toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vandekerckhove, T.G.L.; Props, R.; Carvajal-Arroyo, J.M.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Adaptation and characterization of thermophilic anammox in bioreactors Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 172 Issue Pages 115462  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Anammox, the oxidation of ammonium with nitrite, is a key microbial process in the nitrogen cycle. Under mesophilic conditions (below 40 °C), it is widely implemented to remove nitrogen from wastewaters lacking organic carbon. Despite evidence of the presence of anammox bacteria in high-temperature environments, reports on the cultivation of thermophilic anammox bacteria are limited to a short-term experiment of 2 weeks. This study showcases the adaptation of a mesophilic inoculum to thermophilic conditions, and its characterization. First, an attached growth technology was chosen to obtain the process. In an anoxic fixed-bed biofilm bioreactor (FBBR), a slow linear temperature increase from 38 to over 48 °C (0.05–0.07 °C d−1) was imposed to the community over 220 days, after which the reactor was operated at 48 °C for over 200 days. Maximum total nitrogen removal rates reached up to 0.62 g N L−1 d−1. Given this promising performance, a suspended growth system was tested. The obtained enrichment culture served as inoculum for membrane bioreactors (MBR) operated at 50 °C, reaching a maximum total nitrogen removal rate of 1.7 g N L−1 d−1 after 35 days. The biomass in the MBR had a maximum specific anammox activity of 1.1 ± 0.1 g NH4+-N g−1 VSS d−1, and the growth rate was estimated at 0.075–0.19 d−1. The thermophilic cultures displayed nitrogen stoichiometry ratios typical for mesophilic anammox: 0.93–1.42 g NO2--Nremoved g−1 NH4+-Nremoved and 0.16–0.35 g NO3--Nproduced g−1 NH4+-Nremoved. Amplicon and Sanger sequencing of the 16S rRNA genes revealed a disappearance of the original “Ca. Brocadia” and “Ca. Jettenia” taxa, yielding Planctomycetes members with only 94–95% similarity to “Ca. Brocadia anammoxidans” and “Ca. B. caroliniensis”, accounting for 45% of the bacterial FBBR community. The long-term operation of thermophilic anammox reactors and snapshot views on the nitrogen stoichiometry, kinetics and microbial community open up the development path of thermophilic partial nitritation/anammox. A first economic assessment highlighted that treatment of sludge reject water from thermophilic anaerobic digestion of sewage sludge may become attractive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000517663600014 Publication Date 2020-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 5 Open Access (up)  
  Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding T.G.L.V., (ii) Ghent University (BOFDOC2015000601) and the Belgian Nuclear Research Centre (SCK.CEN) for funding R.P., (iii) Bart De Gusseme from Farys/UGent for providing the hollow fiber membranes, (iv) Tim Lacoere for performing the DNA extraction and data processing of the Sanger sequencing and 16S rRNA gene amplicon sequencing data, (v) Tim Hendrickx from Paques BV for providing the inoculum, (vi) Bert Bundervoet and Wim Groen in 't Woud from Colsen for the valuable input on the economic assessment and (vii) Joop Colsen, Stijn Van Hulle, Mark Van Loosdrecht, Erik Smolders and Leen De Gelder for their constructive discussions on this work. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:165392 Serial 6449  
Permanent link to this record
 

 
Author De Paepe, J.; De Paepe, K.; Gòdia, F.; Rabaey, K.; Vlaeminck, S.E.; Clauwaert, P. pdf  doi
openurl 
  Title Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 185 Issue Pages 116223  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Resource recovery from source-separated urine can shorten nutrient cycles on Earth and is essential in regenerative life support systems for deep-space exploration. In this study, a robust two-stage, energy-efficient, gravity-independent urine treatment system was developed to transform fresh real human urine into a stable nutrient solution. In the first stage, up to 85% of the COD was removed in a microbial electrolysis cell (MEC), converting part of the energy in organic compounds (27-46%) into hydrogen gas and enabling full nitrogen recovery by preventing nitrogen losses through denitrification in the second stage. Besides COD removal, all urea was hydrolysed in the MEC, resulting in a stream rich in ammoniacal nitrogen and alkalinity, and low in COD. This stream was fed into a membrane-aerated biofilm reactor (MABR) in order to convert the volatile and toxic ammoniacal nitrogen to non-volatile nitrate by nitrification. Bio-electrochemical pre-treatment allowed to recover all nitrogen as nitrate in the MABR at a bulk-phase dissolved oxygen level below 0.1 mg O2 L-1. In contrast, feeding the MABR directly with raw urine (omitting the first stage), at the same nitrogen loading rate, resulted in nitrogen loss (18%) due to denitrification. The MEC and MABR were characterised by very distinct and diverse microbial communities. While (strictly) anaerobic genera, such as Geobacter (electroactive bacteria), Thiopseudomonas, a Lentimicrobiaceae member, Alcaligenes and Proteiniphilum prevailed in the MEC, the MABR was dominated by aerobic genera, including Nitrosomonas (a known ammonium oxidiser), Moheibacter and Gordonia. The two-stage approach yielded a stable nitrate-rich, COD-low nutrient solution, suitable for plant and microalgae cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580639800035 Publication Date 2020-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited Open Access (up)  
  Notes Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:170524 Serial 6461  
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Van Winckel, T.; Halet, D.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Borregán-Ochando, E.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Bottle or tap? Toward an integrated approach to water type consumption Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 173 Issue Pages 115578-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract While in many countries, people have access to cheap and safe potable tap water, the global consumption of bottled water is rising. Flanders, Belgium, where this study is located, has an exceptionally high consumption of bottled water per capita. However, in the interest of resource efficiency and global environmental challenges, the consumption of tap water is preferable. To our knowledge, an integrated analysis of the main reasons why people consume tap and bottled water is absent in Flanders, Belgium. Using Flemish survey data (N = 2309), we first compared tap and bottled water consumers through bivariate correlation analysis. Subsequently, path modelling techniques were used to further investigate these correlations. Our results show that bottled water consumption in Flanders is widespread despite environmental and financial considerations. For a large part, this is caused by negative perceptions about tap water. Many consumers consider it unhealthy, unsafe and prefer the taste of bottled water. Furthermore, we found that the broader social context often inhibits the consumption of tap water. On the one hand, improper infrastructures (e.g. lead piping) can limit access to potable tap water. On the other hand, social norms exist that promote bottled water. Lastly, results suggest that the consumption of bottled water is most common among men, older people and less educated groups. We conclude that future research and policy measures will benefit from an approach that integrates all behavioural aspects associated with water type consumption. This will enable both governments and tap water companies to devise more effective policies to manage and support tap water supply networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523569000012 Publication Date 2020-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 2 Open Access (up)  
  Notes ; This was supported by a grant from Water-link. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:165873 Serial 6464  
Permanent link to this record
 

