toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Piacente, G.; Hai, G.Q.; Peeters, F.M. url  doi
openurl 
  Title Continuous structural transitions in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 2 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landaus theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single- and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000274002100035 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes ; The authors acknowledge FAPESP and CNPq (Brazil), the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl) (Belgium) for financial support. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:81243 Serial 493  
Permanent link to this record
 

 
Author Pogosov, W.V.; Zhao, H.J.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Kink-antikink vortex transfer in periodic-plus-random pinning potential : theoretical analysis and numerical experiments Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 2 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of random pinning on the vortex dynamics in a periodic square potential under an external drive is investigated. Using numerical experiments and theoretical approach, we found several dynamical regimes of vortex motion that are different from the ones for a regular pinning potential. Vortex transfer is controlled by kinks and antikinks, which either pre-exist in the system or appear spontaneously in pairs and then propagate. When kinks and antikinks collide, they annihilate. We provide clear physical interpretations of the observed features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000274002100087 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish government, FWO-Vl, and IAP. W.V.P. acknowledges support from RFBR (Contract No. 09-02-00248). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:81251 Serial 1761  
Permanent link to this record
 

 
Author Wendelen, W.; Dzhurakhalov, A.A.; Peeters, F.M.; Bogaerts, A. pdf  doi
openurl 
  Title Combined molecular dynamics: continuum study of phase transitions in bulk metals under ultrashort pulsed laser irradiation Type A1 Journal article
  Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 12 Pages 5652-5660  
  Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The phase transition processes induced by ultrashort, 100 fs pulsed laser irradiation of Au, Cu, and Ni are studied by means of a combined atomistic-continuum approach. A moderately low absorbed laser fluence range, from 200 to 600 J/m2 is considered to study phase transitions by means of a local and a nonlocal order parameter. At low laser fluences, the occurrence of layer-by-layer evaporation has been observed, which suggests a direct solid to vapor transition. The calculated amount of molten material remains very limited under the conditions studied, especially for Ni. Therefore, our results show that a kinetic equation that describes a direct solid to vapor transition might be the best approach to model laser-induced phase transitions by continuum models. Furthermore, the results provide more insight into the applicability of analytical superheating theories that were implemented in continuum models and help the understanding of nonequilibrium phase transitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000275855600044 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access  
  Notes ; A.D. gratefully acknowledges Professor M. Hot (ULB, Brussels) for the basic MD-code that was modified further for the laser-induced melting processes. W.W, and A.D. are thankful to Professor L.V. Zhigilei for useful discussions and advices. The calculations were performed on the CALCUA computing facility of the University of Antwerp. This work was supported by the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number (up) UA @ lucian @ c:irua:81391 Serial 402  
Permanent link to this record
 

 
Author Milošević, M.V.; Gillijns, W.; Silhanek, A.V.; Libál, A.; Peeters, F.M.; Moshchalkov, V.V. doi  openurl
  Title Guided nucleation of superconductivity on a graded magnetic substrate Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 3 Pages 032503,1-032503,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate the controlled spatial nucleation of superconductivity in a thin film deposited on periodic arrays of ferromagnetic dots with gradually increasing diameter. The perpendicular magnetization of the dots induces vortex-antivortex molecules in the sample, with the number of (anti)vortices increasing with magnet size. The resulting gradient of antivortex density between the dots predetermines local nucleation of superconductivity in the sample as a function of the applied external field and temperature. In addition, the compensation between the applied magnetic field and the antivortices results in an unprecedented enhancement of the critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000273890500034 Publication Date 2010-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-NES program. W. G., A. V. S., and A. L. acknowledge individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number (up) UA @ lucian @ c:irua:81504 Serial 1400  
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B. pdf  doi
openurl 
  Title The quasiparticle band structure of zincblende and rocksalt ZnO Type A1 Journal article
  Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 12 Pages 125505,1-125505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the pd hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong pd hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn20 + pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ~ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong pd hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000275496600010 Publication Date 2010-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 53 Open Access  
  Notes Iwt; Fwo; Bof-Nio Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number (up) UA @ lucian @ c:irua:81531 Serial 2802  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Calorimetric properties of mesoscopic superconducting disks, rings, and cylinders Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 6 Pages 064501,1-064501,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal signatures of superconductivity in mesoscopic disks, rings and cylinders are calculated within the Ginzburg-Landau theory. In an applied perpendicular magnetic field H the heat capacity of mesoscopic samples shows a strong dependence on the realized vortex state; discontinuities are found at the critical field for different vorticities, as well as at the superconducting-to-normal state transition. The same applies to the intermediate state of type-I superconductors. Even the subtle changes in the fluxoid distribution inside the sample leave clear signatures on heat capacity, which is particularly useful for fully three-dimensional samples whose interior is often inaccessible by magnetometry. The heat-capacity jump ΔC(H) at the critical temperature exhibits quasiperiodic modulations as a function of magnetic field. In mesoscopic superconducting rings, these oscillations provide calorimetric verification of the Little-Parks effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998100091 Publication Date 2010-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; We are grateful to O. Bourgeois for useful discussions. This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles (IAP) Program-Belgian State-Belgian Science Policy, ESF-JSPS NES program and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:81766 Serial 271  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Extra Dirac points in the energy spectrum for superlattices on single-layer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 7 Pages 075438,1-075438,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the emergence of extra Dirac points in the electronic structure of a periodically spaced barrier system, i.e., a superlattice, on single-layer graphene, using a Dirac-type Hamiltonian. Using square barriers allows us to find analytic expressions for the occurrence and location of these new Dirac points in k space and for the renormalization of the electron velocity near them in the low-energy range. In the general case of unequal barrier and well widths the new Dirac points move away from the Fermi level and for given heights of the potential barriers there is a minimum and maximum barrier width outside of which the new Dirac points disappear. The effect of these extra Dirac points on the density of states and on the conductivity is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998200133 Publication Date 2010-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 211 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Brazilian Council for Research (CNPq), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:81767 Serial 1159  
Permanent link to this record
 

 
Author Khaydarov, R.T.; Beisinbaeva, H.B.; Sabitov, N.M.; Terentev, V.B.; Berdiyorov, G.R. doi  openurl
  Title Effect of neutron irradiation on the characteristics of laser-produced plasma Type A1 Journal article
  Year 2010 Publication Nuclear fusion Abbreviated Journal Nucl Fusion  
  Volume 50 Issue 2 Pages 025024,1-025024,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the mass-spectrometric method we studied the formation of multi-charged plasma ions during the interaction of laser radiation with solid targets irradiated by neutron beams. We found that structural defects, caused by the neutron irradiation, influence not only the efficiency of the process of material evaporation and emission of plasma, but also the ionization and recombination processes taking place at the initial stage of plasma formation and expansion. We also show the effect of the dose of neutron irradiation on the threshold of plasma formation from the surface of the target.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vienna Editor  
  Language Wos 000275322200029 Publication Date 2010-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-5515;1741-4326; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.307 Times cited 3 Open Access  
  Notes ; This work was supported by MINVIZ Uzbekistan and by IAEA (No 13738). G. R. B acknowledges support from FWO-Vlaanderen. ; Approved Most recent IF: 3.307; 2010 IF: 3.303  
  Call Number (up) UA @ lucian @ c:irua:81769 Serial 825  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Verberck, B.; Ionova, G.V. doi  openurl
  Title Molecular interaction energies and optimal configuration of a cubane dimer Type A1 Journal article
  Year 2010 Publication International journal of quantum chemistry Abbreviated Journal Int J Quantum Chem  
  Volume 110 Issue 5 Pages 1063-1069  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have studied the dependence of the binding energy of a cubane dimer on the mutual orientation of and the distance between the composing monomers employing the second-order Møller-Plesset perturbation scheme (MP2) with the cc-pVDZ molecular basis set. We have found that the MP2 contribution from the molecular correlations is responsible for the bound state of the cubane dimer, whereas the Hartree-Fock contribution remains anti-bonding at all intermolecular distances. Starting with two molecules in the standard orientation and centers of mass at (0,0,0) and (0,0,d), respectively, the maximal binding energy is found at d = 5.125 Å and one of the monomers rotated by 45° about the z-axis. This configuration implies that the hydrogen atoms belonging to different monomers tend to repel each other. The results are in agreement with experimental data on the optimal packing of cubane molecules in the solid state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000274720000011 Publication Date 2009-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-7608;1097-461X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.92 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 2.92; 2010 IF: 1.302  
  Call Number (up) UA @ lucian @ c:irua:81944 Serial 2179  
Permanent link to this record
 

 
Author Doria, M.M.; Romaguera, A.R. de C.; Peeters, F.M. url  doi
openurl 
  Title Vortex patterns in a mesoscopic superconducting rod with a magnetic dot Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 10 Pages 104529,1-104529,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study a mesoscopic superconducting rod with a magnetic dot on its top having its moment oriented along the axis of symmetry. We study the dependence of the vortex pattern with the height and find that for very short and very long rods, the vortex pattern acquires a simple structure, consisting of giant and of multivortex states, respectively. In the long limit, the most stable configuration consists of two vortices, that reach the lateral surface of the rod diametrically opposed. The long rod shows reentrant behavior within some range of its radius and of the dots magnetic moment. Our results are obtained within the Ginzburg-Landau approach in the limit of no magnetic shielding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276248700123 Publication Date 2010-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; The three authors acknowledge CNPq and the bilateral program between Brazil and Flanders for financial support. They also make the following acknowledgments for financial support: A. R. de C. Romaguera to FACEPE, M. M. Doria to FAPERJ, and F. M. Peeters to the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IUAP), and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:82272 Serial 3877  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Stacking order dependent electric field tuning of the band gap in graphene multilayers Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 11 Pages 115432,1-115432,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of different stacking order of graphene multilayers on the electric field induced band gap is investigated. We considered a positively charged top and a negatively charged back gate in order to independently tune the band gap and the Fermi energy of three and four layer graphene systems. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We found that the gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. Also we predict that for four layers of graphene the energy gap strongly depends on the choice of stacking, and we found that the gap for the different types of stacking is much larger as compared to the case of Bernal stacking. Trigonal warping changes the size of the induced electronic gap by approximately 30% for intermediate and large values of the induced electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276248800145 Publication Date 2010-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 142 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:82274 Serial 3148  
Permanent link to this record
 

 
Author Branchaud, S.; Kam, A.; Zawadzki, P.; Peeters, F.M.; Sachrajda, A.S. url  doi
openurl 
  Title Transport detection of quantum Hall fluctuations in graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 12 Pages 121406,1-121406,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Low-temperature magnetoconductance measurements were made in the vicinity of the charge neutrality point (CNP). Two origins for the fluctuations were identified close to the CNP. At very low magnetic fields there exist only mesoscopic magnetoconductance quantum interference features which develop rapidly as a function of density. At slightly higher fields (>0.5 T), close to the CNP, additional fluctuations track the quantum Hall (QH) sequence expected for monolayer graphene. These additional features are attributed to effects of locally charging individual QH localized states. These effects reveal a precursor to the quantum Hall effect since, unlike previous transport observations of QH dot charging effects, they occur in the absence of quantum Hall plateaus or Shubnikov-de Haas oscillations. From our transport data we are able to extract parameters that characterize the inhomogeneities in our device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276248900026 Publication Date 2010-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; We would like to acknowledge important motivating discussions with Louis Gaudreau, Ghislain Granger, Pawel Hawrylak, Devrim Guclu, Josh Folk, and Mark Lundeberg. A. S. S. and F. M. P. acknowledge funding from CIFAR. A. S. S. and S. B. acknowledge assistance from NSERC. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:82275 Serial 3723  
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M. doi  openurl
  Title Magnetoresistance in a hybrid ferromagnetic/semiconductor device Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 6 Pages 063718,1-063718,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ballistic transport of a two-dimensional electron gas (2DEG) in a rectangle shaped wire, subjected to a local nonhomogeneous magnetic field that results from an in-plane magnetized ferromagnetic (FM) strip deposited above the 2DEG, is investigated theoretically. We found a positive magnetoresistance (MR), which exhibits hysteresis behavior with respect to the direction of the magnetic field sweep, in agreement with a recent experiment. This positive MR can be tuned by applying a gate voltage to the FM strip.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000276210800063 Publication Date 2010-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number (up) UA @ lucian @ c:irua:82281 Serial 1927  
Permanent link to this record
 

 
Author Escoffier, W.; Grigorieva, I.V.; Misko, V.R.; Baelus, B.J.; Peeters, F.M.; Vinnikov, L.Y.; Dubnos, S. url  doi
openurl 
  Title Formation of vortex clusters and giant vortices in mesoscopic superconducting disks with strong disorder Type A1 Journal article
  Year 2008 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 97 Issue Pages 012172,1-012172,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Merged, or giant, multi-quanta vortices (GVs) appear in very small superconductors near the superconducting transition due to strong confinement of magnetic flux. Here we present evidence for a new, pinning-related, mechanism for vortex merger. Using Bitter decoration to visualise vortices in small Nb disks, we show that confinement in combination with strong disorder causes individual vortices to merge into clusters/GVs well below Tc and Hc2, in contrast to well-defined shells of individual vortices found in the absence of pinning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000276054100171 Publication Date 2008-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:82320 Serial 1266  
Permanent link to this record
 

 
Author Vandenberghe, W.; Sorée, B.; Magnus, W.; Groeseneken, G. doi  openurl
  Title Zener tunneling in semiconductors under nonuniform electric fields Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 5 Pages 054520,1-054520,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, a renewed interest in Zener tunneling has arisen because of its increasing impact on semiconductor device performance at nanometer dimensions. In this paper we evaluate the tunnel probability under the action of a nonuniform electric field using a two-band model and arrive at significant deviations from the commonly used Kanes model, valid for weak uniform fields only. A threshold on the junction bias where Kanes model for Zener tunneling breaks down is determined. Comparison with Kanes model particularly shows that our calculation yields a higher tunnel probability for intermediate electric fields and a lower tunnel probability for high electric fields. When performing a current calculation comparing to the WKB approximation for the case of an abrupt p-n junction significant differences concerning the shape of the I-V curve are demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275657500136 Publication Date 2010-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 22 Open Access  
  Notes ; William Vandenberghe gratefully acknowledges the support of a Ph. D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). These authors acknowledge the support from IMEC's Industrial Affiliation Program and the authors would like to thank Anne Verhulst for useful comments. ; Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number (up) UA @ lucian @ c:irua:82450 Serial 3929  
Permanent link to this record
 

 
Author Baelus, B.J.; Kanda, A.; Peeters, F.M.; Ootuka, Y.; Kadowaki, K. url  doi
openurl 
  Title Two kinds of vortex states in thin mesoscopic superconductors Type A1 Journal article
  Year 2006 Publication Journal of physics : conference series T2 – Journal of physics: conference series Abbreviated Journal  
  Volume 43 Issue Pages 647-650  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Experimentally, multivortex states and giant vortex states in mesoscopic superconductors can be distinguished directly by using the multiple-small-tunnel-junctions, and indirectly by studying the temperature dependence of the expulsion fields. These experimental results are compared with the theoretical prediction from the nonlinear Ginzburg- Landau theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000277479400158 Publication Date 2006-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:82762 Serial 3782  
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Dynamics of multishell vortex structures in mesoscopic superconducting Corbino disks Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages 134504,1-134504,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the dynamics of vortex shells in mesoscopic superconducting Corbino disks, where vortices form shells as recently observed in micrometer-sized Nb disks. Due to the interplay between the vortex-vortex interaction, the gradient Lorentz force and the (in)commensurability between the numbers of vortices in shells, the process of angular melting of vortex-shell configurations becomes complex. Angular melting can start either from the center of the disk (where the shear stress is maximum) or from its boundary (where the shear stress is minimum) depending on the specific vortex configuration. Furthermore, we found that two kinds of defects can exist in such vortex-shell structures: intrashell and intershell defects. An intrashell defect may lead to an inverse dynamic behavior, i.e., one of the vortex shells under a stronger driving force can rotate slower than the adjacent shell that is driven by a weaker Lorentz force. An intershell defect always locks more than two shells until the gradient of the Lorentz force becomes large enough to break the rigid-body rotation of the locked shells. Such a lock-unlock process leads to hysteresis in the angular velocities of the shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277207900079 Publication Date 2010-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by the “Odysseus” program of the Flemish Government and the Flemish Science Foundation (FWO-V1), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-V1. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:82803 Serial 779  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 14 Pages 144511,1-144511,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using time-dependent Ginzburg-Landau theory, we study the dynamic properties of a rectangular superconducting loop, which are found to depend on the position of the current leads. For asymmetric positioning of the leads, different kinetic inductance of the two paths for injected electric current leads to different critical conditions in the two branches. System self-regulates by allowing vortex entry, as vortex currents bring equilibration between the two current flows and the conventional resistive state can be realized. We also demonstrate that individual vortex entry in the loop can be detected by measuring the voltage between normal-metal leads, for applied currents comparable in magnitude to the screening currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277210200107 Publication Date 2010-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES program, and the ESF-AQDJJ network. G.R.B. acknowledges support from FWO-Vlaanderen. The authors thank S. Michotte for useful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:82804 Serial 3901  
Permanent link to this record
 

 
Author Magnus, W.; Brosens, F.; Sorée, B. url  doi
openurl 
  Title Time dependent transport in 1D micro- and nanostructures: solving the Boltzmann and Wigner-Boltzmann equations Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 193 Issue 1 Pages 012004,1-012004,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract For many decades the Boltzmann distribution function has been used to calculate the non-equilibrium properties of mobile particles undergoing the combined action of various scattering mechanisms and externally applied force fields. When the latter give rise to the occurrence of inhomogeneous potential profiles across the region through which the particles are moving, the numerical solution of the Boltzmann equation becomes a highly complicated task. In this work we highlight a particular algorithm that can be used to solve the time dependent Boltzmann equation as well as its quantum mechanical extension, the WignerBoltzmann equation. As an illustration, we show the calculated distribution function describing electrons propagating under the action of both a uniform and a pronouncedly non-uniform electric field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000277100400004 Publication Date 2009-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:82861 Serial 3667  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Chaves, A.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Simplified model for the energy levels of quantum rings in single layer and bilayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 4 Pages 045431,1-045431,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model by solving the Dirac equation for a zero width ring geometry, i.e., by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a nonzero gap in the spectrum. Our minimal model gives insight on the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277186000010 Publication Date 2010-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 76 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Bilateral program between Flanders and Brazil, and the Brazilian Council for Research (CNPq). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:82866 Serial 3005  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 23 Pages 235421,1-235421,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278710800003 Publication Date 2010-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 108 Open Access  
  Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:83093 Serial 2259  
Permanent link to this record
 

 
Author Payette, C.; Amaha, S.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Tarucha, S. url  doi
openurl 
  Title Coherent level mixing in dot energy spectra measured by magnetoresonant tunneling spectroscopy of vertical quantum dot molecules Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 24 Pages 245310,1-245310,15  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study by magnetoresonant tunneling spectroscopy single-particle energy spectra of the constituent weakly coupled dots in vertical quantum dot molecules over a wide energy window. The measured energy spectra are well modeled by calculated spectra for dots with in-plane confinement potentials that are elliptical and parabolic in form. However, in the regions where two, three, or four single-particle energy levels are naively expected to cross, we observe pronounced level anticrossing behavior and strong variations in the resonant currents as a consequence of coherent mixing induced by small deviations in the nearly ideal dot confinement potentials. We present detailed analysis of the energy spectra, and focus on two examples of three-level crossings whereby the coherent mixing leads to concurrent suppression and enhancement of the resonant currents when the anticrossing levels are minimally separated. The suppression of resonant current is of particular interest since it is a signature of dark state formation due to destructive interference. We also describe in detail and compare two measurement strategies to reliably extract the resonant currents required to characterize the level mixing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278606100003 Publication Date 2010-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; We thank A. Bezinger, D. Roth, and M. Malloy for assistance with some of the processing, and K. Ono, T. Kodera, T. Hatano, Y. Tokura, M. Stopa, M. Hilke, G.C. Aers, M. Korkusinski, and R. M. Abolfath for useful discussions. Part of this work is supported by NSERC (Discovery Grant No. 208201), Flemish Science Foundation (FWO-VI), Grant-in-Aid for Scientific Research S (Grant No. 191040070), B (Grant No. 18340081), and by Special Coordination Funds for Promoting Science and Technology, and MEXT. S.T. acknowledges support from QuEST program (BAA-0824). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:83095 Serial 379  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. doi  openurl
  Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type P1 Proceeding
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages 327-338  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We study the effect, of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent. numerical solution of the Bogoliubov-de Gennes equations. We show that, in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic held exhibits quantum-size oscillations with pronounced resonant enhancements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278418300025 Publication Date 2010-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Interuni-versity Attraction Poles Programme -Belgian State -Belgian Science Policy (IAP) and the ESF-AQDJJ network. ; Approved Most recent IF: NA  
  Call Number (up) UA @ lucian @ c:irua:83294 Serial 3361  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. doi  openurl
  Title Strong influence of nonlocal nonequilibrium effects on the dynamics of the order parameter in a phase-slip center: ring studies Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 18 Pages 184521,1-184521,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the influence of the inelastic relaxation time τ̃E of the quasiparticle distribution function f(E) on the phase slip process in quasi-one-dimensional superconducting rings at a temperature close to the critical temperature Tc. We find that the initial time of growth of the order parameter |Δ| in the phase slip core after the phase slip is a nonmonotonic function of τ̃E which has a maximum at τ̃E≃τ̃GL=πℏ/8kB(Tc−T) and has a tendency to saturate for large τ̃E⪢τ̃GL. The effective heating of the electron subsystem due to the increase in |Δ| in the phase slip center together with the above effect result in a nonmonotonic dependence of the number of subsequent phase slips on τ̃E in rings of relatively large radius (in which each phase slip reduces the current density to a small fraction of its initial value). During the phase slip process the order parameter distribution has two peaks near the phase slip core due to the diffusion of the nonequilibrium quasiparticles from that region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278141800100 Publication Date 2010-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). D.Y.V. also acknowledges support from the Russian Foundation for Basic Research, Federal Target Programme “Scientific and scientific-pedagogical personnel of innovative Russia in 2009-2013” and Dynasty Foundation. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:83305 Serial 3182  
Permanent link to this record
 

 
Author Xavier, L.J.P.; Pereira, J.M.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Topological confinement in graphene bilayer quantum rings Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 21 Pages 212108,1-212108,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We find localized electron and hole states in a ring-shaped potential kink in biased bilayer graphene. Within the continuum description, we show that for sharp potential steps the Dirac equation describing carrier states close to the K (or K′) point of the first Brillouin zone can be solved analytically for a circular kink/antikink dot. The solutions exhibit interfacial states which exhibit AharonovBohm oscillations as functions of the height of the potential step and/or the radius of the ring.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278183200039 Publication Date 2010-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 29 Open Access  
  Notes ; This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, FUNCAP, CAPES, the Bilateral program between Flanders and Brazil, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number (up) UA @ lucian @ c:irua:83373 Serial 3675  
Permanent link to this record
 

 
Author Arsoski, V.; Tadić, M.; Peeters, F.M. url  openurl
  Title Interband optical properties of concentric type-I nanorings in a normal magnetic field Type A1 Journal article
  Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal Acta Phys Pol A  
  Volume 117 Issue 5 Pages 733-737  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases. Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov-Bohm effect may occur in concentric nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number (up) UA @ lucian @ c:irua:83377 Serial 1690  
Permanent link to this record
 

 
Author Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. url  doi
openurl 
  Title Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3) Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 20 Pages 207401,1-207401,4  
  Keywords A1 Journal article; Particle Physics Group; Nanostructured and organic optical and electronic materials (NANOrOPT); Condensed Matter Theory (CMT)  
  Abstract Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d=0.548  nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000277945900051 Publication Date 2010-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 140 Open Access  
  Notes ; Financial support from the Fund for Scientific Research Flanders, Belgium (FWO-Vlaanderen) (Project No. G.0129.07), is gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number (up) UA @ lucian @ c:irua:83383 Serial 1141  
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M. url  doi
openurl 
  Title Carbon clusters: from ring structures to nanographene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 19 Pages 195414,1-195414,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Integrated Molecular Plant Physiology Research (IMPRES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The lowest-energy configurations of Cn(n≤55) clusters are obtained using the energy-minimization technique with the conjugate gradient method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground-state configuration consists of a single ring for small number of C atoms and multiring structures are found with increasing n, which can be in planar, bowl-like or caplike form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground-state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphenelike configuration. Trigonal clusters are never the ground state while hexagonal-shaped clusters are only the ground state when they have zigzag edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278142000103 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:83385 Serial 278  
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M. url  doi
openurl 
  Title High-capacity hydrogen storage in Al-adsorbed graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 20 Pages 205406,1-205406,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A high-capacity hydrogen storage mediumAl-adsorbed grapheneis proposed based on density-functional theory calculations. We find that a graphene layer with Al adsorbed on both sides can store hydrogen up to 13.79 wt % with average adsorption energy −0.193 eV/H2. Its hydrogen storage capacity is in excess of 6 wt %, surpassing U. S. Department of Energy (DOEs) target. Based on the binding-energy criterion and molecular-dynamics calculations, we find that hydrogen storage can be recycled at near ambient conditions. This high-capacity hydrogen storage is due to the adsorbed Al atoms that act as bridges to link the electron clouds of the H2 molecules and the graphene layer. As a consequence, a two-layer arrangement of H2 molecules is formed on each side of the Al-adsorbed graphene layer. The H2 concentration in the hydrogen storage medium can be measured by the change in the conductivity of the graphene layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278144500082 Publication Date 2010-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 219 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number (up) UA @ lucian @ c:irua:83386 Serial 1422  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Vortex manipulation in a superconducting matrix with view on applications Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 19 Pages 192501,1-192501,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k×l matrix of pinning sites defines the desired combination of n bits of information (2n = k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000277756400040 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES and ESF-AQDJJ networks. ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number (up) UA @ lucian @ c:irua:83657 Serial 3869  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: