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Kink-antikink vortex transfer in periodic-plus-random pinning potential:
Theoretical analysis and numerical experiments
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The influence of random pinning on the vortex dynamics in a periodic square potential under an external
drive is investigated. Using numerical experiments and theoretical approach, we found several dynamical
regimes of vortex motion that are different from the ones for a regular pinning potential. Vortex transfer is
controlled by kinks and antikinks, which either pre-exist in the system or appear spontaneously in pairs and
then propagate. When kinks and antikinks collide, they annihilate. We provide clear physical interpretations of

the observed features.
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I. INTRODUCTION

The behavior of an elastic media under the competitive
action of a regular potential and disorder is a common prob-
lem in various fields of modern physics. Examples of such
media are vortex lattices in superconductors'™ or in Bose-
Einstein condensates of ultracold atoms,’ interacting colloids
on periodic substrates, charge- and spin-density waves in
metals,® polarization density waves in ferroelectrics and
many others. Regular pinning potential can be either of arti-
ficial origin, as in nanostructured superconductors and in
Bose-Einstein condensates with optical lattices, or it can be
imposed by the crystal structure of the material. In supercon-
ductors, pinning efficiency determines the value of the criti-
cal current, while the enhancement of this current is of great
practical importance. Theoretical description of such systems
is a quite complicated problem, which in one-dimensional
case can be reduced to the well-known Frenkel-Kontorova
model.®° Numerical simulations supplemented by analytical
arguments thus can be considered as an effective approach
for understanding of basic properties of systems with both
regular and random potentials.

Two-dimensional (2D) lattice of repelling particles in the
presence of square pinning potential and disorder was re-
cently addressed both theoretically and numerically in Ref.
10 in the context of the flux-line lattices in superconductors.
It was demonstrated that in case of weak-disorder pinned
vortex lattice is disturbed by specific defects consisting of
elastic strings of depinned vortices. These strings intersect
and form branched fractal-like clusters, which perhaps can
percolate through the system. The phase diagram of such a
system turns out to be quite rich, because it is determined by
the interplay of three factors: (i) a periodic pinning, (ii) dis-
order, and (iii) the intervortex repulsion. The third factor—
even in the absence of any disorder and at equal concentra-
tions of regular pins and vortices—Ileads to the appearance of
an unconventional state (‘“half-pinned phase”), when half of
vortices are depinned, but the vortex lattice keeps its
periodicity.!1

The aim of the present paper is to investigate the vortex
dynamics in two-dimensional system in the presence of both
a square periodic potential and disorder and to reveal corre-
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lations between the static defects and the dynamical regimes
under an external drive.

The paper is organized as follows. In Sec. II, we present
the basic formalism of our model and discuss our molecular-
dynamics simulation approach. Section III deals with differ-
ent dynamical regimes of vortex lattice motion. Finally, the
conclusions are given in Sec. IV.

II. MODEL

We model a three-dimensional superconductor by a 2D
slice assuming vortex cores do not change in the z
direction,3 with regular square array of pinning sites with
period a in the presence of additional randomly distributed
pins of comparable concentration. Pinning potential, pro-
duced by a single site, is modeled by a parabolic function,
with U,,, (U,,,) and o,,, (0,,,) being the depth and size of
potential wells of regular (random) origin; 0, 0,4, <a, and
Oran ™ Oreg- We will mostly focus on the weak-disorder re-
gime, i.e., when the maximum pinning force by one regular
Site, freq=2U, g/ 0peq, 1s significantly larger than that of a
random site, f,,,=2U,,,/ 0., We consider the case of the
first matching field, i.e., when the number of vortices is equal
to the number of regular pins. Vortices are treated within the
London approximation, which is accurate for large values of
the Ginzburg Landau parameter > 1 and low applied mag-
netic field H<<H_,. Then the interaction energy of two vor-
tices positioned at r; and r, is given by

2

)]
S Kol[r, - ro/A(D)], (1)

Hint(r17r2) = m

where K is a modified Bessel function. An important quan-
tity, which is useful for our analytical consideration, is the
interaction energy between a regular vortex row and a vortex
outside this row. If we place a center of coordinates at one of
the vortices in the row, and direct the y axis along the row,
then the interaction energy between the vortex row and a
vortex located at (x,y) is given by
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where d is the intervortex distance in the row. By using Fou-
rier transformation for Ky(r) and performing a summation in
the reciprocal space, Eq. (2) can be rewritten as

H(row)( ) _ q)(z) i 1
it V)= N, 2 \/1 (27Tm)\(T)>2
I uddciha s
d
( X / (ZWm)\(T) )2> 2amy
Xexpl———\/1+{————/ Jcos .
N(T) d d

(3)

Due to the exponent in the right-hand side of this equation,
the dependence of Hl(-;‘l’w)(x,y) on y can be very well approxi-
mated at low fields [intervortex distances ~\(7)] by taking
into account only terms with m=*1.

To study numerically the motion of vortices we use
molecular-dynamics simulations, and we integrate the over-

damped equations of motion3
7/Vi=fi=f;w+f;}p+Fd+fiT‘ (4)

Here, f; is the total force acting on vortex i; £ and f;” are
the forces due to the vortex-vortex and vortex-pin interac-
tions, respectively, F; is an external driving force (i.e., a
Lorentz force created by an applied current), which is di-
rected along one of the principle axes of the square pinning
array; fiT is the thermal stochastic force. A simulation region
contains 20 X 20 regular pins, and we use periodic boundary
conditions to simulate an infinite array. To explain the results
of numerical experiments, we use an analytical approach
similar to that of Ref. 10, which is based on the fact that in
various configurations most of the vortices remain pinned, so
that the vortex transfer occurs through collective defects that
can be described reasonably well by just few parameters.

III. DYNAMICAL REGIMES

In order to reveal various dynamical regimes in the weak-
disorder limit, we carry out numerical experiments and
supplement them by the theoretical analysis. The character-
istic quantity, which enables us to distinguish between dif-
ferent regimes, is the average vortex velocity (v) in the di-
rection of the driving force F,, as a function of F,=|F,|.
Averaging is performed both among all the vortices in the
system and over time, after the steady flow is achieved. In
general, the smaller the number of depinned and flowing
vortices the larger the average vortex velocity. Thus this
quantity is similar to the dynamical order parameter that can
be defined as a fraction of depinned and moving vortices.

Below we present our results for the following set of pa-
rameters: the lattice period for regular pins a=N(T), 0,
=0.15a, 0,4,=0.2a, f,,,=0.603/8m\(T)*, the number of
regular and random sites being the same. These results are
rather generic with respect to the variation in main param-
eters, until conditions o,,, and o,,,<a~N\(T) are fulfilled.
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FIG. 1. (Color online) The average vortex velocity as a function
of driving for different values of the random pinning force: f,,,
=freg! 6 (curve 1), fro/3 (curve 2), and f,,=fre/2 (curve 3).
Black dotted lines show the transitions (crossovers) between differ-
ent dynamical regimes.

The value of f,,, is chosen in such a way that it allows us to
describe the most interesting region of the phase diagram
that corresponds to intermediate regular pinning strengths.
As shown in Ref. 10, in this regime and for a weak disorder,
static defects of pinned square vortex lattice consist of clus-
ters containing elastic chains of depinned vortices. Our simu-
lations show that until we are in the intermediate regime,
variations in f,,, do not lead to qualitative changes in the
dynamical regimes.

Typical driving dependences of the average vortex veloc-
ity are presented in Fig. 1, where one can clearly see three
distinct dynamical regions for the case of a weak disorder
(curves 1 and 2), while for stronger disorder they are
smeared out due to chaotization (curve 3). We associate these
different regions with different dynamical regimes of vortex
lattice motion. These (v)-F, curves of course are sensitive to
the particular realization of disorder. However, we found
that, in general, the shape of the curve, that is characterized
by three different regions, is quite robust with respect to
different realizations of disorder, except of some special
cases, which are discussed below. The characteristic values
of driving force for the crossover regions between different
regimes are also rather reproducible, while absolute values of
average vortex velocity can vary.

A. Regime-I: Depinning of stripes

Very weak driving results in no vortex motion (pinned
regime). If the driving force F,; reaches some threshold value
Fg), part of vortices start to move. An analysis of vortex
patterns shows that vortex motion is not individual, since
vortices travel collectively in a solitonlike manner, being lo-
calized within vortex rows.!® Moving collective structures
are just depinned kink and antikink defects (stripes) earlier
predicted for static configurations.'? Such a defect consists of
a finite-length chain of depinned vortices, whose length de-
pends on f,,,, this length being much larger than a in the
regime of intermediate strength of the regular pinning poten-
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FIG. 2. (Color online) Motion of the stripe shown by three snap-
shots. Irregular blue (light gray) spots represent positions of random
pins, red (dark gray) dots show positions of vortices, and regular
black open circles correspond to periodic pins. Dashed lines are
guides for eyes indicating positions of defects, arrows show the
direction of their motion.

tial. The defects contain either one extra vortex (kink) or one
vacancy (antikink). Kinks move in the direction of an ap-
plied force, so they represent “compression waves” in vortex
rows, as seen in Fig. 2. Vacancy-based antikinks flow in the
opposite direction; they can be considered as “decompres-
sion waves.”

In order to understand why the dynamical threshold is
associated with the depinning of kinks, let us first analyze the
structure of a static kink. Kink appears due to an additional
vortex in a particular region of the system.'” Because of the
intervortex repulsion, it displaces other vortices within one
row from their pinned positions, while vortices in all other
rows remain pinned, i.e., one-dimensional deformation field
of a vortex chain changes by a along the kink. In the limit of
narrow regular pins, o, <a, one can assume that vortices in
a kink are completely depinned, whereas all other vortices in
the same row are pinned, as well as vortices in other rows.
The total energy of the kink compared to the unperturbed
system is thus given by the sum of three contributions, E,
E,, and E;. The first term, E|, is due to the energy gained by
each of D depinned vortices. Before the depinning, each of
these vortices was located in the potential well of the depth
U eg=FreqTreq/ 2. After the depinning, its energy became
nearly equal to the average regular pinning energy within the

40, . .
row, == “U,,. Thus, E, is given by

4
E~1 zfrega-reg<1 _ UF€Q>D‘ (5)
2 3a

The second term, E,, is an energy decrease due to the inter-
action with vortices from the surrounding pinned vortex
rows. If we are far enough from the threshold of the transi-
tion to the half-pinned phase,''"'* i.e., in the intermediate
regime of pinning strength, this contribution is sufficiently
smaller than E,.'° Therefore, in the leading order, we can
assume that positions of depinned vortices in the row are not
correlated with the minima of the potential interaction with
surrounding rows, so that the term E, can be easily found
from Eq. (3) by averaging over these positions
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The third contribution, Ej3, is associated with the increase in
the vortex-vortex interaction energy within the row, where
the kink is localized, this increase being caused by one ex-
cess vortex. Under assumptions of the elasticity theory, one
can take into account only interaction between nearest neigh-
bors in the row, from which it follows that distances [ be-
tween nearest vortices inside the kink are all the same, [
=Da/(D+1). By summing the energies of the vortex-vortex
interaction, we obtain a D-dependent part E; of the corre-
sponding contribution to the energy of the kink, which, in the
leading order in a/D, is given by

27D, (6)

05

Es= SNy

The optimal number of vortices in the kink D now can be
found by the minimization of E+E,+Ej;

Kl[a/)\(T)]%. (7)

e ; 12
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a 8\ (T)? N(T)
NT) FregTreg ( 1-— 40r€g> _ (D(z) =27 .
2 3a 8N (1)2

(8)

For the used values of parameters, we obtain D=~4-5, while
in numerical simulation we found that D=5-6, so that our
analytical approach provides a quite good estimate.

If we now suddenly turn on an applied force F; acting on
each vortex, the net external force acting on the whole kink
is DF ;. At the same time, the force of resistance is due to the
fact that the first and last vortices in front and behind the
kink are pinned, and thus the maximum resistance force is
2f,eq- By equating the external force to the force of resis-
tance, we obtain a simple condition for the depinning of the
kink

2,
Fy == ©)

Decoupling of kinks from the underlying pinning array sig-
nals as an increase in the average vortex velocity, which is
used here as an indicator for distinguishing between different
dynamical regimes. In experiments, such a decoupling would
result in the increase in sample’s resistance, since vortex mo-
tion in superconductors is associated with dissipation. Notice
that Eq. (9) can be also obtained by considering a balance of
the forces, acting on each vortex in the kink, one vortex in
front of the kink, and one vortex behind it, and then by
summing up these forces. An alternative approach is to use a
continuum approximation for the one-dimensional Frenkel-
Kontorova model,® from which one can deduce a deforma-
tion field for the vortex chain inside the kink caused by ex-
ternal driving and then equate to f,,, the pressure this row
exposes on the first or the last pinned vortex along the kink.
Equation (9) demonstrates that, in the large D limit, the
stripe behaves nearly as a rigid body containing D particles.
This is the explanation why it is depinned at relatively low
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driving forces, i.e., significantly smaller than f,,,. This rigid-
ity is linked to the fact that regular potential is weak and that
is why kink is much longer than a: it is favorable that an
excess vortex depins many other vortices in the row. There-
fore, vortex chain deformations under an external drive re-
main small until kink is pinned, resulting in nearly periodic
locations of vortices inside it. Equation (9) implies that Ffil) is
very sensitive to the kink’s length, which, in turn, depends on
the regular pinning potential. The tendency is that, the stron-
ger regular pinning the shorter kinks and antikinks, so that in
the limit of strong pinning one reaches the regime when
defects are no longer collective.!” The analysis of this limit,
i.e., when the vortex-vortex interaction does not play an im-
portant role anymore, is beyond the scope of the present
work.

The results obtained by using Egs. (8) and (9) are in a
good semiquantitative agreement with results of our numeri-
cal simulations: depinning of stripes is predicted to occur at
Fg) ~0.48f,,, for the set of parameters we used, while in the
numerical simulations this value was ranged between
0.30f,., and 0.42f,,,, for a weak random pinning strength
and in different trials. Note that in the particular initial con-
figuration shown in Fig. 1 by curve 1, there was no pre-
existed stripe in the simulation region, which is reflected by
the absence of any current up to the dynamical regime-II.
This is an example of how different realizations of disorder
in our finite-size simulations can lead to different results. The
smaller the system the higher the probability that there are no
pre-existed kinks. However, in the infinite system these de-
fects have a finite concentration and therefore regime-I al-
ways exists. In general, the main requirement for the deter-
mination of dynamical regimes in the studied system is that
the simulation region has to be significantly larger than the
length of a single kink/antikink, since the dynamics is con-
trolled by kinks and antikinks. This condition is justified in
our simulations.

In our numerical experiments, we found that kinks and
antikinks always disappear when they collide. A similar pro-
cess, known as kink-antikink annihilation, was studied in
Ref. 15 within the sine-Gordon model applied for spatially
inhomogeneous media with dissipation and under an external
drive, i.e., essentially the conditions realized in our simula-
tions. Another remarkable but quite rare process, in a weak-
disorder regime, is kink sticking by bunches or voids of ran-
dom pins. These two processes lead to a decay in time of the
total current. Figure 3 shows typical time dependences of the
current, where two processes are addressed: (i) when kinks
and antikinks annihilate (curve 1) and (ii) when they persist
(curve 1'). It is obvious, however, that in infinite systems all
the kinks and antikinks have to disappear, since the total
number of kinks and antikinks in the single row is the same.
Nonvanishing and stable motion in the weak-disorder regime
thus appears as an artifact of a finite-size simulation region
with periodic boundary conditions.

Although the vortex transfer is associated with the depin-
ning of pre-existed kinks and antikinks, static defects in the
weak- and intermediate-disorder regimes consist not only of
these defects. Kinks and antikinks can be just parts of
clusters.'” One can naively expect that these clusters act as
easy channels for the vortex transfer. Instead, low driving
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FIG. 3. (Color online) Time dependence of the average vortex
velocity for different dynamical regimes at f,,,=0.2. Here ¢,
=4m\(T)* 7/ ®Z. Curves 1 and 1’ correspond to regime I at F
=0.4 and 0.2, respectively. Curves 2 and 3 show regimes II and III
for F;=0.52 and 0.57, respectively.

partially “heals” such defects. The reason is that clusters ba-
sically consist of two types of segments. Segments of the
first kind contain no vacancies or excess vortices, in contrast
with segments of the second type, which are nothing but
stripelike defects. For low driving, vortices inside segments
of the first kind move collectively to their nearest vacant
pins. Such a delicate healing, however, is not possible for
segments of the second type, which contain excess vortices
or vacancies. Therefore, stripes do persist in the sample,
while low driving leads to the fragmentation of clusters. A
typical driving force, which heals such defects, can be esti-
mated by considering the limiting case of an infinite chain of
depinned vortices. An effective pinning force for vortices
from the chain is created by interactions with surrounding
rows of pinned vortices.'” From Eq. (3), it is straightforward
to obtain the following estimate:

2
w P

FW = —3 =27 10
47 4N a’ (10)

In the regime of intermediate regular pinning strength, F’ E,h) is
much smaller than Fg). We will show, however, that Ffjh)
plays an important role in the dynamical regimes appearing
for higher F,;. Note that the effect of re-entrance of square
pinned lattice under a weak external drive was revealed in
Ref. 12 for the half-pinned phase (in the absence of disor-
der). This feature is consistent with the present results, since
chains of depinned vortices are nothing but nuclei of this
phase.!?

As mentioned above, here we consider only the case of
the first matching field, when the density of vortices and
regular pins are exactly the same. It is, however, clear that
small differences between these densities would lead to the
appearance of additional kinks or antikinks in the static con-
figuration, such that their numbers will be also different from
each other. From that, one can conclude that regime-I (as
well as other regimes) will be preserved, although motion of
kinks and antikinks will be nonvanishing.
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FIG. 4. (Color online) The same as Fig. 1 but with generation of
kink-antikink pair by moving stripe, shown by snapshots. Initially
kink flows in the bottom row, then it creates a kink-antikink pair in
the upper row.

B. Regime-II: Generation of kink-antikink pairs

Now we discuss the origin of the second cusp in curves 1
and 2 of Fig. 1, which corresponds to the dynamical regime-
II. We found by numerical simulations that, when driving
approaches some critical value F' IV Kink-antikink pairs ap-
pear spontaneously from time to time.'® New kinks move in
the direction of the drive, whereas antikinks propagate in the
opposite direction. Because of the intensive generations of
new kinks and antikinks, the average current increases sig-
nificantly compared to regime-I, as seen from Fig. 3. Most of
the pair generation events are triggered by already excited
and moving stripes, which create an additional washboard
drive acting on the adjacent rows. Therefore, new kink-
antikink pairs appear in the rows adjacent to the row with a
moving kink, as shown in Fig. 4 by three snapshots: one of
the vortices is depinned, then it creates an area of vortex row
compression in front and the area of decompression behind,
these two areas being transformed into the kink-antikink pair.
It is easy to realize that the amplitude of this additional
periodic drive is equal to Fg') in the limit of long kinks
(D>1), so the total effective driving in the row, adjacent to
the moving stripe, is Fif-ff)%F d+Ffih . However, in some tri-
als there were no pre-existed kinks within a simulation re-
gion (see, for instance, curve 1 in Fig. 1), but kink-antikink
pairs did appear by themselves in some “weak points,”
where vortices were additionally strongly displaced in the
direction of the drive by random pins. Therefore, we con-
clude that, in regime-II disorder is the key factor of kink-
antikink nucleation, while moving defects can assist to this
process. Besides, the comparison with the numerical results
shows that the value of F, ff’) is too low to explain the data for
Ff}l) by only a washboard potential of moving stripes.

Let us now analyze how disorder can lead to the genera-
tion of kink-antikink pairs and estimate a minimum value of
the driving force Fflﬂ that triggers this process. We place a
center of coordinates in one of the regular pinning sites with
axis x being directed along the driving force. In the absence
of disorder, this driving force shifts the pinned vortex to the
point with coordinates (rg, 0), where ro=0,,,F,/ f.,- Moving
kink or antikink in the adjacent rows leads to an additional
displacement and the total amplitude of the displacement can
be estimated by changing F; to FEfff ). If we now take into
account a disorder and neglect the vortex-vortex interaction
within the row, random force in the point (ry, 0) must be
nonzero in order to depin the vortex. This restricts possible
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locations of the random pin(s) acting on the vortex at (rg, 0):
there should be at least one pin accommodated within the
circle of radius o,,, with the center at (ry, 0). Next, we as-
sume that random force acting on this vortex is created by
only one random pinning site, i.e., we neglect possible over-
laps between random pins. This is a reasonable assumption
(in the leading order in o,,,/a) provided that o,,,<<a and
concentration of random pins is not very high, n,,,~ 1/a>
The optimal position for the pin, which minimizes F D is in
the x axis at (0,4,+rp, 0). This condition implies that two
criteria are satisfied: (i) the random force is nonzero at (ry, 0)
and it is directed along the driving force and (ii) at the edge
of the regular pin, (0,,,, 0), where the regular pinning force
is maximum, the opposite random force, f,.,(0,un+ro
~0g)! Tpan» 18 also maximum, provided that the criterion (i)
is satisfied. This force together with the driving force Fgfff)
should compensate f,,, at the edge of the regular pin. From
this we find the critical driving force F’ EIH) that depins a given
vortex

freg_fmn(l - %&)

Ur an

FV ~ s - F. (11)
| 4 ranreg
freg Oran

Starting from F' d=Ffln) one can find an area in the vicinity of
each vortex, where a random pin can be positioned, such that
it will depin this vortex (with the assistance of moving stripe
in one of the two adjacent rows). In an infinite system for a
finite concentration of random pins, the concentration of
such weak points is also finite. Starting from higher drivings,
F,=F gl)+F " kink-antikink pairs can be generated in weak
points without an assistance of moving defects that agrees
with the results of our numerical experiments. When deriv-
ing Eq. (11), we did not take into account the mutual repul-
sion of vortices within the row, which acts against the depin-
ning of a particular vortex. According to our estimates, such
a resistance force is too small to noticeably change F.
since 0,,,—7)<0,.,. Equation (11) is in a reasonably good
agreement with our numerical results for a weak disorder.
For instance, according to this equation, Ffin) corresponding
to curves 1 and 2 in Fig. 1 should be around 0.35f,,, and
0.71f,¢,, respectively, while in numerical experiments these
quantities are around 0.89f,,, and 0.78f,,,. Variation in these
quantities from realization to realization of disorder was
within few percent (provided that presence or absence of
pre-existed stripes was taken into account properly, when
analyzing the data), except of some special cases. Among
them, the most frequent was the situation when the number
of pre-existed kinks inside the simulation region was much
higher than the average one, so that together they were able
to produce locally larger washboard potential, which resulted
in smearing out the dynamical regimes.

In the limit of a very weak disorder, Eq. (11) reduces to
F E,H) = freg=Sran—F 5}1), which clearly shows a competition be-
tween regularity and disorder, the latter factor being en-
hances by moving kinks through an additional term F’ E,h). This
condition is not sensitive to the particular form of the poten-
tial created by a single site, this fact reflecting the universal-
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ity of the obtained criterion. Using similar geometrical argu-
ments (but in two dimensions), we also found that above
F concentration of weak points grows as ~(F,—F{")¥2,
so that the generation of kink-antikink pairs is intensified.

We also notice that, due to a continuous generation of
kink-antikink pairs, vortex motion within regime-II no
longer decays in time, unlike for regime-I. The motion oc-
curs via groups of kinks and antikinks traveling in the oppo-
site directions and creating, from time to time, new defects.
One of these defects joins the same group, whereas its coun-
terpartner starts to flow in the opposite direction. In a steady-
flow regime, replication of defects has to be balanced with
their annihilation, under collisions of individual kinks and
antikinks or their groups.

C. Regime-III: Free proliferation of kink-antikink pairs

We finally revealed third dynamical regime, which ap-
pears as the last region in curves 1 and 2 in Fig. 1, at driv-
ings, which are already very close to the regular pinning
force f,,,. In this regime, washboard drive produced by mov-
ing kink, is already strong enough to generate kink-antikink
pairs freely without an assistance of the disorder. The corre-
sponding driving is then simply given by

FO =~ fo — FP. (12)

In this regime, kink-antikink pairs start to proliferate very
intensively being triggered by the motion of defects: pre-
existed kinks immediately generate kinks and antikinks; in
turn, these defects create new pairs, and so on.'® The area of
vortex motion rapidly extends until it covers the whole simu-
lation region. In regime-III, no “islands” are found, where
domains of vortex lattice can be pinned for a long time.
According to Eq. (12), Fflm) is around 0.98f,,,, and this value
is also in a reasonably good agreement with the numerical
results, shown in Fig. 1 (approximately, 0.96f,,, for curve 1
and 0.94f,,, for curve 2, these results typically being repro-
ducible within several percents).

Let us now briefly discuss the dynamics of vortices, when
the disorder is no longer very weak, so that it not only trig-
gers motion of defects but also significantly affects it. The
general tendency is that disorder smears out well-separated
dynamical regimes, as seen from curve 3 in Fig. 1. Kinks and
antikinks now can easily bend and jump from row to row.
However, very surprisingly, solitonlike origin of the vortex
transfer is extremely robust against the disorder, up to the
regime of strong disorder, f,,,~ f.,- In the limit of the very
strong disorder, f,,,> f,.,, vortex flow is localized in narrow
streams, in which vortices flow one by one. Another mecha-
nism of vortex transfer is pumping, when vortices are pushed
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into “traps,” until their mutual repulsion breaks the blockade.

Note that here we analyzed the first-matching-field re-
gime, while a little imbalance between the numbers of regu-
lar pins and vortices could serve as an additional source of
disorder. As was shown in Refs. 2 and 3, this imbalance
results in different dynamical regimes including vortex flow
in  “incommensurate rows” and negative-differential-
resistivity (NDR) parts of the VI curve of N type>* and S
type.® Very recently, the first experimental observation of the
N-type NDR phase has been reported.'” (See also a related
experiment'® on a triangular array of pins, where channeling
of vortices can be suppressed by the random removal of pin-
ning sites.!?)

IV. CONCLUSIONS

We studied the competitive effect of periodic square and
weak random pinning potentials on the dynamics of vortices
in two dimensions. We found new dynamical regimes, which
display themselves through distinct regions on the curves of
average vortex velocity versus external driving force. There
are three regimes, in which vortices move in a solitonlike
collective structures traveling within individual vortex rows.
These are kinks, each containing an excess vortex and mov-
ing in the direction of an external drive, and antikinks, flow-
ing in the opposite direction and containing a vacancy. When
colliding, kinks and antikinks annihilate. In the first regime,
pre-existed static kinks and antikinks decouple from the un-
derlying pinning array and propagate in the system. In the
second regime, moving defects excite secondary kink-
antikink pairs in the adjacent rows in certain weak points,
which are more corrupted by disorder. In the third regime,
these pairs are excited by moving kinks and antikinks freely,
not only in weak points, due to their additional washboard
potential. We presented analytical semiquantitative estimates
for characteristic values of driving forces leading to cross-
overs between the regimes, which are in a good agreement
with our numerical results.

Although we have concentrated on vortices in supercon-
ductors, it is clear that similar dynamical regimes will be
realized in other two-dimensional systems with square-lattice
potentials, containing repelling particles. Moreover, disorder-
induced kink-antikink generation under an external drive can
appear as a rather universal phenomenon, which exists for
systems and lattice potentials of various dimensionalities.
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