 
Author Muys, M.; Papini, G.; Spiller, M.; Sakarika, M.; Schwaiger, B.; Lesueur, C.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 307 Issue Pages 123242-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000528857700051 Publication Date 2020-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access (up)  
  Notes ; The authors kindly thank (i) i-Cleantech Flanders MIP (Milieu-innovatieplatform) for financial support through the MicroNOD project (Microbial Nutrients on Demand), (ii) Erik Fransen (StatUA) for the helpful advice on the statistical analysis, and (iii) Ilse De Leersnyder and Diederik Leenknecht for assistance with the EAA analysis. ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:169452 Serial 6491  
Permanent link to this record
 

 
Author Sui, Y.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dunaliella microalgae for nutritional protein : an undervalued asset Type A1 Journal article
  Year 2020 Publication Trends in biotechnology : regular edition Abbreviated Journal  
  Volume 38 Issue 1 Pages 10-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract β-carotene production using Dunaliella microalgae is established, yet their potential as a source of protein for food and feed applications appears to be overlooked. The rich protein content and nutritional tunability of Dunaliella make these algae intriguing sources of sustainable protein. Thus, it is of societal interest to exploit these promising proteinaceous Dunaliella traits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503376700004 Publication Date 2019-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1879-3096; 0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.3 Times cited 2 Open Access (up)  
  Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Clean-tech Flanders (Milieu-innovatieplatform; Environment Innovation Platform) project Microbial Nutrients on Demand (MicroNOD). Dr Michele Moretti from University of Antwerp is acknowledged for proofreading the manuscript. ; Approved Most recent IF: 17.3; 2020 IF: 11.126  
  Call Number UA @ admin @ c:irua:164903 Serial 6495  
Permanent link to this record
 

 
Author Spiller, M.; Muys, M.; Papini, G.; Sakarika, M.; Buyle, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Environmental impact of microbial protein from potato wastewater as feed ingredient : comparative consequential life cycle assessment of three production systems and soybean meal Type A1 Journal article
  Year 2020 Publication Water Research Abbreviated Journal Water Res  
  Volume 171 Issue Pages 115406  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract Livestock production is utilizing large amounts of protein-rich feed ingredients such as soybean meal. The proven negative environmental impacts of soybean meal production incentivize the search for alternative protein sources. One promising alternative is Microbial Protein (MP), i.e. dried microbial biomass. To date, only few life cycle assessments (LCAs) for MP have been carried out, none of which has used a consequential modelling approach nor has been investigating the production of MP on food and beverage wastewater. Therefore, the objective of this study is to evaluate the environmental impact of MP production on a food and beverage effluent as a substitute for soybean meal using a consequential modelling approach. Three different types of MP production were analysed, namely consortia containing Aerobic Heterotrophic Bacteria (AHB), Microalgae and AHB (MaB), and Purple Non-Sulfur Bacteria (PNSB). The production of MP was modelled for high-strength potato wastewater (COD = 10 kg/m3) at a flow rate of 1,000 m3/day. LCA results were compared against soybean meal production for the endpoint impact categories human health, ecosystems, and resources. Soybean meal showed up to 52% higher impact on human health and up to 87% higher impact on ecosystems than MP. However, energy-related aspects resulted in an 8–88% higher resource exploitation for MP. A comparison between the MP production systems showed that MaB performed best when considering ecosystems (between 13 and 14% better) and resource (between 71 and 80% better) impact categories, while AHB and PNSB had lower values for the impact category human health (8–12%). The sensitivity analysis suggests that the conclusions drawn are robust as in the majority of 1,000 Monte Carlo runs the initial results are confirmed. In conclusion, it is suggested that MP is an alternative protein source of comparatively low environmental impact that should play a role in the future protein transition, in particular when further process improvements can be implemented and more renewable or waste energy sources will be used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514748900032 Publication Date 2019-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.8 Times cited 10 Open Access (up)  
  Notes ; The authors would like to thank (i) the MIP i-Cleantech Flanders (Milieu innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD; 150360) for financial support, (ii) the Research Foundation Flanders (FWO-Vlaanderen) for supporting Gustavo Papini with a doctoral fellowship (strategic basic research; 1S38917N), (iii) Research Foundation Flanders (FWO-Vlaanderen) for supporting Matthias Buyle with a post-doctoral fellowship (Postdoctoral Fellow junior; 1207520N), and (iv) Bo Weidema, Abbas Alloul, Yixing Sui and Tim Van Winckel for their insightful discussions. ; Approved Most recent IF: 12.8; 2020 IF: 6.942  
  Call Number UA @ admin @ c:irua:164944 Serial 6509  
Permanent link to this record
 

 
Author Lindeboom, R.E.F.; De Paepe, J.; Vanoppen, M.; Alonso-Fariñas, B.; Coessens, W.; Alloul, A.; Christiaens, M.E.R.; Dotremont, C.; Beckers, H.; Lamaze, B.; Demey, D.; Clauwaert, P.; Verliefde, A.R.D.; Vlaeminck, S.E. url  doi
openurl 
  Title A five-stage treatment train for water recovery from urine and shower water for long-term human Space missions Type A1 Journal article
  Year 2020 Publication Desalination Abbreviated Journal Desalination  
  Volume 495 Issue Pages 114634  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Long-term human Space missions will rely on regenerative life support as resupply of water, oxygen and food comes with constraints. The International Space Station (ISS) relies on an evaporation/condensation system to recover 74–85% of the water in urine, yet suffers from repetitive scaling and biofouling while employing hazardous chemicals. In this study, an alternative non-sanitary five-stage treatment train for one “astronaut” was integrated through a sophisticated monitoring and control system. This so-called Water Treatment Unit Breadboard (WTUB) successfully treated urine (1.2-L-d−1) with crystallisation, COD-removal, ammonification, nitrification and electrodialysis, before it was mixed with shower water (3.4-L-d−1). Subsequently, ceramic nanofiltration and single-pass flat-sheet RO were used. A four-months proof-of-concept period yielded: (i) chemical water quality meeting the hygienic standards of the European Space Agency, (ii) a 87-±-5% permeate recovery with an estimated theoretical primary energy requirement of 0.2-kWhp-L−1, (iii) reduced scaling potential without anti-scalant addition and (iv) and a significant biological reduction in biofouling potential resulted in stable but biofouling-limited RO permeability of 0.5 L-m−2-h−1-bar−1. Estimated mass breakeven dates and a comparison with the ISS Water Recovery System for a hypothetical Mars transit mission show that WTUB is a promising biological membrane-based alternative to heat-based systems for manned Space missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582172900007 Publication Date 2020-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-9164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access (up)  
  Notes Approved Most recent IF: 9.9; 2020 IF: 5.527  
  Call Number UA @ admin @ c:irua:171514 Serial 6523  
Permanent link to this record
 

 
Author Sui, Y.; Jiang, Y.; Moretti, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Harvesting time and biomass composition affect the economics of microalgae production Type A1 Journal article
  Year 2020 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume 259 Issue Pages 120782-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)  
  Abstract Cost simulations provide a strong tool to render the production of microalgae economically viable. This study evaluated the unexplored effect of harvesting time and the corresponding microalgal biomass composition on the overall production cost, under both continuous light and light/dark regime using techno-economic analysis (TEA). At the same time, the TEA gives evidence that a novel product “proteinaceous salt” from Dunaliella microalgae production is a promising high-value product for commercialization with profitability. The optimum production scenario is to employ natural light/dark regime and harvest microalgal biomass around late exponential phase, obtaining the minimum production cost of 11 €/kg and a profitable minimum selling price (MSP) of 14.4 €/kg for the “proteinaceous salt”. For further optimization of the production, increasing microalgal biomass concentration is the most effective way to reduce the total production cost and increase the profits of microalgae products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530695500009 Publication Date 2020-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 5 Open Access (up)  
  Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD). ; Approved Most recent IF: 11.1; 2020 IF: 5.715  
  Call Number UA @ admin @ c:irua:166802 Serial 6531  
Permanent link to this record
 

 
Author Geerts, R.; Vandermoere, F.; Halet, D.; Van Winckel, T.; Joos, P.; Van Den Steen, K.; Van Meenen, E.; Blust, R.; Vlaeminck, S.E. file  openurl
  Title Ik drink (geen) afval! Een exploratieve studie naar socio-demografische verschillen in publieke steun voor het hergebruik van afvalwater in Vlaanderen Type A1 Journal article
  Year 2020 Publication Vlaams tijdschrift voor overheidsmanagement Abbreviated Journal  
  Volume Issue 3 Pages 51-69  
  Keywords A1 Journal article; Sociology; Sustainable Energy, Air and Water Technology (DuEL); Centre for Research on Environmental and Social Change  
  Abstract In een context van stijgende waterschaarste verkennen wij, naar ons weten voor het eerst in Vlaanderen, publieke steun voor de behandeling en het hergebruik van afvalwater als drinkwater. Vlaanderen is vandaag een van de weinige regio’s waar afvalwater reeds gerecycleerd wordt voor drinkwaterdoeleinden. Dit gebeurt op kleinschalig niveau en de uitbreiding hiervan is vandaag een van de Vlaamse beleidsdoelstellingen. Internationale voorbeelden toonden echter dat een gebrek aan publieke steun een aanzienlijk obstakel kan zijn. Vaak worden gezondheids- en veiligheidsbezorgdheden aangehaald als oorzaak voor het beperkte draagvlak. Minder is geweten over de socio-demografische distributie van dit draagvlak. Daarbovenop blijft er onduidelijkheid over de samenhang tussen socio-demografische kenmerken en gezondheids- en veiligheidsbezorgdheden. Met behulp van een enquête uitgevoerd in Vlaanderen (N=2309), bestudeerden wij ten eerste deze socio-demografische verschillen op basis van bivariate associaties (gender, opleidingsniveau, leeftijd en woonplaats). Ten tweede construeerden we een padmodel om te onderzoeken of deze verschillen verklaard kunnen worden aan de hand van gezondheids- en veiligheidsbezorgdheden. Onze resultaten toonden dat publieke steun voor afvalwaterhergebruik voor drinkwaterdoeleinden in Vlaanderen beperkt is. Het draagvlak was het laagst bij oudere mensen, vrouwen, lager geschoolde groepen en mensen die niet in de Provincie Antwerpen wonen. Voor een groot deel konden socio-demografische verschillen verklaard worden door hogere gezondheids- en veiligheidsbezorgdheden bij vrouwen, lager geschoolden en mensen uit West- en Oost-Vlaanderen. Dit suggereert een gebrek aan vertrouwen in waterexperts en -technologie bij bepaalde socio-demografische groepen, wat zich vertaalt in een verminderde publieke steun voor afvalwaterhergebruik. Op basis van deze bevindingen bespreken we een aantal potentiële actiestrategieën om publieke oppositie te anticiperen en proactief publieke steun te verwerven via doelgerichte (risico)communicatie.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1373-0509 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:171478 Serial 6541  
Permanent link to this record
 

 
Author Balemans, S.; Vlaeminck, S.E.; Torfs, E.; Hartog, L.; Zaharova, L.; Rehman, U.; Nopens, I. url  doi
openurl 
  Title The impact of local hydrodynamics on high-rate activated sludge flocculation in laboratory and full-scale reactors Type A1 Journal article
  Year 2020 Publication Processes Abbreviated Journal  
  Volume 8 Issue 2 Pages 131-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High rate activated sludge (HRAS) processes have a high potential for carbon and energy recovery from sewage, yet they suffer frequently from poor settleability due to flocculation issues. The process of flocculation is generally optimized using jar tests. However, detailed jar hydrodynamics are often unknown, and average quantities are used, which can significantly differ from the local conditions. The presented work combined experimental and numerical data to investigate the impact of local hydrodynamics on HRAS flocculation for two different jar test configurations (i.e., radial vs. axial impellers at different impeller velocities) and compared the hydrodynamics in these jar tests to those in a representative section of a full scale reactor using computational fluid dynamics (CFD). The analysis showed that the flocculation performance was highly influenced by the impeller type and its speed. The axial impeller appeared to be more appropriate for floc formation over a range of impeller speeds as it produced a more homogeneous distribution of local velocity gradients compared to the radial impeller. In contrast, the radial impeller generated larger volumes (%) of high velocity gradients in which floc breakage may occur. Comparison to local velocity gradients in a full scale system showed that also here, high velocity gradients occurred in the region around the impeller, which might significantly hamper the HRAS flocculation process. As such, this study showed that a model based approach was necessary to translate lab scale results to full scale. These new insights can help improve future experimental setups and reactor design for improved HRAS flocculation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000521167900088 Publication Date 2020-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9717 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes ; This research was funded by Research Foundation Flanders (FWO SB Grant 1.S.705.18N). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165420 Serial 6543  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal Arroyo, J.M.; Van Tendeloo, M.; Chatzigiannidou, I.; Molina, J.; Nop, S.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Mainstream partial nitritation/anammox with integrated fixed-film activated sludge : combined aeration and floc retention time control strategies limit nitrate production Type A1 Journal article
  Year 2020 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 314 Issue Pages 123711-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Implementation of mainstream partial nitritation/anammox (PN/A) can lead to more sustainable and cost-effective sewage treatment. For mainstream PN/A reactor, an integrated fixed-film activated sludge (IFAS) was operated (26 °C). The effects of floccular aerobic sludge retention time (AerSRT_floc), a novel aeration strategy, and N-loading rate were tested to optimize the operational strategy. The best performance was observed with a low, but sufficient AerSRTfloc (~7d) and continuous aeration with two alternating dissolved oxygen setpoints: 10 min at 0.07–0.13 mg O2 L−1 and 5 min at 0.27–0.43 mg O2 L−1. Nitrogen removal rates were 122 ± 23 mg N L−1 d−1, and removal efficiencies 73 ± 13%. These conditions enabled flocs to act as nitrite sources while the carriers were nitrite sinks, with low abundance of nitrite oxidizing bacteria. The operational strategies in the source-sink framework can serve as a guideline for successful operation of mainstream PN/A reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558601200004 Publication Date 2020-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access (up)  
  Notes ; D.S. was supported by a Ph.D. grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWTVlaanderen, SB-131769). M.V.T. was supported by a Ph.D. SB Fellowship from the Research Foundation -Flanders (FWO-Vlaanderen, 1S03218N). ; Approved Most recent IF: 11.4; 2020 IF: 5.651  
  Call Number UA @ admin @ c:irua:170054 Serial 6559  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Boon, N.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Pioneering on single-sludge nitrification/denitrification at 50 °C Type A1 Journal article
  Year 2020 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 252 Issue Pages 126527-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Thermophilic nitrification has been proven in lab-scale bioreactors at 50 °C. The challenge is now to develop a solution for thermophilic nitrogen removal, integrating nitrification with denitrification and aerobic carbon removal. This pioneering study aimed at a single-sludge nitrification/denitrification process at 50 °C, through exposing nitrification in a step by step approach to anoxia and/or organics. Firstly, recurrent anoxia was tolerated by a nitrifying community during long-term membrane bioreactor (MBR) operation (85 days), with high ammonium oxidation efficiencies (>98%). Secondly, five organic carbon sources did not affect thermophilic ammonium and nitrite oxidation rates in three-day aerobic batch flask incubations. Moving to long-term tests with sequencing batch reactors (SBR) and MBR (>250 days), good nitrification performance was obtained at increasing COD/Ninfluent ratios (0, 0.5, 1, 2 and 3). Thirdly, combining nitrification, recurrent anoxia and presence of organic carbon resulted in a nitrogen removal efficiency of 92–100%, with a COD/Nremoved of 4.8 ± 0.6 and a nitrogen removal rate of 50 ± 14 mg N g−1 VSS d−1. Overall, this is the first proof of principle thermophilic nitrifiers can cope with redox fluctuations (aerobic/anoxic) and the aerobic or anoxic presence of organic carbon, can functionally co-exist with heterotrophs and that single-sludge nitrification/denitrification can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000534377000121 Publication Date 2020-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.8 Times cited Open Access (up)  
  Notes ; The authors acknowledge (i) the Agency for Innovation by Science and Technology (IWT Flanders) [grant number SB-141205] for funding Tom G.L. Vandekerckhove, (ii) Wouter Peleman and Zoe Pesonen for practical support during their master thesis, (iii) Jolien De Paepe for assisting in the reactor operation, and (iv) Jo De Vrieze and Tim Lacoere for their help with qPCR and 16S rRNA gene amplicon sequencing. ; Approved Most recent IF: 8.8; 2020 IF: 4.208  
  Call Number UA @ admin @ c:irua:167324 Serial 6581  
Permanent link to this record
 

 
Author Sakarika, M.; Spanoghe, J.; Sui, Y.; Wambacq, E.; Grunert, O.; Haesaert, G.; Spiller, M.; Vlaeminck, S.E. url  doi
openurl 
  Title Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment Type A1 Journal article
  Year 2020 Publication Microbial biotechnology Abbreviated Journal  
  Volume 13 Issue 5 Pages 1336-1365  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are beneficial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the production of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking. This review highlights the potential of using PNSB in plant production, with emphasis on three key performance indicators (KPIs): fertilization, resistance to stress (biotic and abiotic) and environmental benefits. PNSB have the potential to enhance plant growth performance, increase the yield and quality of edible plant biomass, boost the resistance to environmental stresses, bioremediate heavy metals and mitigate greenhouse gas emissions. Here, the mechanisms responsible for these attributes are discussed. A distinction is made between the use of living and dead PNSB cells, where critical interpretation of existing literature revealed the better performance of living cells. Finally, this review presents research gaps that remain yet to be elucidated and proposes a roadmap for future research and implementation paving the way for a more sustainable crop production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482388700001 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7915 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 10 Open Access (up)  
  Notes ; The authors would like to acknowledge: (i) the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD) for financial support; (ii) the China Scholarship Council for financially supporting Y. Sui (File No. 201507650015); (iii) the DOCPRO4 project 'PurpleTech', funded by the BOF (Bijzonder onderzoeksfonds); Special research fund from the University of Antwerp for financially supporting J. Spanoghe, and (iv) E. Koutsoukou for constructing components of Figs 5 and 6. ; Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:162876 Serial 6587  
Permanent link to this record
 

 
Author Capson-Tojo, G.; Batstone, D.J.; Grassino, M.; Vlaeminck, S.E.; Puyol, D.; Verstraete, W.; Kleerebezem, R.; Oehmen, A.; Ghimire, A.; Pikaar, I.; Lema, J.M.; Hülsen, T.; Grassino, M.; Hulsen, T. pdf  doi
openurl 
  Title Purple phototrophic bacteria for resource recovery : challenges and opportunities Type A1 Journal article
  Year 2020 Publication Biotechnology Advances Abbreviated Journal Biotechnol Adv  
  Volume 43 Issue Pages 107567-27  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a “removal and disposal” approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved−1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3–2.2 and 0.1–0.3 $·kgdry biomass−1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5–2.0 $·kg−1) appears as a promising valorisation route.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000572355300007 Publication Date 2020-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-9750 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16 Times cited 6 Open Access (up)  
  Notes ; Tim Hulsen acknowledges The Queensland Government, GHD, Ridley, Aquatec Maxcon and Ingham for financial support as part of an Advanced Queensland Industry Fellowship (061-2018). This project is supported by Meat and Livestock Australia through funding from the Australian Government Department of Agriculture, Water and the Environment (Australia; RnD4Profit-16-03-002) as part of its Rural R&D for Profit program and the partners. Gabriel Capson-Tojo is grateful to the Xunta de Galicia (Spain) for his postdoctoral fellowship (ED481B-2018/017). The authors acknowledge Eucalyp, Freepick, Good Ware, Nhor Phai, photo3idea_studio, smalllikea and Smashicons for the icons used (taken from www.flaticon.com). ; Approved Most recent IF: 16; 2020 IF: 10.597  
  Call Number UA @ admin @ c:irua:169736 Serial 6588  
Permanent link to this record
 

 
Author Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Return-sludge treatment with endogenous free nitrous acid limits nitrate production and N₂O emission for mainstream partial nitritation/anammox Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 9 Pages 5822-5831  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrite oxidizing bacteria (NOB) and nitrous oxide (N2O) hinder the development of mainstream partial nitritation/anammox. To overcome these, endogenous free ammonia (FA) and free nitrous acid (FNA), which can be produced in the sidestream, were used for return-sludge treatment for two integrated-film activated sludge reactors containing biomass in flocs and on carriers. The repeated exposure of biomass from one reactor to FA shocks had a limited impact on NOB suppression but inhibited anammox bacteria (AnAOB). In the other reactor, repeated FNA shocks to the separated flocs failed to limit the system’s nitrate production since NOB activity was still high on the biofilms attached to the unexposed carriers. In contrast, the repeated FNA treatment of flocs and carriers favored aerobic ammonium-oxidizing bacteria (AerAOB) over NOB activity with AnAOB negligibly affected. It was further revealed that return-sludge treatment with higher FNA levels led to lower N2O emissions under similar effluent nitrite concentrations. On this basis, weekly 4 h FNA shocks of 2.0 mg of HNO2-N/L were identified as an optimal and realistic treatment, which not only enabled nitrogen removal efficiencies of ∼65% at nitrogen removal rates of ∼130 mg of N/L/d (20 °C) but also yielded the lowest cost and carbon footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530651900057 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 1 Open Access (up)  
  Notes ; This study was supported by the European Commission Horizon 2020 Program through Marie Curie Individual Fellowship (N2OPNA-708592). W. V.B. and S. L. were supported by grants from the Flanders Innovation and Entrepreneurship Agency [IWT-SBO ProCure project (IWT/50052) by IWT-SBO ProCure and internal Uantwerpen funding]. The authors are grateful to the research collaboration. The authors declare no conflict of interest. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:168829 Serial 6596  
Permanent link to this record
 

 
Author Courtens, E.N.P.; Spieck, E.; Vilchez-Vargas, R.; Bode, S.; Boeckx, P.; Schouten, S.; Jauregui, R.; Pieper, D.H.; Vlaeminck, S.E.; Boon, N. pdf  url
doi  openurl
  Title A robust nitrifying community in a bioreactor at 50 degrees C opens up the path for thermophilic nitrogen removal Type A1 Journal article
  Year 2016 Publication The ISME journal : multidisciplinary journal of microbial ecology Abbreviated Journal  
  Volume 10 Issue 9 Pages 2293-2303  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of C-13-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198 +/- 10 and 894 +/- 81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386664600019 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7362 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:138184 Serial 7397  
Permanent link to this record
 

 
Author Meerburg, F.A.; Boon, N.; Van Winckel, T.; Pauwels, K.; Vlaeminck, S.E. pdf  openurl
  Title The age of wastewater mining : selection for sludge with a maximum capture potential for organics in a high-rate contact stabilization system Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - IWA Resource Recovery Conference, 30 Aug  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151144 Serial 7428  
Permanent link to this record
 

 
Author Van Winckel, T.; De Clippeleir, H.; Mancell-Egala, A.; Rahman, A.; Wett, B.; Bott, C.; Sturm, B.; Vlaeminck, S.E.; Al-Omari, A.; Murthy, S. openurl 
  Title Balancing flocs and granules by external selectors to increase capacity in high-rate activated sludge systems Type P3 Proceeding
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 6 p. T2 - WEFTEC.16, 24 - 28 September 2016, New O  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151122 Serial 7548  
Permanent link to this record
 

 
Author Carvajal-Arroyo, J.M.; Vitor Akaboci, T.R.; Ruscalleda, M.; Colprim, J.; Courtens, E.; Vlaeminck, S.E. isbn  openurl
  Title Biofilms for one-stage autotrophic nitrogen removal Type H3 Book chapter
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages 205-222 T2 - Aquatic biofilms : ecology, water qua  
  Keywords H3 Book chapter; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-910190-17-3 Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130466 Serial 7559  
Permanent link to this record
 

 
Author Ilgrande, C.; Christiaens, M.; Clauwaert, P.; Vlaeminck, S.E.; Boon, N. openurl 
  Title Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in Life Support Systems Type A2 Journal article
  Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal  
  Volume 81 Issue 1 Pages 74-79  
  Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The development cost-effective life support technologies is a highly relevant topic for space biology. Currently, food and water supply during space flights is currently restricted by technical and economic constraints: daily water consumption of an average crew of 6 members is about 72 L, with an estimated cost of 2,160,000 d-1. To reduce these costs and sustain long term space missions, the European Space Agency designed MELiSSA, an artificial ecosystem based on 5 compartments for the recycling gas, liquid and solid waste (Lasseur et al., 2011). In the CI stage, crew and inedible solid waste is fermented by thermophilic anaerobic bacteria, producing volatile fatty acids (VFAs), CO2 and ammonium (NH4+). In the CII compartment the VFAs are converted into edible biomass, using the photoheterotroph Rodospirillum rubrum. Afterwards, the nitrifying CIII unit converts toxic levels of ammonia/ammonium into nitrate, which enables the effluent to be fed to the photoautotrohopic CIV stage, that provides food and oxygen for the crew (Godia et al., 2002). The highest nitrogen flux in a Life Support System is human urine. As nitrate is the preferred form of nitrogen fertilizer for hydroponic plant cultivation, urine nitrification is an essential process in the MELiSSA loop. The development of the Additional Unit for Water Treatment or Urine NItrification ConsortiUM (UNICUM) requires the selection and characterization of the microorganisms that will be used. The key microorganisms in the biological treatment of urine are heterotrophs, for the hydrolysis of urea into ammonia and carbon dioxide, Ammonia Oxidizing Bacteria (AOB), for the ammonia oxidation into nitrite and Nitrite Oxidizing Bacteria (NOB), for the conversion of nitrite into nitrate. The strains were selected according to predefined safety (non sporogenic and BSL 1) and metabolic (Ks, μmax) criteria. To evaluate functional consortia for space applications, ureolysis, nitritation and nitratation of the selected microorganisms and synthetic communities were elucidated. Additionally, urine is a matrix with a high salt content. Unhydrolised urine's EC ranges from 1.1 to 33.9 mS/cm, the mean value being 21.5 mS/cm (Marickar, 2010), while hydrolysed urine can reach higher levels, up to 75 mS/cm. This conditions could inhibit microbial metabolism, therefore the effect of salinity on urine nitrification was also elucidated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1379-1176 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151151 Serial 7573  
Permanent link to this record
 

 
Author Alloul, A.; Ganigue, R.; Spiller, M.; Meerburg, F.; Cagnetta, C.; Rabaey, K.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Capture-ferment-upgrade : a three-step approach for the valorization of sewage organics as commodities Type A1 Journal article
  Year 2018 Publication Environmental science and technology Abbreviated Journal  
  Volume 52 Issue 12 Pages 6729-6742  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent(-1) day(-1) in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent(-1) day(-1). Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436018900004 Publication Date 2018-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151968 Serial 7574  
Permanent link to this record
 

 
Author Van Winckel, T.; Al-Omari, A.; Takás, I.; Wett, B.; Bachmann, B.; Sturm, B.; Bott, C.; Vlaeminck, S.E.; Murthy, S.; De Clippeleir, H. openurl 
  Title Conceptual framework for deammonification in a combined floc-granule system : impact of aeration control, external selector and bioaugmentation based on full-scale data from WWTP in Strass Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 16 p. T2 - IWA 2017 Conference on Sustainable Wast  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151109 Serial 7722  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Sun, X.Y.; Mozo, I.; Barrillon, B.; Gaval, G.; Caligaris, M.; Martin Ruel, S.; Vlaeminck, S.E.; Sperandio, M. openurl 
  Title Cool conditions for mainstream anammox applications : short and long term temperature effects Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - 5th IWA Benelux Young Water Professional  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151117 Serial 7732  
Permanent link to this record
 

 
Author Zhang, Q.; De Clippeleir, H.; Su, C.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S. pdf  doi
openurl 
  Title Deammonification for digester supernatant pretreated with thermal hydrolysis : overcoming inhibition through process optimization Type A1 Journal article
  Year 2016 Publication Applied microbiology and biotechnology Abbreviated Journal  
  Volume 100 Issue 12 Pages 5595-5606  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The thermal hydrolysis process (THP) has been proven to be an excellent pretreatment step for an anaerobic digester (AD), increasing biogas yield and decreasing sludge disposal. The goal of this work was to optimize deammonification for efficient nitrogen removal despite the inhibition effects caused by the organics present in the THP-AD sludge filtrate (digestate). Two sequencing batch reactors were studied treating conventional digestate and THP-AD digestate, respectively. Improved process control based on higher dissolved oxygen set-point (1 mg O-2/L) and longer aeration times could achieve successful treatment of THP-AD digestate. This increased set-point could overcome the inhibition effect on aerobic ammonium-oxidizing bacteria (AerAOB), potentially caused by particulate and colloidal organics. Moreover, based on the mass balance, anoxic ammonium-oxidizing bacteria (AnAOB) contribution to the total nitrogen removal decreased from 97 +/- A 1 % for conventional to 72 +/- A 5 % for THP-AD digestate treatment, but remained stable by selective AnAOB retention using a vibrating screen. Overall, similar total nitrogen removal rates of 520 +/- A 28 mg N/L/day at a loading rate of 600 mg N/L/day were achieved in the THP-AD reactor compared to the conventional digestate treatment operating at low dissolved oxygen (DO) (0.38 +/- A 0.10 mg O-2/L).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376456700033 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0175-7598; 1432-0614 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:134166 Serial 7755  
Permanent link to this record
 

 
Author Vanderkerckhove, T.G.L.; Kerckhof, F.-M.; De Mulder, C.; Vlaeminck, S.E.; Boon, N. pdf  url
doi  openurl
  Title Determining stoichiometry and kinetics of two thermophilic nitrifying communities as a crucial step in the development of thermophilic nitrogen removal Type A1 Journal article
  Year 2019 Publication Water research Abbreviated Journal  
  Volume 156 Issue Pages 34-45  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrification and denitrification, the key biological processes for thermophilic nitrogen removal, have separately been established in bioreactors at 50 °C. A well-characterized set of kinetic parameters is essential to integrate these processes while safeguarding the autotrophs performing nitrification. Knowledge on thermophilic nitrifying kinetics is restricted to isolated or highly enriched batch cultures, which do not represent bioreactor conditions. This study characterized the stoichiometry and kinetics of two thermophilic (50 °C) nitrifying communities. The most abundant ammonia oxidizing archaea (AOA) were related to the Nitrososphaera genus, clustering relatively far from known species Nitrososphaera gargensis (95.5% 16S rRNA gene sequence identity). The most abundant nitrite oxidizing bacteria (NOB) were related to Nitrospira calida (97% 16S rRNA gene sequence identity). The nitrification biomass yield was 0.200.24 g VSS g−1 N, resulting mainly from a high AOA yield (0.160.20 g VSS g−1 N), which was reflected in a high AOA abundance in the community (5776%) compared to NOB (511%). Batch-wise determination of decay rates (AOA: 0.230.29 d−1; NOB: 0.320.43 d−1) rendered an overestimation compared to in situ estimations of overall decay rate (0.0260.078 d−1). Possibly, the inactivation rate rather than the actual decay rate was determined in batch experiments. Maximum growth rates of AOA and NOB were 0.120.15 d−1 and 0.130.33 d−1 respectively. NOB were susceptible to nitrite, opening up opportunities for shortcut nitrogen removal. However, NOB had a similar growth rate and oxygen affinity (0.150.55 mg O2 L−1) as AOA and were resilient towards free ammonia (IC50 > 16 mg NH3-N L−1). This might complicate NOB outselection using common practices to establish shortcut nitrogen removal (SRT control; aeration control; free ammonia shocks). Overall, the obtained insights can assist in integrating thermophilic conversions and facilitate single-sludge nitrification/denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466618400004 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158226 Serial 7798  
Permanent link to this record
 

 
Author Saha, S.; Badhe, N.; Seuntjens, D.; Vlaeminck, S.E.; Biswas, R.; Nandy, T. doi  openurl
  Title Effective carbon and nutrient treatment solutions for mixed domestic-industrial wastewater in India Type A1 Journal article
  Year 2015 Publication Water science and technology Abbreviated Journal  
  Volume 72 Issue 4 Pages 651-657  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The present study evaluates effectiveness of up-flow anaerobic sludge blanket (UASB) reactor followed by two post-anaerobic treatment options, namely free-surface, up-flow constructed wetland (FUP-CW) and oxygen-limited anaerobic nitrification/denitrification (OLAND) processes in treating sewage from the peri-urban areas in India receiving illegal industrial infiltrations. The UASB studies yielded robust results towards fluctuating strength of sewage and consistently removed 87-98% chemical oxygen demand (COD) at a hydraulic retention time of 1.5-2 d. The FUP-CW removed 68.5 +/- 13% COD, 68 +/- 3% NH4+-N, 38 +/- 5% PO43--P, 97.6 +/- 5% suspended particles and 97 +/- 13% fecal coliforms. Nutrient removal was found to be limiting in FUP-CW, especially in winter. Nitrogen removal in the OLAND process were 100 times higher than the FUP-CW process. Results show that UASB followed by FUP-CW can be an excellent, decentralized sewage treatment option, except during winter when nutrient removal is limited in FUP-CW. Hence, the study proposes bio-augmentation of FUP-CW with OLAND biomass for overall improvement in the performance of UASB followed by FUP-CW process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359387200019 Publication Date 2015-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127775 Serial 7840  
Permanent link to this record
 

 
Author Sui, Y.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina Type A1 Journal article
  Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal  
  Volume 94 Issue 4 Pages 1032-1040  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract BACKGROUND Microalgae have long been adopted for use as human food, animal feed and high‐value products. For carotenogenesis, Dunaliella salina is one of the most studied microalgae, yet its protein synthesis has been limitedly reported. In this study, D. salina was cultivated at different NaCl and pH levels to optimize its protein productivity. RESULTS The biomass protein content followed an increasedecrease pattern throughout the growth phases, with a maximum in the exponential phase (6080% over ash‐free dry weight). Adversely, the biomass pigment contents were at relatively stable levels (around 0.5% carotenoids, 1.3% chlorophyll a and 0.5% chlorophyll b over ash‐free dry weight). Among the tested conditions (13 mol L−1 salinity, pH 7.59.5), the highest protein productivity (43.5 mg L−1 day−1) was achieved at 2 mol L−1 salinity and pH 7.5 during the exponential phase, which surpassed others by 1697%. Additionally, table salts were tested to be equivalent and cost‐efficient salt sources for the growth medium. CONCLUSION This study highlighted the suitability of D. salina as a protein source, providing guidelines for 70% cheaper medium formulation in the lab and for maximum protein productivity at larger scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461237300004 Publication Date 2018-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157955 Serial 7849  
Permanent link to this record
 

 
Author Courtens, E.N.P.; Vandekerckhove, T.; Prat, D.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Meerbergen, K.; Lievens, B.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Empowering a mesophilic inoculum for thermophilic nitrification : growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers Type A1 Journal article
  Year 2016 Publication Water research Abbreviated Journal  
  Volume 92 Issue Pages 94-103  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L-1 d-1 after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d-1) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d-1) and the moving bed biofilm reactor (0.08 °C d-1) could not reach nitrification at temperatures higher than 46°C. However, nitrification rates up to 800 mg N L-1 d-1 and 150 mg N g-1 volatile suspended solids d-1 were achieved at a temperature as high as 49°C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49°C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371555200011 Publication Date 2016-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130444 Serial 7900  
Permanent link to this record
 

 
Author Seuntjens, D.; Carvajal Arroyo, J.M.; Molina, J.; Boon, N.; Vlaeminck, S.E. pdf  openurl
  Title Enabling partial nitritation/anammox on pre-treated sewage with IFAS : aeration and floc SRT control strategies limit nitrate production Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 3 p. T2 - 5th IWA Benelux Young Water Professional  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151116 Serial 7901  
Permanent link to this record
 

 
Author Seuntjens, D.; Bundervoet, B.L.M.; Mollen, H.; De Mulder, C.; Wypkema, E.; Verliefde, A.; Nopens, I.; Colsen, J.G.M.; Vlaeminck, S.E. url  doi
openurl 
  Title Energy efficient treatment of A-stage effluent : pilot-scale experiences with short-cut nitrogen removal Type A1 Journal article
  Year 2016 Publication Water science and technology Abbreviated Journal  
  Volume 73 Issue 9 Pages 2150-2158  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376285300013 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0273-1223; 1996-9732 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up)  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130442 Serial 7908  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: