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Abstract 

BACKGROUND: Microalgae has been long adopted for the use as human food, animal feed and high-

value products. For carotenogenesis, Dunaliella salina is one of the most studied microalgae, yet its 

protein synthesis has been limitedly reported. In this study, D. salina was cultivated at different NaCl and 

pH levels to optimize its protein productivity. 

RESULTS: The biomass protein content followed an increase-decrease pattern throughout the growth 

phases with a maximum in the exponential phase (60-80% over ash free dry weight). Adversely, the 

biomass pigment contents were at relatively stable levels (around 0.5% carotenoids, 1.3% chlorophyll a 

and 0.5% chlorophyll b over ash free dry weight). Among the tested conditions (1-3 M salinity; pH 7.5-

9.5), the highest protein productivity (43.5 mg/L/d) was achieved at 2M salinity and pH 7.5 during the 

exponential phase, which surpassed others by 16-97%. Additionally, table salts were tested to be 

equivalent and cost-efficient salt sources for the growth medium.  

CONCLUSION: This study highlighted the suitability of D. salina as a protein source, providing 

guidelines for 70% cheaper medium formulation in the lab and for maximum protein productivity at 

larger scale. 
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INTRODUCTION 

The world’s population is projected to reach 9.3 billion by 2050, among which 6.4 billion will be urban 

population.1 The effects of such population and living standard increase are expected to create a high 

protein demanding society.2 Specifically, an increase of 102% meat products and 82% dairy products are 

foreseen by 2050.2 To cope with this future protein scarcity, novel protein sources, such as microalgae, 

have to be considered as an important contribution.3 

Due to their high nutritional value, microalgae have been explored as a sustainable source for human food, 

animal feed and high-value products since the 1950s, and large scale production has been successfully 

established in Asia, USA, Australia, Israel and India since the 1980s.4 Currently, the most widely used 

species for phototrophic cultivation belong to the genera Arthrospira, Chlorella, Dunaliella and 

Haematococcus.5 

Dunaliella salina is a unicellular, biflagellate green hypersaline microalga with an ovoid shape varying 

from 5 to 25 µm in length 3 to 13 µm in width, respectively.6 It is different from most eukaryotic 

microalgae by the lack of a rigid cell wall.6 Owing to its high ² -carotene content, D. salina was the first 

alga commercially produced for high-value compounds.7 At the same time, D. salina also displays high 

biomass protein content of 57% over dry weight, similar to other two commonly used microalgal species, 

i.e. 46-63% for Arthrospira platensis and 51-58% for Chlorella vulgaris, respectively.8 Nevertheless, due 

to its unique characteristic of carotenogenesis, most research and commercialization have been limited to 

the area of ² -carotene production rather than protein production. Indeed only limited studies were found 

using Dunaliella species as a protein source.9–11 In the 1970s, the use of Dunaliella primalecta biomass as 

a source of protein (52% protein over dry weight) was proposed by Gibbs and Duffus (1976) for the first 
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time. Later on, Finney et al. (1984) have tested the usage of commercial Dunaliella sp. biomass as a 

protein supplement (55% protein over dry weight) in bread. One year later, Dunaliella tertiolecta as 

representative marine species also showed high potential as single cell protein, even surpassing some 

freshwater species with 54% protein over dry weight.9 More recently, a few studies demonstrated that 

protein content of D. salina can be affected by their cultivation conditions.12–15 Tavallaie et al. (2015) 

concluded that the optimum autotrophic conditions for D. salina were at pH 8.5 and 1.7M salinity, with 

growth inhibition above 5M salinity. Maximum protein productivity of 5.4 mg/L/d was reached, and 

changing pH level and salinity resulted in a decreased protein content and productivity.12 Similarly, in 

two other studies, maximum protein content of 9 and 14% over dry weight were found from standard 

autotrophic cultivation of D. salina with protein productivity around 1.7 mg/L/d.14,15 Khatoon et al. (2017) 

further investigated salinity and growth phase influencing the biochemical composition of Dunaliella sp. 

It was concluded that Dunaliella sp. grows best at 0.2M salinity where it also accumulates the most 

protein in the stationary phase (50% over dry weight). Besides expressing protein content based on dry 

weight, Dunaliella typically has 20% ash content, consequently giving 1.25 times higher protein content 

if expressed as ash free dry weight (AFDW).10,16 Overall, scattered data are available from different 

Dunaliella species, and the cultivation conditions leading to the highest protein levels and productivities 

are either lacking or inconclusive. Results are contradicting, and hence do not yet allow to establish the 

potential of D. salina as a protein producer. 

Sodium chloride (NaCl), as a major component of media cultivating hypersaline species like D. salina, 

comes from either natural seawater, forming undefined medium for large scale production, or from 

analytical grade salt, forming defined medium for lab scale cultivation.17 Even though analytical grade 

salt is never used for large scale cultivation, it is widely used in the medium for lab scale cultivation, for 

researchers to explicitly define and manipulate the medium composition.18 However, when using 

analytical grade chemicals for D. salina in lab scale, in the case of Modified Johnson’s medium with 2 

molar salinity, NaCl composes 96% of the total nutrient ions, and accounts for 71% of the total nutrient 

costs (as shown in experiment 1). Alternatively, replacing analytical grade NaCl with more cost-effective 
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table salt would save cost from salt consumptions while keeping the convenience of defined medium in 

lab scale. Nonetheless, no studies were found exploring the possibility and effect of replacing analytical 

grade NaCl with table salt, on the growth of D. salina. 

It is clear that, insufficient knowledge has been obtained, exploring the potential of D. salina as a protein 

source for the usage as human food and animal feed. It is the goal of this study to fill this knowledge gap 

by 1) investigating the effect of using table salt replacing analytical grade NaCl in a defined media, 2) 

optimizing the biomass protein productivity through varying salinities and pH levels, and 3) mapping the 

biomass protein and pigment dynamics throughout the growth phases. 

MATERIALS AND METHODS 

Strain, cultivation medium and conditions 

Dunaliella salina SAG 184.80 was obtained from SAG, Culture Collection of Algae at Göttingen 

University, Germany. The microalgal culture was maintained aseptically in Modified Johnson's medium19 

at 2M salinity and pH 7.5, with the following composition (g/L): KH2PO4, 0.035; MgSO4·7H2O, 0.5; 

CaCl2·2H2O, 0.2; MgCl2·6H2O, 1.5; KCl, 0.2; KNO3, 1; NaHCO3, 0.043; NaCl, 117; FeCl3·6H2O, 244·10-

5; Na2EDTA, 189·10-5; H3BO3, 61·10-5; MnCl2·4H2O, 4.1·10-5; ZnCl2, 4.1·10-5; CuSO4·5H2O, 6·10-5; 

CoCl2·6H2O, 5.1·10-5; (NH4)6Mo7O24·4H2O, 38·10-5. Medium was made from corresponding stock 

solution and autoclaved for sterilization. Cultures were maintained in a room with controlled temperature 

(20°C). Light intensity was provided by fluorescent tubes (Sylvania F58W/GRO) at 55 µmol/m2/s and 

under continuous illumination.  

General cultivation conditions 

The general cultivation conditions were as follows, with exceptions specified in section 2.2.2: D. salina in 

all experiments was cultivated in 500 mL Erlenmeyer flasks filled with 400 mL medium (except 

experiment 4); temperature, salinity, pH, light intensity and light duration were set at 20°C (except 

experiment 1), 2M (except experiment 2), pH 7.5 (except experiment 3), 55 µmol/m2/s (except 

experiment 1) and 24h, respectively; initial biomass concentration was set at an optical density at 680 nm 
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(OD680) of ± 0.03; mixing of the culture was provided by placing the flasks on a magnetic stirring plate 

(Thermo Scientific™ Cimarec™ i Poly 15) at 200 rpm; all flasks were aerated (TetraTech®, APS100) 

with 0.2 µm filtered (Minisart® NML Syringe Filter) air at a rate of 4.17 vvm (except experiment 4); all 

the flasks were daily randomly rotated to provide even light distributions on each flask; pH was daily 

maintained constant to the set value by 1M NaOH or 1M HCl; each experiment was sampled daily from 

Monday to Friday; all chemicals used for culture medium, analysis and pH control were analytical grade 

except for the salts listed in Table 1.  

Specific experiment variations  

In experiment 1, two media treatments in duplicate with analytical NaCl and table salt were used (Table 

1). All flasks were incubated (Snijders Scientific Economic Delux, ECD01E) at a constant temperature of 

28°C and light intensity of 70 µmol/m2/s. The experiment was ended before reaching stationary phase. 

In experiment 2, three different media with different salinities were prepared, namely 1M, 2M and 3M, 

using table salt (Table 1). Each treatment was set up in triplicate.  

In experiment 3, the media were prepared with table salt (Table 1) reaching three different pH levels at 

pH 7.5, pH 8.5 and pH 8.5-9.5, the later was not controlled to a set value. Treatment of pH 7.5 was not 

repeated in this experiment, but taken from experiment 2 at 2M salinity and pH 7.5. 

In experiment 4, five different table salts including fine sea salt, raw sea salt, pickle sea salt, raw rock salt 

and vacuum rock salt were used in composing the media (Table 1). 100 mL Erlenmeyer flasks were used 

in this experiment with 50 mL medium enriched with 10mM NaHCO3 without aeration. Each treatment 

was set up in triplicate.  

Biomass growth, protein and pigment measurement 

Daily samples from each experiment were directly analyzed for OD680 and stored in the freezer at -20°C 

for protein and pigments analyses at the end of each experiment. Biomass concentration was estimated 

following a calibration curve made between OD680 and ash-free dry weight (AFDW) (R2 = 0.999): 
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𝐴𝐹𝐷𝑊 (𝑔 𝐿⁄ ) = 0.5069 × 𝑂𝐷680 − 0.0131 

 To determine AFDW, 10 or 20 mL cell suspension was filtered through a pre-incinerated glass fiber filter 

(VWR glass microfibers filter 698) and dried at 75°C (Memmert GmbH UF260) until constant weight. 

The filter was then incinerated in a muffle furnace (Nabertherm GmbH Controller B170) at 550°C for 2h. 

After cooling, the weight difference over the used volume was recorded as AFDW (g/L). For the growth 

rate calculation, GraphPad Prisma software was used fitting the experimental data to the Gompertz 

model20 modified by Zwietering et al. (1990) and subsequently used to calculate the growth rate:  

𝐿𝑛 �
𝑁𝑡
𝑁0
� = 𝐿𝑛 �

𝑁𝑚
𝑁0
� × 𝑒𝑥𝑝[−exp

µ𝑚𝑎𝑥 × 𝑒

𝐿𝑛 �𝑁𝑚𝑁0
�

× (𝜆 − 𝑡) + 1] 

 where Nt and N0 are the biomass concentrations at time t and time 0. Nm is the maximum biomass 

concentration (at stationary phase). µmax is the maximum specific growth rate, » is the lag time and e 

(2.718) is the exponential constant. 

Samples for protein and pigment measurement were analyzed directly without cell pre-disruption due to 

the lack of cell wall of D. salina. The protein content was determined using Markwell method, a modified 

Lowry method with sodium dodecyl sulfate addition in the alkali reagent and an increase in copper 

tartrate concentration.22 Total carotenoids, chlorophyll a and chlorophyll b were extracted from the 

biomass with 100% acetone after centrifuging the suspended samples at 5000g for 10 minutes. The 

extraction took place on a thermo-shaker (Biosan TS-100C) at 1400 rpm at ambient temperature for 10 

minutes. The supernatants containing pigments were then measured according to Lichtenthaler, (1987): 

𝐶ℎ𝑙 𝑎 (𝑚𝑔 𝐿⁄ ) = 11.24 × 𝑂𝐷661.6 − 2.04 × 𝑂𝐷644.8 

𝐶ℎ𝑙 𝑏 (𝑚𝑔 𝐿⁄ ) = 20.13 × 𝑂𝐷644.8 − 4.19 × 𝑂𝐷661.6 

𝐶ℎ𝑙  (𝑚𝑔 𝐿⁄ ) = 𝐶ℎ𝑙 𝑎 + 𝐶ℎ𝑙 𝑏 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑟𝑜𝑡𝑒𝑛𝑜𝑖𝑑𝑠 (𝑚𝑔 𝐿⁄ ) =
1000 × 𝑂𝐷470 − 1.90 × 𝐶ℎ𝑙 𝑎 − 63.14 × 𝐶ℎ𝑙 𝑏

214
 

where OD661.6, OD644.8 and OD470 refer to the optical densities of the extracted supernatant measured at 

661.6 nm, 644.8 nm and 470 nm, respectively.  
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The biomass protein and pigment contents were expressed as a fraction of the biomass (%AFDW). The 

suspension protein and pigment contents (g/L) were the results of multiplying the biomass concentration 

AFDW (g/L) with corresponding protein and pigment contents (%AFDW). The biomass productivity was 

calculated as the net biomass concentration (g/L) divided by the time of cultivation (mg/L/d) and the 

protein productivity was calculated as the net suspension protein content (g/L) divided by the time of 

cultivation (mg/L/d) at each sampling point. 

Medium salinity determination 

The NaCl content of different salts were determined as NaCl% over the salt dry weight. All the salts were 

pre-dried at 105°C (Memmert GmbH UF260) overnight and cooled down to constant weight in a 

desiccator before analysis. Known amount of each salt was dissolved in deionized water and the molar 

concentrations of both Na+ and Cl- ions were analyzed using an electrolyte analyzer (AVL 9180). 

Whenever the molar concentrations of Na+ and Cl- were different, the higher one was chosen as the molar 

concentration of NaCl. The conductivity of media was measured using an EC/TDS/salinity meter (Hanna 

edge® HI2030-01). 

Statistical analysis 

All experiments were done in triplicate with results expressed as means ± standard deviations in tables 

and figures, except for experiment 1, which was done in duplicate with results reported as raw data. SPSS 

statistics 24 was used for statistical analysis following the independent samples t-test (two groups 

comparison) or one-way ANOVA test (multiple groups comparison followed by post-hoc Tukey’s test). 

A significance level p < 0.05 was considered as statistically different. 

RESULTS AND DISCUSSION 

Experiment 1: Effect of analytical NaCl vs. table salt 

In this experiment, medium composed of table salt (97.8% NaCl) was tested for the growth of D. salina, 

in comparison with medium composed of analytical NaCl (99.4% NaCl; Table 1). The growth of D. 

salina in both media showed a highly similar pattern without evident lag phase after biomass inoculation 
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and a linear biomass level increase until the end (day 12; Figure. 1). In Table 2, key growth parameters at 

the end of the experiment were summarized. No significant differences were found in the parameters, 

except for the protein productivity, where the biomass level in the table-salt substituted medium was 

higher. The difference could be due to experimental variation considering that the NaCl content of the 

two salt types differed with only 1.6% (Table 1). Cost-wise, as salt consumption is one main contributor 

to the operational costs of  cultivating Dunaliella at large scale, even at lab scale the medium cost could 

be significantly reduced by replacing analytical NaCl to table salt.24 As indicated in Table 1, the medium 

price can considerably be reduced from 1.65 €/L to 0.5 €/L, saving 70% of the medium cost. Considering 

that high salinity, thus high salt usage is required for D. salina cultivation, it can be recommended to use 

table salt as a more cost-efficient source of salinity at lab scale. Experiments 2 and 3 were conducted in 

the medium with table salt. 

Experiment 2: Effect of salinity  

The different salinities (1, 2 and 3 M) did not have an impact on the overall growth trends, and biomass 

concentration followed the typical growth curve to stationary phase, while other parameters followed an 

increase-decrease pattern (Figure. 2). The protein productivity of all treatments developed to its maximum 

in the exponential phase, with vast reductions of 50-60% towards the stationary phase (Figure. 2e). This 

pattern was composed of similar dynamics of both biomass protein content and suspension protein 

content (Figure. 2b and 2c). Typically, the biomass protein content of D. salina in this experiment was 

highest at early exponential phase (60-87% AFDW), with a fast drop until the stationary phase, with 

reductions of 40-54% (Figure. 2b). For the suspension protein content, the maximum levels for all three 

salinities were reached in the late exponential phase. This content declined with 15-24% in the stationary 

phase (Figure. 2c), indicating that the net production of protein stopped during the late exponential phase. 

Even though the observed increase-decrease pattern has been described by several studies, especially for 

the biomass protein content, it has never been reported for D. salina. Piorreck and Pohl (1984) tested two 

green microalgae (Chlorella vulgaris and Scenedesmus obliquus) and two blue-green microalgae 

(Anacystis nidulans and Microcystis aeruginosa) for their biochemical composition over the growth 
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phases, and all showed highest protein content in the exponential phase with a drastic decrease in the 

stationary phase. The same pattern was observed with other seven marine species during one growth 

phase.26 These findings all correspond well with the pattern observed for D. salina in this study. 

Furthermore, similar pattern as with this study was also obtained for marine microalga Isochrysis galbana 

regardless of nitrogen sources (nitrate, nitrite and urea) and temperatures (15°C and 30°C).27,28 It is 

reported that the increase-decrease pattern of biomass protein content is largely related to nitrogen 

availability, with loss of protein synthesis resulted from insufficient nitrogen during the stationary 

phase.25,26,28–30 At this point, the metabolism switches to channeling the excess carbon from 

photosynthesis into storage compounds rather than protein.31,32 This also implies that microalgal biomass 

from an exponential phase with sufficient nitrogen generally presents a high protein content.27 Although 

nitrogen content was not measured in this experiment, according to the Redfield ratio (C:N:P is 40:7:1 on 

mass base) and medium composition (0.14 g N/L), nitrogen became depleted when biomass concentration 

reached above 1 g AFDW/L. All in all, the results highlighted that the exponential phase has the highest 

protein productivity, and is therefore considered to be a suitable harvesting point when targeting the 

production of protein-rich biomass. 

Table 3 summarized the key growth parameters of D. salina under three different salinities. It is clear that, 

D. salina cultivated at 2M salinity performed the best, reaching the highest biomass production, biomass 

productivity and protein productivity of 1.4 g/L, 60.7 mg/L/d and 43.5 mg/L/d, respectively. The optimal 

salinity for D. salina found in this study is higher comparing with other studies on both D. salina and 

other Dunaliella species. When cultivated at 0.5M NaCl salinity mixed with municipal wastewater, D. 

salina showed the highest biomass production.33 For Dunaliella sp. isolated from South China Sea, the 

optimal salinity for cultivation are 0.5M and 0.9M, while at 0.9M salinity the microalga accumulated the 

highest protein content around 50% during the stationary phase.13 Another strain Dunaliella tertiolecta 

meanwhile also showed the best biomass production at 0.9M NaCl salinity.34 However as the optimum 

cultivation conditions for microalgae are highly strain-dependent, each strain needs to be tested for its 

optimum performance. When focusing on the protein productivity, D. salina cultivated at 2M salinity 
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outcompeted 1M and 3M salinity with 16% and 97%, correspondingly. Practically, the biomass 

productivity for open ponds has been reported to be 2.8-220 mg/L/d for various microalgal species and 

farm locations, while for closed photobioreactors the value is typically 200-3800 mg/L/d.35–38 The 

performance of D. salina in this study is comparable to an outdoor cultivation scenario. If further 

considering 50% protein content for microalgae in general, the protein productivity for open pond is to be 

1.4-110 mg/L/d.8 Comparing with the maximum protein productivity of 43 mg/L/d of D. salina resulted 

from this study, it also represents an outdoor cultivation scenario. Although the results obtained from this 

study were derived from continuous lighting, much lower light intensity and different reactor types 

comparing with open systems, they positively proved that D. salina can be used as a protein source with 

high protein content, and indicatively showed its potential to be applied in scaled-up outdoor cultivation 

at good protein productivity. 

Experiment 3: Effect of pH level 

Similar to the profiles obtained at different salinities, the different pH levels yielded common biomass 

growth curves as well, with most other growth parameters presenting an increase-decrease pattern (Figure. 

3). The maximum protein productivities were obtained in the exponential phase for all treatments, and 

reduced by 36-60% towards the stationary phase (Figure. 3e). Similarly, after reaching maximum levels 

of 59-81% in the exponential phase, the biomass protein content showed a decline of 26-54% (Figure. 3b). 

The suspension protein content profile at pH 8.5 and pH 8.5-9.5 looked different, with maximum levels 

reached only in the stationary phase. However these levels were still both 18% below the maximum 

values of pH 7.5 (Figure. 3c). The pH evolution of treatment pH 8.5-9.5 started at pH 8.5, with a rapid 

increase to pH 9.5 on day 4 when biomass started to grow exponentially, and maintained the level until 

the stationary phase. This possibly contributed to the significantly low starting level of biomass protein 

content at pH 8.5-9.5 (Figure. 3b), considering that the optimal pH for D. salina was reported to be pH 

7.5, and higher pH can be detrimental for biomass growth and protein synthesis.16,39–41 

This article is protected by copyright. All rights reserved.



 

 
 

From the three tested pH levels, pH 7.5 is preferred, obtaining the best results in terms of all growth 

parameters (Table 3). As suggested, a neutral pH level is essential for the cell growth of Dunaliella.39 

Many studies also used and proved that pH 7.5 is the optimal pH, thus the findings from this study 

coincided with the literatures.40,41 Specifically for protein productivity, the maximum value at pH 7.5 is 

significantly higher, up to 60% and 43% compared to pH 8.5 and 8.5-9.5, respectively (Table 3). As using 

free carbon dioxide is one the key actions to minimize production cost of microalgae, if any production 

site to be located next to a free carbon dioxide source, e.g. flue gas, maintaining the medium to be pH 7.5 

can be conveniently achieved.35,42 Together with the results obtained from experiment 2, it is evident that 

D. salina cultivation at 2M salinity and pH 7.5 is recommended for optimal protein production.  

Experiment 4: Pigment dynamics in different salt-substituted media 

Seeing the vast changing protein dynamics of D. salina, in this experiment the pigment dynamics were 

studied throughout the growth phases. In addition, more salt types from both rock and sea salt were 

included to verify the purity/origin of NaCl had few effects on biomass growth and pigment composition. 

The biomass concentration, the biomass and suspension levels of chlorophyll a, b and carotenoids are 

shown in Figure. 4. For comparison purposes, more growth parameters are also presented in Table 4. As 

can be seen from Figure. 4, D. salina performed equivalently in five different salt media in terms of 

biomass concentration and suspension pigment contents. This is likely due to the highly similar NaCl 

contents (only 1.8% difference) and corresponding media conductivities (only 0.3% difference) (Table 1), 

indicating that impurities from different origin have no effect. Biomass in raw sea salt medium overall 

gave a large standard deviation at the later phase of cultivation, which was also confirmed visually by the 

different colors of the suspension. The reason cannot be verified but was suspected to be an error with pH 

control. Based on the statistical analysis, from all pigment parameters listed in Table 4, no significant 

differences were found, further confirming that salt types in this experiment had no influence on the 

pigment composition of D. salina. Together with experiment 1, it is suggested that culture media 
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composed from different salts with high NaCl content have no effect on cultivating D. salina. Thus, even 

only for lab-scale cultivation, cheap salt sources should be preferred. 

From another perspective, the variations of biomass pigment content in different growth phases also 

remained insignificant. As indicated in Table 4, for all pigment parameters, there were no significant 

differences between the exponential phase and the stationary phase. More specifically, Figure. 5 

illustrated the relation of both biomass protein and pigment content of D. salina as a function of the 

biomass level throughout the growth phases. It is worth mentioning that all presented results were from 

samples before nitrogen depletion (below 1 g AFDW/L), as estimated based on Redfield ratio. Instead of 

an increase-decrease pattern of biomass protein content, biomass pigment content remained stable. As 

explained before, nitrogen availability in different growth phases has a big impact on the microalgal 

biomass composition, especially on the nitrogen-rich compounds such as protein (16%), chlorophyll a 

(6.3%) and chlorophyll b (6.2%).26,28–30,43 It has been reported that chlorophyll can be used as nitrogen 

pool once the nitrogen in the medium becomes depleted.28,44,45 However, differently from protein content 

reduction, chlorophyll content only starts reducing after the complete depletion of nitrogen in the 

medium.44,45 As the nitrogen in the medium has not been depleted at this stage, no decrease of chlorophyll 

content was observed yet (Figure. 5, Table 4). Regarding the total carotenoids content, as many studies 

have addressed the dynamics of carotenoids of D. salina at carotenogenic conditions, such as high light 

intensity, nutrient deprivation, high salinity, the carotenoids evolution pattern at non-carotenogenic 

conditions is not clear.46 In the present study, with using a non-carotenogenic D. salina strain, no 

significant changes were found throughout the growth phases, which is similar with two strains of 

Chlorella minutissima cultured for 12 days.47 

CONCLUSIONS 

Microalga D. salina is suitable to produce highly proteinaceous biomass and the importance of the 

exponential growth phase with the highest biomass protein content and productivity is highlighted. The 

optimal cultivating conditions were 2M NaCl and pH 7.5 obtaining the highest protein productivity of 
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43.5 mg/L/d and biomass protein content of 81%. Additionally, cost-efficient table salts were found 

perfectly suitable for cultivating D. salina. Compared to the dynamic biomass protein content, the 

biomass pigment content was rather stable throughout the growth phases. These findings hence provided 

insights for cheaper cultivation at lab scale, and improved protein productivity at larger scale. 
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Table 1 Salts used in this study: properties and allocation to the experiment number  

 

a: conductivity measured in Modified Johnson’s medium at a salinity of 117 g salt/L (2M). 
b: 1 kg pack. 
c: price calculated based on analytical grade chemicals obtained from Sigma-Aldrich composing Modified Johnson’s medium 19 at 2M salinity.  
n.d., not determined 
n.a., not applicable  
  

Salt Source Grain size NaCl content Conductivity  
at 2Ma 

Experiment 
number Priceb Medium pricec 

  (mm) (NaCl%) (mS/cm)  (€/kg) (€/L) 
Analytical NaCl CarlRoth Art. Nr. 9265.1 extra-fine 99.4 ± 0.8 n.d. 1 9.99 1.65 
Table salt Everyday, Colruyt Group, Belgium extra-fine 97.8 ± 1.6 n.d. 1, 2, 3 0.24 0.50 
Sea salt_fine MARSEL® 0-1, ZOUTMAN, Belgium < 1 99.2 ± 0.4 156.1 4 

n.a. 
Sea salt_raw MARSEL® 4-15, ZOUTMAN, Belgium < 15 99.0 ± 0.4 156.2 4 
Sea salt_pickle JAMONSAL, ZOUTMAN, Belgium < 0.63 99.6 ± 0.4 156.4 4 
Rock salt_raw Esco Benelux, Belgium < 3.2 99.2 ± 0.4 156.0 4 
Rock salt_vacuum Esco Benelux, Belgium extra-fine 98.7 ± 1.1 156.2 4 
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Table 2 Key growth parameters from day 12 of D. salina cultivated (in duplicate as _1 and _2) in media with analytical NaCl and table salt (experiment 1) 

 

 

 
 

All presented data are from day 12 except for µmax 
AFDW: ash-free dry weight. 
*: significant difference (p < 0.05). 
µmax: maximum specific growth rate. 

 
  

 Endpoint biomass 
level 

Suspension protein  
content 

Biomass protein  
content 

Biomass  
productivity 

Protein  
productivity µmax 

Unit g AFDW/L g protein/L %AFDW mg AFDW/L/d mg protein/L/d d-1 
NaCl_1 0.47 0.27 57.8 38.9 22.5* 0.51 
NaCl_2 0.50 0.28 55.7 41.9 23.3* 0.45 
Table salt_1 0.51 0.33 64.8 42.5 27.5* 0.48 
Table salt_2 0.55 0.33 60.7 45.9 27.9* 0.45 
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Table 3 Key growth parameters of D. salina cultivated at different salinities and pH levels (experiment 2 and 3). Data are expressed as means ± standard deviation (n 

= 3) 

 

 

 
 
 
 
 
 

AFDW: ash-free dry weight. 
*: significant difference (p < 0.05) with other treatments with the same experiment. 
µmax: maximum specific growth rate. 

 
  

 Max. protein  
productivity 

Max. biomass  
productivity 

Endpoint biomass 
level µmax 

 Unit mg protein/L/d mg AFDW/L/d g AFDW/L d-1 

Experiment 2 
1M 37.5 ± 0.8 60.1 ± 1.3 1.1 ± 0.05 0.67 ± 0.03 
2M 43.5 ± 1.8* 60.7 ± 0.8 1.4 ± 0.04 0.52 ± 0.02 
3M 22.1 ± 0.4 42.3 ± 4.1 1.3 ± 0.11 0.44 ± 0.02 

Experiment 3 
pH 7.5 43.5 ± 1.8* 60.7 ± 0.8 1.4 ± 0.04 0.52 ± 0.02 
pH 8.5 27.2 ± 3.2 54.4 ± 3.2 1.1 ± 0.04 0.55 ± 0.06 
pH 8.5-9.5 30.4 ± 2.6 55.7 ± 3.6 1.1 ± 0.07 0.53 ± 0.02 
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Table 4 Key growth parameters of D. salina cultivated with different table salts (experiment 4). Data are expressed as means ± standard deviation  

 

 

 

 

 

a: data from day 21 with triplicates (n=3). 
EP: exponential phase. Presented data are averaged from day 7, 11, 13, 14 and 18 with triplicates (n=15). 
SP: stationary phase. Presented data are averaged from day 19, 20 and 21 with triplicates (n=9). 
µmax: maximum specific growth rate. 

 
  

 Endpoint biomass 
Levela µmax  Chlorophyll a Chlorophyll b Carotenoids  Chlorophyll :  

Carotenoids 
Unit g AFDW/L d-1  %AFDW %AFDW %AFDW  - 

Sea salt_fine 0.9 ± 0.09 0.32 ± 0.02 
EP 1.3 ± 0.1 0.45 ± 0.08 0.51 ± 0.07  3.5 ± 0.4 
SP 1.3 ± 0.1 0.51 ± 0.05 0.52 ± 0.09  3.5 ± 0.5 

Sea salt_raw 0.9 ± 0.12 0.30 ± 0.03 
EP 1.2 ± 0.2 0.41 ± 0.11 0.48 ± 0.10  3.4 ± 0.3 
SP 1.1 ± 0.4 0.45 ± 0.16 0.44 ± 0.15  3.5 ± 0.3 

Sea salt_pickle 1.0 ± 0.09 0.33 ± 0.01 
EP 1.3 ± 0.2 0.48 ± 0.12 0.51 ± 0.10  3.6 ± 0.4 
SP 1.4 ± 0.2 0.54 ± 0.06 0.59 ± 0.05  3.2 ± 0.2 

Rock salt_raw 0.8 ± 0.07 0.27 ± 0.02 
EP 1.2 ± 0.5 0.47 ± 0.14 0.50 ± 0.13  3.5 ± 0.4 
SP 1.4 ± 0.1 0.56 ± 0.05 0.55 ± 0.09  3.6 ± 0.6 

Rock salt_vacuum 1.1 ± 0.02 0.32 ± 0.01 
EP 1.4 ± 0.3 0.51 ± 0.14 0.57 ± 0.14  3.4 ± 0.4 
SP 1.3 ± 0.2 0.57 ± 0.06 0.55 ± 0.09  3.5 ± 0.2 
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Figure captions: 

Figure. 1 Growth of D. salina in media with NaCl and table salt, each in duplicate, under the conditions 

of  28°C, pH 7.5 and light intensity at 70 µmol/m2/s (experiment 1) 

Figure. 2 Key growth profiles of D. salina cultivated at different salinities: a) biomass concentration; b) 

biomass protein content; c) suspension protein content; d) biomass productivity and e) protein 

productivity. Other cultivation conditions were 20°C, pH 7.5, light intensity of 55 µmol/m2/s and table 

salt composed medium (experiment 2). Data are expressed as means ± standard deviation (n = 3) 

Figure. 3 Key growth profiles of D. salina cultivated at different pH levels: a) biomass concentration; b) 

biomass protein content; c) suspension protein content; d) biomass productivity and e) protein 

productivity. Other cultivation conditions were 20°C, 2M salinity, light intensity of 55 µmol/m2/s and 

table salt composed medium (experiment no. 3). Data are expressed as means ± standard deviation (n = 3) 

Figure. 4 Growth profile and pigment content of D. salina cultivated in media with different table salts: a) 

biomass concentration; b) biomass chlorophyll a content; c) suspension chlorophyll a content; d) biomass 

chlorophyll b content; e) suspension chlorophyll b content; f) biomass carotenoids content and g) 

suspension carotenoids content. Other cultivation conditions were 20°C, 2M salinity, pH 7.5 and light 

intensity of 55 µmol/m2/s (experiment no. 4). Data are expressed as means ± standard deviation (n = 3) 

Figure. 5 Biomass protein and pigment content of D. salina as a function of the biomass concentration, as 

exemplified for the 2M salinity treatment using table salt from experiment 2 (protein) and the fine sea salt 

treatment at 2M salinity from experiment 4 (pigment). Data are expressed as means ± standard deviation 

(n = 3) 
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Figure 2. 
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Figure 3. 

This article is protected by copyright. All rights reserved.



 

 
 

Cultivation time (day)

0 5 10 15 20 25 30 35

Pr
ot

ei
n 

pr
od

uc
tiv

ity
 (m

g/
L/

d)

0

10

20

30

40

Bi
om

as
s 

pr
od

uc
tiv

ity
 (m

g 
AF

D
W

/L
/d

)

0

20

40

60

Su
sp

en
si

on
 p

ro
te

in
 c

on
te

nt
 (g

/L
)

0.0

0.2

0.4

0.6

Bi
om

as
s 

pr
ot

ei
n 

co
nt

en
t (

%
AF

D
W

)

0

20

40

60

80

Bi
om

as
s 

co
nc

en
tra

tio
n 

(g
 A

FD
W

/L
)

0.0

0.4

0.8

1.2

1.6

pH 7.5 
pH 8.5
pH 8.5-9.5
(uncontrolled)

a

b

c

d

e

  

This article is protected by copyright. All rights reserved.



 

 
 

Figure 4. 

This article is protected by copyright. All rights reserved.



 

 
 

Cultivation time (days)

0 4 8 12 16 20 24

Bi
om

as
s 

co
nc

en
tra

tio
n 

(g
 A

FD
W

/L
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Sea salt_fine
Sea salt_raw
Sea salt_pickle
Rock salt_raw
Rock salt_vacuum

C
hl

or
op

hy
ll a

 (%
AF

D
W

)

0.0

0.5

1.0

1.5

C
hl

or
op

hy
ll b

 (%
AF

D
W

)

0.0

0.2

0.4

0.6

0.8

Cultivation time (days)

4 8 12 16 20

C
ar

ot
en

oi
ds

 (%
AF

D
W

)

0.0

0.2

0.4

0.6

0.8

a

b

d

C
hl

or
op

hy
ll a

 (m
g/

L)

0

4

8

12

16

C
hl

or
op

hy
ll b

 (m
g/

L)

0

2

4

6

4 8 12 16 20

C
ar

ot
en

oi
ds

 (m
g/

L)

0

2

4

6

8

c

e

f g

  

This article is protected by copyright. All rights reserved.



 

 
 

Figure 5. 
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