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Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection
in transport measurements
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Using time-dependent Ginzburg-Landau theory, we study the dynamic properties of a rectangular supercon-
ducting loop, which are found to depend on the position of the current leads. For asymmetric positioning of the
leads, different kinetic inductance of the two paths for injected electric current leads to different critical
conditions in the two branches. System self-regulates by allowing vortex entry, as vortex currents bring
equilibration between the two current flows and the conventional “resistive” state can be realized. We also
demonstrate that individual vortex entry in the loop can be detected by measuring the voltage between normal-
metal leads, for applied currents comparable in magnitude to the screening currents.
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I. INTRODUCTION

The quantization of magnetic flux! is one of the most
fundamental properties of conventional superconductors,
which nicely explains experiments on, e.g., weakly con-
nected rings,2 Little-Parks oscillations,? and enhancement of
critical parameters of multiply connected superconductors.*
The total magnetic flux ® through a superconducting area,
enclosed by a contour of zero current is an integer multiple
of the flux quantum ®y=hc/2e. In contrast to bulk supercon-
ductors, in mesoscopic samples current is not zero at the
sample boundary but it changes polarity at an effective ra-
dius p* inside of which the flux is exactly quantized.> The
zero-current path however follows the shape of the sample
boundary and is responsible for the peculiarities of the vortex
matter in mesoscopic samples.®

Besides the flux quantization, the profile of superconduct-
ing currents in the sample is important for fluxoid dynamics
(e.g., the maxima of current in mesoscopic samples predeter-
mine the weak points for vortex entry) which was the subject
of a number of experimental’ and theoretical works.!®!!
Applied electrical current to the sample further modifies the
overall current profile, subjects vortices to a Lorentzian
drive, and can lead to phase-slip phenomena and the “resis-
tive” state.!> This is well understood for symmetric samples,
particularly rings and stripes, but the complexity of the prob-
lem rises if asymmetry is introduced.

Over 30 years ago, de Waele et al.' constructed an asym-
metric superconducting loop, consisting of a niobium foil
and a tin needle. They measured the nonzero voltage as a
function of the enclosed magnetic flux even at zero external
current. Recently, similar results were reported in Ref. 14,
where the voltage was measured across a symmetric alumi-
num loop. These results were explained by thermal fluctua-
tions and electrical noise near the critical temperature.'> By
introducing an asymmetry by varying the width (w; ;) of
one of the Al loop arms, authors of Ref. 16 reported a shift
A® in Little-Parks oscillations for different polarity of the
injected current, with a maximal shift of 0.5®, for asymme-
try ratio w;/w, above 1.25.

In this paper, we investigate the flux quantization, vortex
entry, and the repercussions of the interplay of Meissner and
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applied currents in a specially designed rectangular super-
conducting loop. The sample is biased symmetrically and
asymmetrically through the attached normal leads, i.e.,
asymmetry is introduced by varying the length of the loop
arms (see Fig. 1). This provides a different kinetic inductance
of the two loop arms, resulting in proportional splitting of
applied current into two branches, and leads to asymmetric
critical phenomena in the loop. The consequent self-
regulation of the system is the main topic of our further
analysis.

II. APPROACH USED

We consider a thin rectangular superconducting loop
(with thickness d much smaller than the coherence length &
and the penetration depth A, and with lateral sizes a and b
and width w) with a transport electric current applied through
the normal contacts (size equal to the loop width) in the
presence of a magnetic field H perpendicular to the plane of
the loop (see Fig. 1). For the given system, we numerically
solved the time-dependent Ginzburg-Landau (GL) equation
which can be written in the following form close to the
superconducting-normal (S/N) transition temperature T,:!”

L F_2(9|_¢|2> o
\1—1+I‘2|¢|2(&t+w+ 2 ar y=(V-iA)y
+(1=[yP)y. (1)

This equation is coupled with the equation for the electro-
static potential,

FIG. 1. (Color online) Schematic view of the studied system: a
rectangular superconducting loop (dimensions a X b, arm width w,
thickness d) with dc current injected through depicted leads in the
(a) symmetric and (b) asymmetric case.
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FIG. 2. (Color online) (a) The time-averaged voltage, (b) the
total current density, and (c) the supervelocity as a function of ap-
plied current density for the sample of dimensions a=32¢, b=16&,
and w=2¢& with a defect of size 1.5X 1¢£ Indicated states (1-3) are
shown in Fig. 3.

Ag = div{3[V*(V-iA)V]}, 2)

which is nothing else than the condition for the conservation
of the total current in the system, i.e., div j=0. Here, distance
is scaled to the coherence length &, time is in units of the GL
relaxation time 7 = 7h/8kyTu, the electrostatic potential ¢
is scaled to ¢y=%/2e7g, and vector potential A is scaled by
H,,& The parameter I'=27;W,/% characterizes the chosen
superconducting material (with 7; being the inelastic
electron-collision time and W, is the value of the order pa-
rameter at zero applied field and current). The material pa-
rameters u and I' are taken as u=5.79 and I'=20, realistic for
low-T, samples.'” Neumann boundary condition is used at all
sample boundaries, except at the current contacts (S/N junc-
tion) where we used =0 and V¢|,=—j with j being the
applied current density in units of j,=c®,/87°\2£. Note that
in Eq. (1), the screening of the magnetic field is neglected
due to the very small sample thickness (d<&,\). We solved
the thickness averaged Egs. (1) and (2) self-consistently, us-
ing standard finite-difference iterative methods.

III. CURRENT-INDUCED VORTICES IN ASYMMETRIC
LOOPS

Figure 2(a) shows the I-V curve of the asymmetric sample
with dimensions a=32¢, b=16¢&, and w=2¢ without applied
magnetic field. With increasing the applied current j,; (which
flows from contact 2 to contact 1, see Fig. 1), the system is in
full superconducting state [Fig. 3-1] until the critical current
Je2 1 reached, where the system transits to a resistive state
with a finite-voltage jump. This resistive state is character-
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FIG. 3. (Color online) Contour plots of the Cooper-pair density
(left column) and the phase of the order parameter (right column) at
the values of the applied current indicated by open (yellow) dots in
Fig. 2(b).

ized by the periodic entrance of fast-moving vortex-
antivortex pairs, in a channel with strongly suppressed order
parameter [see Fig. 3-3].%

The total current density jy=j,+j, [where j,=(#V
-V ") /2i—|¢f?A is the supercurrent density and j,=—V¢
is the normal current density] measured in the middle of the
short arms of the loop and averaged over the loop width w is
shown in Fig. 2(b) as a function of the applied current den-
sity j. Due to the asymmetric length of the current paths in
our sample, the current density in the left branch j; reaches
the critical value j, first. At this point, vortices are bound to
nucleate in the loop, in order to decrease the current in the
short (left) arm [see Fig. 3-2]. In turn however, this should
result in an increase in the current in the right arm, due to
simple superposition, and equilibration of the system seems
untrivial. Note that we introduced a defect (of size 1.5 X 1§)
in the left branch, as shown in Fig. 3, to facilitate the vortex
entry in the loop. Typically, much larger flux jumps are found
in large superconducting loops,'” and we wanted to demon-
strate more clearly the vortex nucleation due to asymmetry.

The current resulting from the incoming vortices is di-
rected in such a way that it decreases abruptly the larger
current density in the left arm and increases stepwise the one
in the right branch [cf. Figs. 4(a) and 4(b)]. This means that
the system self-regulates the current distribution by allowing
vortex entry inside the loop. With further increasing applied
current, j; increases faster than the current density in the right
branch j, and reaches j., on multiple (five) occasions (ac-
companied by vortex entry) before the transition to the resis-
tive state. However, even at the latter transition, j; is larger
than j, [compare solid and dashed curves in Fig. 2(b)], and
therefore the condition for the resistive state, occurring si-
multaneously in both arms, cannot be explained by the cor-
responding density of currents. To get the threshold condi-
tion, we use the momentum of the superconducting
condensate (also called supervelocity) p=V6—A, where 0 is
the phase of the order parameter. As shown in Fig. 2(c), p is
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FIG. 4. (Color online) (a), (b) Vector plots of the supercurrent
density for the values of applied current indicated by 1 and 2, re-
spectively, in Fig. 2(b). The arrows depict the direction of the ap-
plied current j and the vortex current j,,.

monotonously increasing with j apart from the jumps when
vortices enter the sample. Prior to the resistive state, the su-
pervelocities in the two branches indeed become equal.

IV. EFFECT OF THE APPLIED MAGNETIC
FIELD

As we showed above, the superconducting ring can re-
spond to external current by allowing penetration of quan-
tized flux into the system. In what follows, we investigate the
behavior of both symmetric and asymmetric samples in ap-
plied magnetic field. We do so by monitoring the voltage
between the leads, which can reveal the subtle changes in the
superconducting state.

A. Determination of vortex states in transport measurements

It is already known that the dependence of the local elec-
tric field on the magnetic field can be observed close to the
transition to the normal state, as found in the original Little-
Parks experiment.? The key for observable V(H) features is
the existence of S/N domains and interfaces in the sample,
which enables the survival of the normal current in the su-
perconducting sample. Namely, the length over which the
nonequilibrium (NQ) quasiparticles can exist in the sample
L,,=VDg (D being the diffusion constant') is often larger
than the size of the mesoscopic samples, and the voltage due
to the normal current can be detected. In our case, key con-
ditions for voltage observations are met thanks to the S/N
interfaces at the leads. However, one should note that the
measured voltage due to NQ quasiparticles will depend on
their entire path and Andreev recombinations at each S/N
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interface in the sample, including vortices. As a conse-
quence, not only can we monitor the evolution of vortex
states with the magnetic field but we can also detect the
geometry of the vortex state following the idea of Kanda et
al.®® By comparing the voltages at strategically placed
superconductor-insulator-normal (S/I/N) junctions, Kanda er
al., could determine if the superconducting gap was uniform
or not at the periphery of the sample, indicating the giant-
vortex and multivortex state, respectively. However, to dis-
tinguish between giant and multivortex states,'"?! we no
longer need multiple S/I/N tunnel junctions on the sample.
Instead we can simply compare the measured voltages at
strategically placed normal contacts. Therefore, the proposed
method is far simpler and useful for transport studies of both
stationary and dynamic intermediate states in mesoscopic
type-II as well as in type-I superconductors.

B. Symmetrically placed contacts

As a proof of the above discussion, Fig. 5(a) shows the
calculated voltage V between the symmetric contacts at a
weak injected current j=0.05j), as a function of applied
magnetic field H for the sample dimensions as in Fig. 2.
Large flux through the sample [3.1d,, see top axis in Fig.
5(a)] is needed for the entry of the first vortex, leading to a
jump in the measured voltage. Such large first penetration
field is the consequence of the surface barrier, and a typical
mesoscopic effect. With further increase in applied field, vor-
tices consecutively enter the sample, all accompanied by
finite-voltage jumps. For the given parameters of the sample,
the period of the vortex entry with field A® was slightly
larger than ®. This suggests that the flux is exactly quan-
tized not over the whole sample but over an effective area S*
bounded by the zero-current path [for the illustration of the
effective radius of the area S*, see the inset of Fig. 5(b)].

The total current density j; in left (solid curve) and right
(dashed curve) branch of the loop is shown in Fig. 5(b) as a
function of the applied field. As expected, the current density
in the left branch j; [where the Meissner currents flow in the
same direction as the applied one, see panel (3) in Fig. 5] is
larger than the one in the right branch j,. In the Meissner
state (before the first voltage jump), j, increases monoto-
nously with H while j, drops to zero at H* due to the com-
pensation of the applied current by the Meissner currents in
this arm. Beyond H*, the j,(H) curve shows the same behav-
ior as j,(H) [actually, j(H)=j,(H)-2j,(H*)]. Obviously, the
value of H* depends on the injected current density j and
clearly increases with increasing j.

C. Asymmetric case

Next, we contrast the above results with the case of the
asymmetrically placed contacts. Figure 6 shows V(H) for the
asymmetric sample for two directions of the applied current
Jj. For the direction of the current j;,, the current in the right
arm j, has the same direction as the Meissner currents and
voltage increases almost linearly with H (thin curve) whereas
in the symmetric case, parabolic dependence of the voltage
on the field was found [see Fig. 5(a)]. The first penetration
field also becomes larger compared to the symmetric case.
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FIG. 5. (Color online) Vortex penetration in a symmetric sample
with length a=32¢, width b=16¢, and the contact size w=2§&: (a)
calculated voltage between leads and (b) the total current density jr
(averaged over the width w) along left (solid curve) and right
(dashed curve) branch for injected current j=0.05j,, as a function
of the applied magnetic field. The inset in (b) shows the amplitude
of the supercurrent density j, across the loop, in the middle of the
left arm at the field value indicated by 2 in (a). Panels (1)—(3) show
the Cooper-pair density (1), phase of the order parameter (2), and
supercurrent density (3) distributions for the L=1 state indicated in
(a) by 1. Arrows in (3) show the direction of the applied current j,
and Meissner j,, and vortex j, currents.

Upon each vortex entry, the vortex currents compensate the
current density in the right arm and lead to a sharp decrease
in the output voltage. At the same time, the voltage exhibits
an overall decreasing tendency with increasing H.

When we alter the direction of the applied current (thick
curve in Fig. 6), the following changes in V(H) dependence
are found: (i) voltage initially decreases with increasing the
applied field and reaches a minimum at ®~3.1®,, where
maximal compensation of the current in the right branch j,
by the Meissner current is reached [see the directions of the
currents in panel (3) of Fig. 5]. As a result, we observed a
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FIG. 6. (Color online) The same as in Fig. 5(a) but for the case
of asymmetric biasing, and for two directions of applied current
(j=0.05j¢): j12, thin (black) curves, and j,;, thick (red) curves. The
shaded region highlights the difference in the transition fields be-
tween different vortex states for two opposite directions of the ap-
plied current.

shift in the transition field between different vortex states
Ad; =0.6d, for two polarities of asymmetric biasing (the
offset is highlighted as a shaded region in Fig. 6). Note that
for both directions of the applied current, the first penetration
field was larger than the one in the symmetric case, although
Jj; in the asymmetric case is always larger than the corre-
sponding j; in the symmetric case. This proves that the pen-
etration field is not solely determined by the local current
density. (ii) The size of the voltage jumps increases with
subsequent flux entry inside the loop. (iii) The voltage (and
resistance) shows overall increasing tendency with increas-
ing H contrary to the case of j, biasing. The latter is related
to the superconducting state of the right arm (where vortex
currents are added to j, and gradually suppress superconduc-
tivity). In the case of asymmetric biasing, two arms act as
two resistors tied in parallel—so that the electric response of
the sample is mostly determined by the smaller resistance of
the two, i.e., the larger loop arm. Similar behavior of the
output voltage on the applied field has also been reported in
experiments on asymmetric Al rings, close to T, (see Fig. 4
in Ref. 22).

V. CONCLUSIONS

Concluding, dynamic properties of a rectangular super-
conducting loop with applied dc current through asymmetri-
cally placed leads and in a perpendicular field are studied
within the GL formalism. In the absence of applied magnetic
field and with increasing injected current, the asymmetric
loop experiences different local criticality. However, it self-
regulates by allowing vortex entry until the vortex currents
equilibrate the current flows in the two branches of the loop.
The condition for the transition to the resistive state is found
to be the equilibration of the momentum of the supercon-
ducting condensate in the two branches.

In the constant current regime, vortices enter the sample
one by one with increasing field due to flux quantization; we
show that this leads to finite jumps in the current density in
both arms of the loop but also to finite jumps in the measured
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voltage between the normal-metal leads where current is in-
jected. As we explain, this can be used as a new technique
for monitoring the vortex state in mesoscopic superconduct-
ors by transport measurements. The asymmetric biasing also
leads to a current polarity-dependent response of the sample
to applied magnetic field. This stems from the favorable
compensation of the vortex and the injected currents, and
leads to an observable shift and a different behavior of the
V(H) characteristics for the two directions of applied current,

PHYSICAL REVIEW B 81, 144511 (2010)
both related to recent experimental efforts in the field.!®??
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