toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 13 Pages 8456-8459  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428779700007 Publication Date 2018-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 8 Open Access OpenAccess  
  Notes K. M. B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation – Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:150357 Serial 4916  
Permanent link to this record
 

 
Author (up) Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Overcoming Old Scaling Relations and Establishing New Correlations in Catalytic Surface Chemistry: Combined Effect of Charging and Doping Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 10 Pages 6141-6147  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Optimization of catalytic materials for a given application is greatly constrained by linear scaling relations. Recently, however, it has been demonstrated that it is possible to reversibly modulate the chemisorption of molecules on nanomaterials by charging (i.e., injection or removal of electrons) and hence reversibly and selectively modify catalytic activity beyond structure−activity correlations. The fundamental physical relation between the properties of the material, the charging process, and the chemisorption energy, however, remains unclear, and a systematic exploration and optimization of charge-switchable sorbent materials is not yet possible. Using hybrid DFT calculations of CO2 chemisorption on hexagonal boron nitride nanosheets with several types of defects and dopants, we here reveal the existence of fundamental correlations between the electron affinity of a material and charge-induced chemisorption, show how defect engineering can be used to modulate the strength and efficiency of the adsorption process, and demonstrate that excess electrons stabilize many topological defects. We then show how these insights could be exploited in the development of new electrocatalytic materials and the synthesis of doped nanomaterials. Moreover, we demonstrate that calculated chemical properties of charged materials are highly sensitive to the employed computational methodology because of the self-interaction error, which underlines the theoretical challenge posed by such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461537400035 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access: Available from 21.02.2020  
  Notes Fonds Wetenschappelijk Onderzoek, 11V8915N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158117 Serial 5160  
Permanent link to this record
 

 
Author (up) Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption Type A1 Journal Article;plasma catalysis
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 39 Pages 394004  
  Keywords A1 Journal Article;plasma catalysis; vibrational nonequilibrium; dissociative chemisorption; free energy barriers; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The rate, selectivity and efficiency of plasma-based conversion processes is strongly affected by nonequilibrium phenomena. High concentrations of vibrationally excited molecules are such a plasma-induced effect. It is frequently assumed that vibrationally excited molecules are important in plasma catalysis because their presence lowers the apparent activation energy of dissociative chemisorption reactions and thus increases the conversion rate. A detailed atomic-level understanding of vibrationally stimulated catalytic reactions in the context of plasma catalysis is however lacking. Here, we couple a recently developed statistical model of a plasma-induced vibrational nonequilibrium to molecular dynamics simulations, enhanced sampling methods, and machine learning techniques. We quantify the impact of a vibrational nonequilibrium on the dissociative chemisorption barrier of H2 and CH4 on nickel catalysts over a wide range of vibrational temperatures. We investigate the effect of surface structure and compare the role of different vibrational modes of methane in the dissociation process. For low vibrational temperatures, very high vibrational efficacies are found, and energy in bend vibrations appears to dominate the dissociation of methane. The relative impact of vibrational nonequilibrium is much higher on terrace sites than on surface steps. We then show how our simulations can help to interpret recent experimental results, and suggest new paths to a better understanding of plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000674464100001 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; K M B was funded as a junior postdoctoral fellow of the FWO (Research Foundation—Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. HLDA calculations were performed with a script provided by G Piccini. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:179830 Serial 6808  
Permanent link to this record
 

 
Author (up) Bal, K.M.; Neyts, E.C. url  doi
openurl 
  Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 157 Issue 18 Pages 184113-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885260600002 Publication Date 2022-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.4  
  Call Number UA @ admin @ c:irua:192076 Serial 7266  
Permanent link to this record
 

 
Author (up) Balazs, L.; Gijbels, R.; Vertes, A. openurl 
  Title Expansion of laser-generated plumes near the plasma ignition threshold Type A1 Journal article
  Year 1991 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 63 Issue Pages 314-320  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos A1991EX23500005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.636 Times cited 71 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:704 Serial 1134  
Permanent link to this record
 

 
Author (up) Bathula, G.; Rana, S.; Bandalla, S.; Dosarapu, V.; Mavurapu, S.; Rajeevan, V.V.A.; Sharma, B.; Jonnalagadda, S.B.; Baithy, M.; Vasam, C.S. url  doi
openurl 
  Title The role of WOx and dopants (ZrO₂ and SiO₂) on CeO₂-based nanostructure catalysts in the selective oxidation of benzyl alcohol to benzaldehyde under ambient conditions Type A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 51 Pages 36242-36253  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Herein, the efficacy of WOx-promoted CeO2-SiO2 and CeO2-ZrO2 mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO2, CeO2-ZrO2, CeO2-SiO2, WOx/CeO2, WOx/CeO2-ZrO2, and WOx/CeO2-SiO2 catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH3), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These characterisation results indicated that the WOx/CeO2-SiO2 catalyst possessed improved physicochemical (i.e., structural, textural, and acidic) properties owing to the strong interactivity between WOx and CeO2-SiO2. A higher number of Ce3+ ions (I-u '''/I-Total) were created with the WOx/CeO2-SiO2 catalyst than those with the other catalysts in this work, indicating the generation of a high number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst exhibited a high conversion of benzyl alcohol (>99%) and a high selectivity (100%) toward benzaldehyde compared to the other promoted catalysts (i.e., WOx/CeO2 and WOx/CeO2-ZrO2), which is attributed to the smaller particle size of the WOx and CeO2 and their high specific surface area, more significant number of acidic sites, and superior number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst could be quickly recovered and utilized at least five times without suffering any appreciable activity loss.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001123102800001 Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202115 Serial 9107  
Permanent link to this record
 

 
Author (up) Bekeschus, S.; Freund, E.; Spadola, C.; Privat-Maldonado, A.; Hackbarth, C.; Bogaerts, A.; Schmidt, A.; Wende, K.; Weltmann, K.-D.; von Woedtke, T.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A. url  doi
openurl 
  Title Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue 9 Pages 1237  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489719000022 Publication Date 2019-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes The authors acknowledge that this work was supported by grants funded by the German Federal Ministry of Education and Research (BMBF), grant number 03Z22DN11. We want to thank the Research Foundation – Flanders (FWO) for providing funding to APM under the “long stay abroad” scheme (grant code V415618N). APM and AB acknowledge financial support from the Methusalem project. Technical support by Felix Niessner and Antje Janetzko is gratefully acknowledged. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:162106 Serial 5357  
Permanent link to this record
 

 
Author (up) Bekeschus, S.; Lin, A.; Fridman, A.; Wende, K.; Weltmann, K.-D.; Miller, V. url  doi
openurl 
  Title A comparison of floating-electrode DBD and kINPen jet : plasma parameters to achieve similar growth reduction in colon cancer cells under standardized conditions Type A1 Journal article
  Year 2018 Publication Plasma chemistry and plasma processing Abbreviated Journal Plasma Chem Plasma P  
  Volume 38 Issue 1 Pages 1-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A comparative study of two plasma sources (floating-electrode dielectric barrier discharge, DBD, Drexel University; atmospheric pressure argon plasma jet, kINPen, INP Greifswald) on cancer cell toxicity was performed. Cell culture protocols, cytotoxicity assays, and procedures for assessment of hydrogen peroxide (H2O2) were standardized between both labs. The inhibitory concentration 50 (IC50) and its corresponding H2O2 deposition was determined for both devices. For the DBD, IC50 and H2O2 generation were largely dependent on the total energy input but not pulsing frequency, treatment time, or total number of cells. DBD cytotoxicity could not be replicated by addition of H2O2 alone and was inhibited by larger amounts of liquid present during the treatment. Jet plasma toxicity depended on peroxide generation as well as total cell number and amount of liquid. Thus, the amount of liquid present during plasma treatment in vitro is key in attenuating short-lived species or other physical effects from plasmas. These in vitro results suggest a role of liquids in or on tissues during plasma treatment in a clinical setting. Additionally, we provide a platform for correlation between different plasma sources for a predefined cellular response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000419479000001 Publication Date 2017-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.355 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 2.355  
  Call Number UA @ lucian @ c:irua:155653 Serial 5084  
Permanent link to this record
 

 
Author (up) Belov, I. url  openurl
  Title Plasma-assisted conversion of carbon dioxide Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:146275 Serial 8387  
Permanent link to this record
 

 
Author (up) Belov, I.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 015023  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370974800030 Publication Date 2016-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 25 Open Access  
  Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302  
  Call Number c:irua:130790 Serial 4006  
Permanent link to this record
 

 
Author (up) Belov, I.; Paulussen, S.; Bogaerts, A. pdf  openurl
  Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141554 Serial 4516  
Permanent link to this record
 

 
Author (up) Belov, I.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Pressure as an additional control handle for non-thermal atmospheric plasma processes Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 11 Pages 1700046  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract above atmospheric) pressure regimes (1–3.5 bar). It was demonstrated that these operational conditions significantly influence both the discharge dynamics and the process efficiencies of O2 and CO2 discharges. For the case of the O2 DBD, the pressure rise results in the amplification of the discharge current, the appearance of emission lines of the metal electrode material (Fe, Cr, Ni) in the optical emission spectrum and the formation of a granular film of the erosion products (10–300 nm iron oxide nanoparticles) on the reactor walls. Somewhat similar behavior was observed also for the CO2 DBD. The discharge current, the relative intensity of the CO Angstrom band measured by Optical Emission Spectroscopy (OES) and the CO2 conversion rates could be stimulated to some extent by the rise in pressure. The optimal conditions for the O2 DBD (P = 2 bar) and the CO2 DBD (P = 1.5 bar) are demonstrated. It can be argued that the dynamics of the microdischarges (MD) define the underlying process of this behavior. It could be

demonstrated that the pressure increase stimulates the formation of more intensive but fewer MDs. In this way, the operating pressure can represent an additional tool to manipulate the properties of the MDs in a DBD, and as a result also the discharge performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415339700011 Publication Date 2017-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 1 Open Access Not_Open_Access  
  Notes Seventh Framework Programme, Grant Agreement № 606889 (RAPID – Reactive Atmospheric Plasma processIng – Education Network) ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:147024 Serial 4763  
Permanent link to this record
 

 
Author (up) Belov, I.; Vanneste, J.; Aghaee, M.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Synthesis of Micro- and Nanomaterials in CO2and CO Dielectric Barrier Discharges: Synthesis of Micro- and Nanomaterials… Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600065  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dielectric Barrier Discharges operating in CO and CO2 form solid products at atmospheric pressure. The main differences between both plasmas and their deposits were analyzed, at similar energy input. GC measurements revealed a mixture of CO2, CO, and O2 in the CO2 DBD exhaust, while no O2 was found in the CO plasma. A coating of nanoparticles composed of Fe, O, and C was produced by the CO2 discharge, whereas, a microscopic dendrite-like carbon structure was formed in the CO plasma. Fe3O4 and Fe crystalline phases were found in the CO2 sample. The CO

deposition was characterized as an amorphous structure, close to polymeric CO (p-CO). Interestingly, p-CO is not formed in the CO2 plasma, in spite of the significant amounts of CO produced (up to 30% in the reactor exhaust).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397476000007 Publication Date 2016-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 10 Open Access Not_Open_Access  
  Notes European Union Seventh Framework Programme FP7-PEOPLE-2013-ITN, 606889 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:141759 Serial 4487  
Permanent link to this record
 

 
Author (up) Belov, I.; Vermeiren, V.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations Type A1 Journal article
  Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 24 Issue Pages 386-397  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microwave (MW) plasmas represent a promising solution for efficient CO2 dissociation. MW discharges are also very versatile and can be sustained at various pressure and gas flow regimes. To identify the most favorable conditions for the further scale-up of the CO2 decomposition reaction, a MW plasma reactor operating in pure CO2 in a wide pressure range (200 mbar–1 bar) is studied. Three different gas flow configurations are explored: a direct, reverse and a vortex regime. The CO2 conversion and energy efficiency drop almost linearly with increasing pressure, regardless of the gas flow regime. The results obtained in the direct flow configuration underline the importance of post-discharge cooling, as the exhaust of the MW plasma reactor in this regime expanded into the vacuum chamber without additional quenching. As a result, this system yields exhaust temperatures of up to 1000 K, which explains the lowest conversion (∼3.5% at 200 mbar and 2% at 1 bar). A post-discharge cooling step is introduced for the reverse gas inlet regime and allows the highest conversion to be achieved (∼38% at 200 mbar and 6.2% at 1 bar, with energy efficiencies of 23% and 3.7%). Finally, a tangential gas inlet is utilized in the vortex configuration to generate a swirl flow pattern. This results in the generation of a stable discharge in a broader range of CO2 flows (15–30 SLM) and the highest energy efficiencies obtained in this study (∼25% at 300 mbar and ∼13% at 1 bar, at conversions of 21% and 12%). The experimental results are complemented with computational fluid dynamics simulations and with the analysis of the latest literature to identify the further research directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428234500045 Publication Date 2018-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 8 Open Access Not_Open_Access: Available from 16.03.2020  
  Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013- ITN) under Grant Agreement№606889 (R Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:150874 Serial 4955  
Permanent link to this record
 

 
Author (up) Bengtson, C.; Bogaerts, A. pdf  url
doi  openurl
  Title On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways Type A1 Journal article
  Year 2020 Publication Cells Abbreviated Journal Cells  
  Volume 9 Issue 10 Pages 2330  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000584186700001 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:173632 Serial 6429  
Permanent link to this record
 

 
Author (up) Bengtson, C.; Bogaerts, A. url  doi
openurl 
  Title The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling Type A1 Journal article
  Year 2021 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 22 Issue 9 Pages 5033  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide () has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous . We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650366900001 Publication Date 2021-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.226 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.226  
  Call Number PLASMANT @ plasmant @c:irua:178123 Serial 6757  
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Khalilov, U.; Hamoudi, H.; Neyts, E.C. url  doi
openurl 
  Title Effect of chemical modification on electronic transport properties of carbyne Type A1 Journal article
  Year 2021 Publication Journal Of Computational Electronics Abbreviated Journal J Comput Electron  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000617664900001 Publication Date 2021-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited Open Access OpenAccess  
  Notes Computational resources were provided by the research computing facilities of Qatar Environment and Energy Research Institute. Calculations are also conducted using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. U. Khalilov gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1315N. Approved Most recent IF: 1.526  
  Call Number PLASMANT @ plasmant @c:irua:176169 Serial 6708  
Permanent link to this record
 

 
Author (up) Berezhnoi, S.; Kaganovich, I.; Bogaerts, A.; Gijbels, R. openurl 
  Title Modelling of radio frequency capacitively coupled plasma at intermediate pressures Type H3 Book chapter
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 525-526  
  Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic Place of Publication Dordrecht Editor  
  Language Wos 000081413700048 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:24925 Serial 2154  
Permanent link to this record
 

 
Author (up) Berezhnoi, S.; Kaganovich, I.; Misina, M.; Bogaerts, A.; Gijbels, R. doi  openurl
  Title Semianalytical description of nonlocal secondary electrons in a radio-frequency capacitively coupled plasma at intermediate pressures Type A1 Journal article
  Year 1999 Publication IEEE transactions plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume 27 Issue Pages 1339-1347  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000083453000014 Publication Date 2002-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.052; 1999 IF: 1.085  
  Call Number UA @ lucian @ c:irua:28314 Serial 2980  
Permanent link to this record
 

 
Author (up) Bergwerf, I.; de Vocht, N.; Tambuyzer, B.; Verschueren, J.; Reekmans, K.; Daans, J.; Ibrahimi, A.; Van Tendeloo, V.; Chatterjee, S.; Goossens, H.; Jorens, P.G.; Baekelandt, V.; Ysebaert, D.; Van Marck, E.; Berneman, Z.N.; Van Der Linden, A.; Ponsaerts, P. url  doi
openurl 
  Title Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice Type A1 Journal article
  Year 2009 Publication BMC biotechnology Abbreviated Journal Bmc Biotechnol  
  Volume Issue Pages  
  Keywords A1 Journal article; Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP); Bio-Imaging lab; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Background Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics. Results In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-ã-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation. Conclusion We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000262698500001 Publication Date 2009-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1472-6750 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.415 Times cited 33 Open Access  
  Notes Approved Most recent IF: 2.415; 2009 IF: 2.723  
  Call Number UA @ lucian @ c:irua:72911 Serial 4527  
Permanent link to this record
 

 
Author (up) Berthelot, A. url  openurl
  Title Modeling of microwave plasmas for carbon dioxide conversion Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher University of Antwerp Place of Publication Antwerp Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150338 Serial 4944  
Permanent link to this record
 

 
Author (up) Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of plasma-based CO2conversion: lumping of the vibrational levels Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 045022  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Although CO2 conversion by plasma technology is gaining increasing interest, the

underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380380200036 Publication Date 2016-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 33 Open Access  
  Notes This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606889 and it was also carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7) supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number c:irua:134397 Serial 4101  
Permanent link to this record
 

 
Author (up) Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of CO2Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 8236-8251  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microwave plasmas are one of the most promising techniques for CO2 conversion into value-added chemicals and fuels since they are very energy efficient. Nevertheless, experiments show that this high energy efficiency is only reached at low pressures and significantly drops toward atmospheric pressure, which is a clear limitation for industrial applications. In this paper, we use a zerodimensional reaction kinetics model to simulate a CO2 microwave plasma in a pressure range from 50 mbar to 1 bar, in order to evaluate the reasons for this decrease in energy efficiency at atmospheric pressure. The code includes a detailed description of the vibrational kinetics of CO2, CO, and O2 as well as the energy exchanges between them because the vibrational kinetics is known to be crucial for energy efficient CO2 splitting. First, we use a self-consistent gas temperature calculation in order to assess the key performance indicators for CO2 splitting, i.e., the CO2 conversion and corresponding energy efficiency. Our results indicate that lower pressures and higher power densities lead to more vibrational excitation, which is beneficial for the conversion. We also demonstrate the key role of the gas temperature. The model predicts the highest conversion and energy efficiencies at pressures around 300 mbar, which is in agreement with experiments from the literature. We also show the beneficial aspect of fast gas cooling in the afterglow at high pressure. In a second step, we study in more detail the effects of pressure, gas temperature, and power density on the vibrational distribution function and on the dissociation and recombination mechanisms of CO2, which define the CO2 splitting efficiency. This study allows us to identify the limiting factors of CO2 conversion and to propose potential solutions to improve the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400039300002 Publication Date 2017-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 47 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:142809 Serial 4567  
Permanent link to this record
 

 
Author (up) Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Modeling of CO2plasma: effect of uncertainties in the plasma chemistry Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 11 Pages 115002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasma chemical kinetic models are particularly important to the plasma community. These models typically require dozens of inputs, especially rate coefficients. The latter are not always precisely known and it is not surprising that the error on the rate coefficient data can propagate to the model output. In this paper, we present a model that uses N = 400 different combinations of rate coefficients based on the uncertainty attributed to each rate coefficient, giving a good estimation of the uncertainty on the model output due to the rate coefficients. We demonstrate that the uncertainty varies a lot with the conditions and the type of output. Relatively low uncertainties (about 15%) are found for electron density and temperature, while the uncertainty can reach more than an order of magnitude for the population of the vibrational levels in some cases and it can rise up to 100% for the CO2 conversion. The reactions that are mostly responsible for the largest uncertainties are identified. We show that the conditions of pressure, gas temperature and power density have a great effect on the uncertainty and on which reactions lead to this uncertainty. In all the cases tested here, while the absolute values may suffer from large uncertainties, the trends observed in previous modeling work are still valid. Finally, in accordance with the work of Turner, a number of ‘good practices’ is recommended.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413216500002 Publication Date 2017-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 16 Open Access OpenAccess  
  Notes We acknowledge financial support from the European Unions Seventh Framework Program for research, technological development and demonstration under grant agreement n◦ 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:146879c:irua:146642 Serial 4758  
Permanent link to this record
 

 
Author (up) Berthelot, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Pinpointing energy losses in CO 2 plasmas – Effect on CO 2 conversion Type A1 Journal article
  Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 24 Issue Pages 479-499  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for CO2 conversion, but to maximize the energy efficiency, it is important to track the different energy transfers taking place in the plasma. In this paper, we study these mechanisms by a 0D chemical kinetics model, including the vibrational kinetics, for different conditions of reduced electric field, gas temperature and ionization degree, at a pressure of 100 mbar. Our model predicts a maximum conversion and energy efficiency of 32% and 47%, respectively, at conditions that are particularly beneficial for energy efficient CO2 conversion, i.e. a low reduced electric field (10 Td) and a low gas temperature (300 K). We study the effect of the efficiency by which the vibrational energy is used to dissociate CO2, as well as of the activation energy of the reaction CO2+O→CO+O2, to elucidate the theoretical limitations to the energy

efficiency. Our model reveals that these parameters are mainly responsible for the limitations in the energy efficiency. By varying these parameters, we can reach a maximum conversion and energy efficiency of 86%. Finally, we derive an empirical formula to estimate the maximum possible energy efficiency that can be reached under the assumptions of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428234500054 Publication Date 2018-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 6 Open Access Not_Open_Access: Available from 16.03.2020  
  Notes We acknowledge financial support from the European Union's Seventh Framework Program for research, technological development and demonstration under grant agreement no. 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We would also like to thank Prof. Richard van de Sanden (DIFFER) for the interesting talks. Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:149645 Serial 4912  
Permanent link to this record
 

 
Author (up) Berthelot, A.; Kolev, S.; Bogaerts, A. pdf  isbn
openurl 
  Title Different pressure regimes of a surface-wave discharge in argon : a modelling investigation Type P2 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 57-62  
  Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UCO Press Place of Publication Cordoba Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-9927-187-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:135094 Serial 4160  
Permanent link to this record
 

 
Author (up) Beusen, J.-M.; Van 't dack, L.; Gijbels, R. openurl 
  Title Interaction between rock-forming minerals and fluids under hydrothermal conditions : experiments with emphasis on the chemical composition of the minerals surface and on the trace element content of the aqueous phase Type P3 Proceeding
  Year 1985 Publication Abbreviated Journal  
  Volume Issue Pages 310-317  
  Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Reidel Place of Publication Dordrecht Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:111510 Serial 1682  
Permanent link to this record
 

 
Author (up) Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title Atomic spectroscopy Type A1 Journal article
  Year 2013 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 85 Issue 2 Pages 670-704  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000313668400013 Publication Date 2012-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 29 Open Access  
  Notes Approved Most recent IF: 6.32; 2013 IF: 5.825  
  Call Number UA @ lucian @ c:irua:104719 Serial 190  
Permanent link to this record
 

 
Author (up) Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title Atomic spectroscopy Type A1 Journal article
  Year 2008 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 80 Issue 12 Pages 4317-4347  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000256763400006 Publication Date 2008-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 53 Open Access  
  Notes Approved Most recent IF: 6.32; 2008 IF: 5.712  
  Call Number UA @ lucian @ c:irua:69437 Serial 191  
Permanent link to this record
 

 
Author (up) Bings, N.H.; Bogaerts, A.; Broekaert, J.A.C. doi  openurl
  Title Atomic spectroscopy Type A1 Journal article
  Year 2006 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 78 Issue 12 Pages 3917-3945  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000238252600007 Publication Date 2006-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 112 Open Access  
  Notes Approved Most recent IF: 6.32; 2006 IF: 5.646  
  Call Number UA @ lucian @ c:irua:60058 Serial 192  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: