setpoints between 7.0 and 8.5 could temporarily stimulate the NO₂⁻-N accumulation. Both the residual NO₃⁻-N and BSNLR showed highly positive correlations with the NO₂⁻-N accumulation efficiency. Under the control of pH 8.5, 1.0±0.8 mg NO₃⁻-N L⁻¹ and 150±42 mg NO₃⁻-N g⁻¹ VSS d⁻¹, SDN could produce 6.4±1.0 mg NO₂⁻-N L⁻¹ in the short term. Thiobacillus members may play a crucial role in managing the NO₂⁻-N accumulation, but the reduction of abundance and possible adaptation significantly impaired the efficacy of control strategies in the long run. Overall, novel technologies have been proposed to sustainably convert Nr in waste streams and biomass. The decision for Nr recovery versus removal and synthesis should be based on specific cases with the best environmental, economic, and human-health sustainability. In the future, the Nr management concepts should be further improved to make the nitrogen cycle more sustainable with higher resource use efficiency and less Nr emissions to the environment. Although the thesis is mainly focused on limited types of Nr waste streams, it pointed out the direction of sustainable Nr management and could facilitate the Nr back to the safe boundary in the long run.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182099 Serial 7563  
Permanent link to this record
 

 
Author Lee, Y.; Forte, J.D.'arf S.; Chaves, A.; Kumar, A.; Tran, T.T.; Kim, Y.; Roy, S.; Taniguchi, T.; Watanabe, K.; Chernikov, A.; Jang, J.I.; Low, T.; Kim, J. url  doi
openurl 
  Title Boosting quantum yields in two-dimensional semiconductors via proximal metal plates Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 7095  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The short exciton lifetime and strong exciton-exciton interaction in transition metal dichalcogenides limit the efficiency of exciton emission. Here, the authors show that exciton-exciton interaction in monolayer WS2 can be screened using proximal metal plates, leading to an improved quantum yield. Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, induced dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed within the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A theoretical model accounting for the screening of the dipole-dipole interaction is in a good agreement with the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728559600014 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:184870 Serial 7566  
Permanent link to this record
 

 
Author Shi, P.; Yu, K.; Niinemets, Ü.; Gielis, J. url  doi
openurl 
  Title Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae) Type A1 Journal article
  Year 2021 Publication Forests Abbreviated Journal Forests  
  Volume 12 Issue 1 Pages 41  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000611074700001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.951 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.951  
  Call Number UA @ admin @ c:irua:174473 Serial 7572  
Permanent link to this record
 

 
Author Fuoco, T.; Cuartero, M.; Parrilla, M.; García-Guzmán, J.J.; Crespo, G.A.; Finne-Wistrand, A. url  doi
openurl 
  Title Capturing the real-time hydrolytic degradation of a library of biomedical polymers by combining traditional assessment and electrochemical sensors Type A1 Journal article
  Year 2021 Publication Biomacromolecules Abbreviated Journal Biomacromolecules  
  Volume 22 Issue 2 Pages 949-960  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens’ resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material’s evaluation aiming at reducing animal tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1525-7797 ISBN Additional Links UA library record  
  Impact Factor 5.246 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.246  
  Call Number UA @ admin @ c:irua:175296 Serial 7575  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: