toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title First-principles electronic functionalization of silicene and germanene by adatom chemisorption Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 291 Issue Pages 104-108  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study presents first-principles results on the electronic functionalization of silicene and germanene monolayers by means of chemisorption of adatom species H, Li, F, Sc, Ti, V. Three general adatom-monolayer configurations are considered, each having its distinct effect on the electronic structure, yielding metallic or semiconducting dispersions depending on the adatom species and configuration. The induced bandgap is a (in)direct F gap ranging from 0.2 to 2.3 eV for both silicene and germanene. In general the alternating configuration was found to be the most energetically stable. The boatlike and chairlike conformers are degenerate with the former having anisotropic effective carrier masses. The top configuration leads to the planar monolayer and predominately to a gapped dispersion. The hollow configuration with V adatoms retains the Dirac cone, but with strong orbital planar hybridization at the Fermi level. We also observe a planar surface state the Fermi level for the latter systems. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000329327700023 Publication Date 2013-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711  
  Call Number (up) UA @ lucian @ c:irua:113766 Serial 1208  
Permanent link to this record
 

 
Author Scalise, E.; Cinquanta, E.; Houssa, M.; van den Broek, B.; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.; doi  openurl
  Title Vibrational properties of epitaxial silicene layers on (111) Ag Type A1 Journal article
  Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 291 Issue Pages 113-117  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 x 4), (root 13 x root 13) and (2 root 3 x 2 root 3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag( 1 1 1). (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000329327700025 Publication Date 2013-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 36 Open Access  
  Notes Approved Most recent IF: 3.387; 2014 IF: 2.711  
  Call Number (up) UA @ lucian @ c:irua:113767 Serial 3843  
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.; doi  openurl
  Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
  Year 2014 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 5 Issue 4 Pages 1599-1610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000332467400044 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 24 Open Access  
  Notes Approved Most recent IF: 8.668; 2014 IF: 9.211  
  Call Number (up) UA @ lucian @ c:irua:117064 Serial 1045  
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reaction pathways of biomedically active species in an Ar plasma jet Type A1 Journal article
  Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 23 Issue 3 Pages 035015-35027  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we analyse the gas phase production and loss pathways for several biomedically active species, i.e. N2(A), O, O3, O2(a), N, H, HO2, OH, NO, NO2, N2O5, H2O2, HNO2 and HNO3, in an argon plasma jet flowing into an open humid air atmosphere. For this purpose, we employ a zero-dimensional reaction kinetics model to mimic the typical experimental conditions by fitting several parameters to experimentally measured values. These include ambient air diffusion, the gas temperature profile and power deposition along the jet effluent. We focus in detail on how the pathways of the biomedically active species change as a function of the position in the effluent, i.e. inside the discharge device, active plasma jet effluent and afterglow region far from the nozzle. Moreover, we demonstrate how the reaction kinetics and species production are affected by different ambient air humidities, total deposited power into the plasma and gas temperature along the jet. It is shown that the dominant pathways can drastically change as a function of the distance from the nozzle exit or experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000337891900017 Publication Date 2014-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.302; 2014 IF: 3.591  
  Call Number (up) UA @ lucian @ c:irua:117075 Serial 2820  
Permanent link to this record
 

 
Author Boneschanscher, M.P.; Evers, W.H.; Geuchies, J.J.; Altantzis, T.; Goris, B.; Rabouw, F.T.; van Rossum, S.A.P.; van der Zant, H.S.J.; Siebbeles, L.D.A.; Van Tendeloo, G.; Swart, I.; Hilhorst, J.; Petukhov, A.V.; Bals, S.; Vanmaekelbergh, D.; pdf  url
doi  openurl
  Title Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices Type A1 Journal article
  Year 2014 Publication Science Abbreviated Journal Science  
  Volume 344 Issue 6190 Pages 1377-1380  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oriented attachment of synthetic semiconductor nanocrystals is emerging as a route for obtaining new semiconductors that can have Dirac-type electronic bands like graphene, but also strong spin-orbit coupling. The two-dimensional assembly geometry will require both atomic coherence and long-range periodicity of the superlattices. We show how the interfacial self-assembly and oriented attachment of nanocrystals results in two-dimensional (2D) metal chalcogenide semiconductors with a honeycomb superlattice. We present an extensive atomic and nanoscale characterization of these systems using direct imaging and wave scattering methods. The honeycomb superlattices are atomically coherent, and have an octahedral symmetry that is buckled; the nanocrystals occupy two parallel planes. Considerable necking and large-scale atomic motion occurred during the attachment process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000337531700035 Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 304 Open Access OpenAccess  
  Notes Fwo; 262348 Esmi; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 37.205; 2014 IF: 33.611  
  Call Number (up) UA @ lucian @ c:irua:117095 Serial 1840  
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A. pdf  doi
openurl 
  Title Splitting of CO2 by vibrational excitation in non-equilibrium plasmas : a reaction kinetics model Type A1 Journal article
  Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 23 Issue 4 Pages 045004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a zero-dimensional kinetic model of CO2 splitting in non-equilibrium plasmas. The model includes a description of the CO2 vibrational kinetics (25 vibrational levels up to the dissociation limit of the molecule), taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is applied to study the reaction kinetics of CO2 splitting in an atmospheric-pressure dielectric barrier discharge (DBD) and in a moderate-pressure microwave discharge. The model results are in qualitative agreement with published experimental works. We show that the CO2 conversion and its energy efficiency are very different in these two types of discharges, which reflects the important dissociation mechanisms involved. In the microwave discharge, excitation of the vibrational levels promotes efficient dissociation when the specific energy input is higher than a critical value (2.0 eV/molecule under the conditions examined). The calculated energy efficiency of the process has a maximum of 23%. In the DBD, vibrationally excited levels do not contribute significantly to the dissociation of CO2 and the calculated energy efficiency of the process is much lower (5%).  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000345761500014 Publication Date 2014-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 170 Open Access  
  Notes Approved Most recent IF: 3.302; 2014 IF: 3.591  
  Call Number (up) UA @ lucian @ c:irua:117398 Serial 3108  
Permanent link to this record
 

 
Author Saeed, A.; Khan, A.W.; Shafiq, M.; Jan, F.; Abrar, M.; Zaka-ul-Islam, M.; Zakaullah, M. pdf  doi
openurl 
  Title Investigation of 50 Hz pulsed DC nitrogen plasma with active screen cage by trace rare gas optical emission spectroscopy Type A1 Journal article
  Year 2014 Publication Plasma science & technology Abbreviated Journal Plasma Sci Technol  
  Volume 16 Issue 4 Pages 324-328  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA.cm(-2) to 4 mA.cm(-2). The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N-2]) generation. It is observed that in an N-2-H-2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H-2 in the mixture at 3 mbar pressure and current density of 4 mA.cm(-2).  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Plasma Physics, the Chinese Academy of Sciences Place of Publication Beijing Editor  
  Language Wos 000335909600005 Publication Date 2014-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1009-0630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.83 Times cited 5 Open Access  
  Notes Approved Most recent IF: 0.83; 2014 IF: 0.579  
  Call Number (up) UA @ lucian @ c:irua:117686 Serial 1728  
Permanent link to this record
 

 
Author Bothner, D.; Seidl, R.; Misko, V.R.; Kleiner, R.; Koelle, D.; Kemmler, M. pdf  doi
openurl 
  Title Unusual commensurability effects in quasiperiodic pinning arrays induced by local inhomogeneities of the pinning site density Type A1 Journal article
  Year 2014 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 27 Issue 6 Pages 065002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We experimentally investigate the magnetic field dependence of the critical current I-c(B) of superconducting niobium thin films patterned with periodic and quasiperiodic antidot arrays on the submicron scale. For this purpose we monitor current-voltage characteristics at different values of B and temperature T. We investigate samples with antidots positioned at the vertices of two different tilings with quasiperiodic symmetry, namely the Shield Tiling and the Tuebingen Triangle Tiling. For reference we investigate a sample with a triangular antidot lattice. We find modulations of the critical current for both quasiperiodic tilings, which have partly been predicted by numerical simulations but not observed in experiments yet. The particularity of these commensurability effects is that they correspond to magnetic field values slightly above an integer multiple of the matching field. The observed matching effects can be explained by the caging of interstitial vortices in quasiperiodically distributed cages and the formation of symmetry-induced giant vortices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000336494900003 Publication Date 2014-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 7 Open Access  
  Notes ; This work has been supported by the European Research Council via SOCATHES and by the Deutsche Forschungsgemeinschaft via the SFB/TRR 21. DB gratefully acknowledges support by the Evangelisches Studienwerk e.V. Villigst. MK gratefully acknowledges support by the Carl-Zeiss Stiftung. VRM gratefully acknowledges support by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-VI). The authors thank Franco Nori for fruitful discussions on quasiperiodic pinning arrays. ; Approved Most recent IF: 2.878; 2014 IF: 2.325  
  Call Number (up) UA @ lucian @ c:irua:117763 Serial 3817  
Permanent link to this record
 

 
Author Maistrenko, Y.L.; Vasylenko, A.; Sudakov, O.; Levchenko, R.; Maistrenko, V.L. doi  openurl
  Title Cascades of multiheaded chimera states for coupled phase oscillators Type A1 Journal article
  Year 2014 Publication International journal of bifurcation and chaos in applied sciences and engineering Abbreviated Journal Int J Bifurcat Chaos  
  Volume 24 Issue 8 Pages 1440014  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. We discuss the appearance of the chimera states in networks of phase oscillators with attractive and with repulsive interactions, i.e. when the coupling respectively favors synchronization or works against it. By systematically analyzing the dependence of the spatiotemporal dynamics on the level of coupling attractivity/repulsivity and the range of coupling, we uncover that different types of chimera states exist in wide domains of the parameter space as cascades of the states with increasing number of intervals of irregularity, so-called chimera's heads. We report three scenarios for the chimera birth: (1) via saddle-node bifurcation on a resonant invariant circle, also known as SNIC or SNIPER, (2) via blue-sky catastrophe, when two periodic orbits, stable and saddle, approach each other creating a saddle-node periodic orbit, and (3) via homoclinic transition with complex multistable dynamics including an “eight-like” limit cycle resulting eventually in a chimera state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000341494900015 Publication Date 2014-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-1274;1793-6551; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.329 Times cited Open Access  
  Notes Approved Most recent IF: 1.329; 2014 IF: 1.078  
  Call Number (up) UA @ lucian @ c:irua:119303 Serial 285  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C. pdf  url
doi  openurl
  Title Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide Type A1 Journal article
  Year 2014 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 95 Issue Pages 579-591  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A reactive ReaxFF force field is developed for studying the influence of intrinsic point defects on the chemistry with TiO2 condensed phases. The force field parameters are optimized to ab initio data for the equations of state, relative phase stabilities for titanium and titanium dioxide, potential energy differences for (TiO2)n-clusters (n = 116). Also data for intrinsic point defects in anatase were added. These data contain formation energies for interstitial titanium and oxygen vacancies, diffusion barriers of the oxygen vacancies and molecular oxygen adsorption on a reduced anatase (101) surface. Employing the resulting force field, we study the influence of concentration of oxygen vacancies and expansion or compression of an anatase surface on the diffusion of the oxygen vacancies. Also the barrier for oxygen diffusion in the subsurface region is evaluated using this force field. This diffusion barrier of 27.7 kcal/mol indicates that the lateral redistribution of oxygen vacancies on the surface and in the subsurface will be dominated by their diffusion in the subsurface, since both this barrier as well as the barriers for diffusion from the surface to the subsurface and vice versa (17.07 kcal/mol and 21.91 kcal/mol, respectively, as calculated with DFT), are significantly lower than for diffusion on the surface (61.12 kcal/mol as calculated with DFT).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343781700077 Publication Date 2014-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.292; 2014 IF: 2.131  
  Call Number (up) UA @ lucian @ c:irua:119409 Serial 682  
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B.; Zare, M. pdf  doi
openurl 
  Title Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications Type A1 Journal article
  Year 2010 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 30 Issue 8 Pages 1112-1117  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000282905600006 Publication Date 2010-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 34 Open Access  
  Notes Approved Most recent IF: 4.164; 2010 IF: 2.180  
  Call Number (up) UA @ lucian @ c:irua:122039 Serial 242  
Permanent link to this record
 

 
Author Khalil-Allafi, J.; Amin-Ahmadi, B. doi  openurl
  Title Multiple-step martensitic transformations in the Ni51Ti49 single crystal Type A1 Journal article
  Year 2010 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 45 Issue 23 Pages 6440-6445  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multiple-step martensitic transformations of an aged Ni51Ti49 single crystal using calorimetric method were investigated. Results show that for short aging times (1045 min) multiple-step martensitic transformations on cooling occur in two steps. Applying intermediate aging times (1.254 h) results in three steps and long aging times (more than 8 h) lead to two-step martensitic transformations again. This behavior has not been recognized in NiTi single crystals in literatures. It can be related to the heterogeneity of composition and stress fields around Ni4Ti3 precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000282429400021 Publication Date 2010-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.599; 2010 IF: 1.859  
  Call Number (up) UA @ lucian @ c:irua:122046 Serial 2231  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  doi
openurl 
  Title The role of ions in plasma catalytic carbon nanotube growth : a review Type A1 Journal article
  Year 2015 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng  
  Volume 9 Issue 9 Pages 154-162  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract While it is well-known that the plasma-enhanced catalytic chemical vapor deposition (PECVD) of carbon nanotubes (CNTs) offers a number of advantages over thermal CVD, the influence of the various individual contributing factors is not well understood. Especially the role of ions is unclear, since ions in plasmas are generally associated with sputtering rather than with growing a material. Even so, various studies have demonstrated the beneficial effects of ion bombardment during the growth of CNTs. This review looks at the role of the ions in plasma-enhanced CNT growth as deduced from both experimental and simulation studies. Specific attention is paid to the beneficial effects of ion bombardment. Based on the available literature, it can be concluded that ions can be either beneficial or detrimental for carbon nanotube growth, depending on the exact conditions and the control over the growth process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360319600003 Publication Date 2015-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.712 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.712; 2015 IF: NA  
  Call Number (up) UA @ lucian @ c:irua:127815 Serial 4239  
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K. pdf  doi
openurl 
  Title Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 595 Issue 595 Pages 25-31  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000365812400005 Publication Date 2015-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 18 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number (up) UA @ lucian @ c:irua:130254 Serial 4219  
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; Amelinckx, S.; de Keyzer, R. doi  openurl
  Title Long period surface ordering of iodine ions in mixed tabular AgBr-AgBrI microcrystals Type A1 Journal article
  Year 1995 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 337 Issue Pages 153-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995RQ74900024 Publication Date 2003-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited 10 Open Access  
  Notes Approved no  
  Call Number (up) UA @ lucian @ c:irua:13162 Serial 1836  
Permanent link to this record
 

 
Author Oueslati, S.; Brammertz, G.; Buffiere, M.; ElAnzeery, H.; Touayar, O.; Koeble, C.; Bekaert, J.; Meuris, M.; Poortmans, J. pdf  doi
openurl 
  Title Physical and electrical characterization of high-performance Cu2ZnSnSe4 based thin film solar cells Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 582 Issue 582 Pages 224-228  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report on the electrical, optical and physical properties of Cu2ZnSnSe4 solar cells using an absorber layer fabricated by selenization of sputtered Cu, Zn and Cu10Sn90 multilayers. A maximum active-area conversion efficiency of 10.4% under AM1.5G was measured with a maximum short circuit current density of 39.7 mA/cm(2), an open circuit voltage of 394 mV and a fill factor of 66.4%. We perform electrical and optical characterization using photoluminescence spectroscopy, external quantum efficiency, current-voltage and admittance versus temperature measurements in order to derive information about possible causes for the low open circuit voltage values observed. The main defects derived from these measurements are strong potential fluctuations in the absorber layer as well as a potential barrier of the order of 133 meV at the back side contact. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000352225900048 Publication Date 2014-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 49 Open Access  
  Notes ; We would like to acknowledge Tom De Geyter, Greetje Godiers, and Guido Huyberechts from Flamac in Gent for sputtering of the metal layers. AGC is acknowledged for providing substrates. This research is partially funded by the Flemish government, Department Economy, Science and Innovation. ; Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number (up) UA @ lucian @ c:irua:132504 Serial 4225  
Permanent link to this record
 

 
Author Vanhellemont, J.; Romano-Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A. openurl 
  Title Point defect reactions in silicon studies in situ by high flux electron irradiation in high voltage transmission electron microscope Type A3 Journal article
  Year 1995 Publication Materials science and technology Abbreviated Journal  
  Volume 11 Issue Pages 1194-1204  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1995TQ95100016 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved no  
  Call Number (up) UA @ lucian @ c:irua:13297 Serial 2655  
Permanent link to this record
 

 
Author Udoh, K.-I.; El- Araby, A.M.; Tanaka, Y.; Hisatsune, K.; Yasuda, K.; Van Tendeloo, G.; van Landuyt, J. doi  openurl
  Title Structural aspects of AuCu I or AuCu II and a cuboidal black configuration of f.c.c. disordered phase in AuCu-Pt and AuCu-Ag pseudobinary alloys Type A1 Journal article
  Year 1995 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 203 Issue Pages 154-164  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos A1995TM62800016 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.567 Times cited 15 Open Access  
  Notes Approved  
  Call Number (up) UA @ lucian @ c:irua:13298 Serial 3205  
Permanent link to this record
 

 
Author Amelinckx, S.; Bernaerts, D.; Zhang, X.B.; Van Tendeloo, G.; van Landuyt, J. pdf  doi
openurl 
  Title A structure model and growth mechanism for multishell carbon nanotubes Type A1 Journal article
  Year 1995 Publication Science Abbreviated Journal Science  
  Volume 267 Issue Pages 1334-1338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos A1995QK06800041 Publication Date 2006-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075;1095-9203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 33.611 Times cited 169 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number (up) UA @ lucian @ c:irua:13309 Serial 3305  
Permanent link to this record
 

 
Author Evans, T.; Kiflawi, I.; Luyten, W.; Van Tendeloo, G.; Woods, G.S. pdf  doi
openurl 
  Title Conversion of platelets into dislocation loops and voidite formation in type IaB diamonds Type A1 Journal article
  Year 1995 Publication Proceedings of the Royal Society of London: series A: mathematical and physical sciences Abbreviated Journal P Roy Soc A-Math Phy  
  Volume 449 Issue Pages 295-313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1995QY10100007 Publication Date 2006-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-5021;1471-2946; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.192 Times cited 32 Open Access  
  Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #  
  Call Number (up) UA @ lucian @ c:irua:13314 Serial 513  
Permanent link to this record
 

 
Author Zhang, X.B.; Vasiliev, A.L.; Van Tendeloo, G.; He, Y.; Yu, L.-M.; Thiry, P.A. doi  openurl
  Title EM, XPS and LEED study of deposition of Ag on hydrogenated Si substrate prepared by wet chemical treatments Type A1 Journal article
  Year 1995 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 340 Issue Pages 317-327  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995TA17600013 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited 11 Open Access  
  Notes Approved  
  Call Number (up) UA @ lucian @ c:irua:13319 Serial 1032  
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C. pdf  doi
openurl 
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 64 Issue 64 Pages 278-285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000376547700033 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.164  
  Call Number (up) UA @ lucian @ c:irua:134164 Serial 4251  
Permanent link to this record
 

 
Author Sahin, H.; Torun, E.; Bacaksiz, C.; Horzum, S.; Kang, J.; Senger, R.T.; Peeters, F.M. pdf  url
doi  openurl
  Title Computing optical properties of ultra-thin crystals Type A1 Journal article
  Year 2016 Publication Wiley Interdisciplinary Reviews: Computational Molecular Science Abbreviated Journal Wires Comput Mol Sci  
  Volume 6 Issue 6 Pages 351-368  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract An overview is given of recent advances in experimental and theoretical understanding of optical properties of ultra-thin crystal structures (graphene, phosphorene, silicene, MoS2 , MoSe2, WS2, WSe2, h-AlN, h-BN, fluorographene, and graphane). Ultra-thin crystals are atomically thick-layered crystals that have unique properties which differ from their 3D counterpart. Because of the difficulties in the synthesis of few-atom-thick crystal structures, which are thought to be the main building blocks of future nanotechnology, reliable theoretical predictions of their electronic, vibrational, and optical properties are of great importance. Recent studies revealed the reliable predictive power of existing theoretical approaches based on density functional theory. (C) 2016 John Wiley & Sons, Ltd WIREs Comput Mol Sci 2016, 6:351-368. doi: 10.1002/wcms.1252 For further resources related to this article, please visit the .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379267300002 Publication Date 2016-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-0876 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 14.016 Times cited 14 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. J.K. is supported by a FWO Pegasus short Marie Curie Fellowship. ; Approved Most recent IF: 14.016  
  Call Number (up) UA @ lucian @ c:irua:134649 Serial 4155  
Permanent link to this record
 

 
Author Idrissi, H.; Bollinger, C.; Boioli, F.; Schryvers, D.; Cordier, P. url  doi
openurl 
  Title Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing Type A1 Journal article
  Year 2016 Publication Science Advances Abbreviated Journal  
  Volume 2 Issue 2 Pages e1501671-e1501671  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379620200043 Publication Date 2016-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:134983 Serial 4202  
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D. pdf  doi
openurl 
  Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
  Year 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 26 Issue 12 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000300151300010 Publication Date 2011-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited Open Access  
  Notes Approved Most recent IF: 2.305; 2011 IF: 1.723  
  Call Number (up) UA @ lucian @ c:irua:136427 Serial 4508  
Permanent link to this record
 

 
Author Jalabert, D.; Pelloux-Gervais, D.; Béché, A.; Hartmann, J.M.; Gergaud, P.; Rouvière, J.L.; Canut, B. doi  openurl
  Title Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering Type A1 Journal article
  Year 2012 Publication Physica Status Solidi A-Applications And Materials Science Abbreviated Journal Phys Status Solidi A  
  Volume 209 Issue 2 Pages 265-267  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The depth strain profile in silicon from the Si (001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303382700005 Publication Date 2011-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.775; 2012 IF: 1.469  
  Call Number (up) UA @ lucian @ c:irua:136430 Serial 4497  
Permanent link to this record
 

 
Author Stafford, B.H.; Sieger, M.; Ottolinger, R.; Meledin, A.; Strickland, N.M.; Wimbush, S.C.; Van Tendeloo, G.; Huehne, R.; Schultz, L. pdf  doi
openurl 
  Title Tilted BaHfO3 nanorod artificial pinning centres in REBCO films on inclined substrate deposited-MgO coated conductor templates Type A1 Journal article
  Year 2017 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 30 Issue 5 Pages 055002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We grow BaHfO3 (BHO) nanorods in REBa2Cu3O7-x (REBCO, RE: Gd or Y) thin films on metal tapes coated with the inclined substrate deposited (ISD)-MgO template by both electron beam physical vapour deposition and pulsed laser deposition. In both cases the nanorods are inclined by an angle of 21 degrees-29 degrees with respect to the sample surface normal as a consequence of the tilted growth of the REBCO film resulting from the ISD-MgO layer. We present angular critical current density (J(c)) anisotropy as well as field- and temperature-dependant J(c) data of the BHO nanorod-containing GdBCO films demonstrating an increase in J(c) over a wide range of temperatures between 30 and 77 K and magnetic fields up to 8 T. In addition, we show that the angle of the peak in the J(c) anisotropy curve resulting from the nanorods is dependent both on temperature and magnetic field. The largest J(c) enhancement from the addition of the nanorods was found to occur at 30 K, 3 T, resulting in a J(c) of 3.0 MA cm(-2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000398860300001 Publication Date 2017-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 6 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Anh Tu Bohn and other colleagues at THEVA Dunnschichtechnik GmbH for technical assistance and helpful discussion and R Nast for assistance with sample patterning. We also acknowledge partial support from EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/2007-2013) under Grant Agreement n. 280432. ; Approved Most recent IF: 2.878  
  Call Number (up) UA @ lucian @ c:irua:143641 Serial 4694  
Permanent link to this record
 

 
Author de de Meux, A.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Oxygen vacancies effects in a-IGZO : formation mechanisms, hysteresis, and negative bias stress effects Type A1 Journal article
  Year 2017 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 214 Issue 6 Pages 1600889  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The amorphous oxide semiconductor Indium-Gallium-Zinc-Oxide (a-IGZO) has gained a large technological relevance as a semiconductor for thin-film transistors in active-matrix displays. Yet, major questions remain unanswered regarding the atomic origin of threshold voltage control, doping level, hysteresis, negative bias stress (NBS), and negative bias illumination stress (NBIS). We undertake a systematic study of the effects of oxygen vacancies on the properties of a-IGZO by relating experimental observations to microscopic insights gained from first-principle simulations. It is found that the amorphous nature of the semiconductor allows unusually large atomic relaxations. In some cases, oxygen vacancies are found to behave as perfect shallow donors without the formation of structural defects. Once structural defects are formed, their transition states can vary upon charge and discharge cycles. We associate this phenomenon to a possible presence of hysteresis in the transfer curve of the devices. Under NBS, the creation of oxygen vacancies becomes energetically very stable, hence thermodynamically very likely. This generation process is correlated with the occurrence of the negative bias stress instabilities observed in a-IGZO transistors. While oxygen vacancies can therefore be related to NBS and hysteresis, it appears unlikely from our results that they are direct causes of NBIS, contrary to common belief.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403339900012 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.775  
  Call Number (up) UA @ lucian @ c:irua:144219 Serial 4678  
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B. pdf  doi
openurl 
  Title Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots Type A1 Journal article
  Year 2017 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 32 Issue 6 Pages 065016  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Spin transitions driven by a periodically varying electric potential in dilute fluorinated graphene quantum dots are investigated. Flakes of monolayer graphene as well as electrostatic electron traps induced in bilayer graphene are considered. The stationary states obtained within the tight-binding approach are used as the basis for description of the system dynamics. The dilute fluorination of the top layer lifts the valley degeneracy of the confined states and attenuates the orbital magnetic dipole moments due to current circulation within the flake. The spin-orbit coupling introduced by the surface deformation of the top layer induced by the adatoms allows the spin flips to be driven by the AC electric field. For the bilayer quantum dots the spin flip times is substantially shorter than the spin relaxation. Dynamical effects including many-photon and multilevel transitions are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402405800007 Publication Date 2017-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.305 Times cited Open Access  
  Notes ; This work was supported by the National Science Centre according to decision DEC-2013/11/B/ST3/03837 and by the Flemish Science Foundation (FWO-VL). ; Approved Most recent IF: 2.305  
  Call Number (up) UA @ lucian @ c:irua:144238 Serial 4646  
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Srinivasu, K.; Korneychuk, S.; Turner, S.; Drijkoningen, S.; Pobedinskas, P.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K. pdf  doi
openurl 
  Title Type A1 Journal article
  Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 213 Issue 10 Pages 2654-2661  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Utilization of Au and nanocrystalline diamond ( NCD) as interlayers noticeably modifies the microstructure and field electron emission ( FEE) properties of hexagonal boron nitride nanowalls ( hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3V mu m(-1), attaining FEE current density of 2.58mAcm(-2) and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride ( aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388321500017 Publication Date 2016-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 5 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Projects G.0456.12 and G.0044.13N, the Methusalem “NANO” network. K. J. Sankaran, P. Pobedinskas, and S. Turner are FWO Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 1.775  
  Call Number (up) UA @ lucian @ c:irua:144644UA @ admin @ c:irua:144644 Serial 4655  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: