toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of carbon impurities in CuInSe2 and CuGaSe2, present in non-vacuum synthesis methods Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A first-principles study of the structural and electronic properties of carbon impurities in CuInSe2 and CuGaSe2 is presented. Carbon is present in organic molecules in the precursor solutions used in non-vacuum growth methods for CuInSe2 and CuGaSe2 based photovoltaic cells. These growth methods make more efficient use of material, time, and energy than traditional vacuum methods. The formation energies of several carbon impurities are calculated using the hybrid HSE06 functional. C Cu acts as a shallow donor, CIn and interstitial C yield deep donor levels in CuInSe2, while in CuGaSe2 CGa and interstitial C act as deep amphoteric defects. So, these defects reduce the majority carrier (hole) concentration in p-type CuInSe2 and CuGaSe2 by compensating the acceptor levels. The deep defects are likely to act as recombination centers for the photogenerated charge carriers and are thus detrimental for the performance of the photovoltaic cells. On the other hand, the formation energies of the carbon impurities are high, even under C-rich growth conditions. Thus, few C impurities will form in CuInSe2 and CuGaSe2 in thermodynamic equilibrium. However, the deposition of the precursor solution in non-vacuum growth methods presents conditions far from thermodynamic equilibrium. In this case, our calculations show that C impurities formed in non-equilibrium tend to segregate from CuInSe2 and CuGaSe2 by approaching thermodynamic equilibrium, e.g., via thorough annealing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600055 Publication Date 2015-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122064 Serial 1215  
Permanent link to this record
 

 
Author (up) Benito, P.; Monti, M.; de Nolf, W.; Nuyts, G.; Janssens, K.; et al. pdf  doi
openurl 
  Title Improvement in the coating homogeneity in electrosynthesized Rh structured catalysts for the partial oxidation of methane Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 246 Issue Pages 154-164  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The precipitation of Rh/Mg/Al and Rh/Al hydroxides on the surface of FeCrAlloy foams by a base electrogeneration method was investigated to improve the properties of the deposited film (homogeneity and composition) and therefore the performances of the structured catalysts, obtained by calcination, in the Catalytic Partial Oxidation of CH4 to syngas. The work focussed on decreasing current gradients within open-cell foam cylinders by increasing the number of electrical contacts from 1 to 3 points to promote a more homogeneous precipitation of the hydroxides. Electrochemical and catalytic tests as well as SEM/EDS and mu-XRFIXRD analyses allowed to correlate the effect of the number of electrical contact points with materials properties. Lastly, syntheses were performed on Pt plates to study the effect of the electrical behaviour and shape of the support on the composition of the film. A more homogeneous coating of the foam surface was achieved by adopting a configuration with 3 contact points since the reduction of nitrates and water molecules that generates the basic media in the vicinity of the support was enhanced. Layer thicknesses up to 5-15 mu m were deposited; however, the sequential precipitation of a film with composition closer to the expected one and a layer enriched in Al and Rh (outer layer) was not avoided. The improvement in the coating gave rise to enhanced performances for a sample prepared at -1.1 V for 3000 s. Contrarily, the low adherence of the outer layer in a sample prepared at -1.2 V for 2000 s during both calcination and catalytic tests may be responsible of the unexpected decrease in catalytic performances. The same sequential precipitation was observed by performing the syntheses on Pt plates, showing that the electrical nature the support did not play a key role on this phenomenon. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349998300020 Publication Date 2014-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 14 Open Access  
  Notes ; The financial support from the Ministero per l'Istruzione, l'Universita e la Ricerca (MIUR, Roma, I) is gratefully acknowledged. The authors thank D. Grolimund and C.N. Borca for assisting the mu XRF/XRD conducted experiments at MicroXAS Beamline of SLS Thanks are due to Porvair for supplying FeCrAlloy foams. ; Approved Most recent IF: 4.636; 2015 IF: 3.893  
  Call Number UA @ admin @ c:irua:124616 Serial 5656  
Permanent link to this record
 

 
Author (up) Benito, P.; Nuyts, G.; Monti, M.; de Nolf, W.; Fornasari, G.; Janssens, K.; Scavetta, E.; Vaccari, A. pdf  doi
openurl 
  Title Stable Rh particles in hydrotalcite-derived catalysts coated on FeCrAlloy foams by electrosynthesis Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 179 Issue Pages 321-332  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Rh-based structured catalysts for the Catalytic Partial Oxidation of CH4 to syngas were prepared by electrosynthesis of Rh/Mg/Al hydrotalcite-type compounds on FeCrAlloy foams and calcination. The effects of Rh content, total metal concentration, and partial replacement of Mg2+ by Ni2+ in the electrolytic solution on coating thickness, Rh speciation, metallic particle size, and catalytic activity were investigated by SEM/EDS, mu-XRF/XANES and tests under diluted and concentrated reaction conditions. The amount of Rh species, present as Mg (RhxAl1-x)(2)O-4, depended on the thickness of the electrosynthesised layer as well as the Rh particle size and dispersion. Smaller and more dispersed particles were obtained by decreasing the Rh concentration in the electrolytic solution from Rh/Mg/Al=11/70/19 to 5/70/25 and 2/70/28 atomic ratio% (a.r.%) and in thinner rather than thicker layers. Despite the improvement in metallic particles features, the CH4 conversion was negatively affected by the low amount of active sites in the coating, the high metal support interaction and possibly the oxidation of metallic particles and carbon formation. A larger amount of solid containing well dispersed Rh particles was deposited by increasing the total metal concentration from 0.03 M to 0.06 M with the Rh/Mg/Al=5/70/25 a.r.%, and the catalytic performances were enhanced. The partial replacement of Mg2+ by Ni2+ gave rise to a very active bimetallic Rh/Ni catalyst, CH4 conversion and selectivity to syngas were above 90%, however, it slightly deactivated with time-on-stream. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359873800036 Publication Date 2015-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 14 Open Access  
  Notes ; The Authors acknowledge M. Salome for helping during the mu XRF/XANES experiments at ID21 Beamline of the ESRF, the Department of Structural Characterisation of CNR-IMM of Bologna for the access to the FEG-SEM facility and Dr F. Ospitali for the scientific support. Thanks are due to Farrel Lytle database for providing the necessary Rh metal spectrum (rhfoil.a99 in http:// ixs.iit.edu/data/FarrelLytledata/). The financial support from the Ministero per l'Istruzione, l'Universita e la Ricerca (MIUR, Roma, Italy) and the University of Bologna (FARB program) is gratefully acknowledged. ; Approved Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number UA @ admin @ c:irua:127777 Serial 5846  
Permanent link to this record
 

 
Author (up) Berdiyorov, G.; Harrabi, K.; Maneval, J.P.; Peeters, F.M. url  doi
openurl 
  Title Effect of pinning on the response of superconducting strips to an external pulsed current Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 28 Issue 28 Pages 025004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the anisotropic time-dependent Ginzburg-Landau theory we study the effect of ordered and disordered pinning on the time response of superconducting strips to an external current that switched on abruptly. The pinning centers result in a considerable delay of the response time of the system to such abrupt switching on of the current, whereas the output voltage is always larger when pinning is present. The resistive state in both cases are characterized either by dynamically stable phase-slip centers/lines or expanding in-time hot-spots, which are the main mechanisms for dissipation in current-carrying superconductors. We find that hot-spots are always initiated by the phase-slip state. However, the range of the applied current for the phase-slip state increases significantly when pinning is introduced. Qualitative changes are observed in the dynamics of the superconducting condensate in the presence of pinning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000351046300010 Publication Date 2014-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 19 Open Access  
  Notes ; This work was supported by EU Marie Curie (Project No: 253057), the Flemish Science Foundation (FWO-Vl) and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 2.878; 2015 IF: 2.325  
  Call Number c:irua:125491 Serial 829  
Permanent link to this record
 

 
Author (up) Berdiyorov, G.; Harrabi, K.; Mehmood, U.; Peeters, F.M.; Tabet, N.; Zhang, J.; Hussein, I.A.; McLachlan, M.A. doi  openurl
  Title Derivatization and diffusive motion of molecular fullerenes : ab initio and atomistic simulations Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 025101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C-60 fullerene. As a typical example, we consider [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C-60 and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C-60 is an order of magnitude larger than the one for PCBM. (c) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000357961000036 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access  
  Notes ; K.H., U.M. and I.A.H. would like to thank the National Science, Technology and Innovation Program of KACST for funding this research under Project No. 12-ENE2379-04. They also acknowledge support from KFUPM and Research Institute. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:127098 Serial 652  
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M. url  doi
openurl 
  Title Theoretical study of electronic transport properties of a graphene-silicene bilayer Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 225101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000356176100040 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes ; H. B. and F. M. P. acknowledge support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR Projects. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:127075 Serial 3611  
Permanent link to this record
 

 
Author (up) Berdiyorov, G.R.; Savel'ev, S.; Kusmartsev, F.V.; Peeters, F.M. url  doi
openurl 
  Title Effect of ordered array of magnetic dots on the dynamics of Josephson vortices in stacked SNS Josephson junctions under DC and AC current Type A1 Journal article
  Year 2015 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 88 Issue 88 Pages 286  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We use the anisotropic time-dependent Ginzburg-Landau theory to investigate the effect of a square array of out-of-plane magnetic dots on the dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting (SNS) Josephson junctions in the presence of external DC and AC currents. Periodic pinning due to the magnetic dots distorts the triangular lattice of fluxons and results in the appearance of commensurability features in the current-voltage characteristics of the system. For the larger values of the magnetization, additional peaks appear in the voltage-time characteristics of the system due to the creation and annihilation of vortex-antivortex pairs. Peculiar changes in the response of the system to the applied current is found resulting in a “superradiant” vortex-flow state at large current values, where a rectangular lattice of moving vortices is formed. Synchronizing the motion of fluxons by adding a small ac component to the biasing dc current is realized. However, we found that synchronization becomes difficult for large magnetization of the dots due to the formation of vortex-antivortex pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000363960900002 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 1 Open Access  
  Notes ; This work was supported by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 1.461; 2015 IF: 1.345  
  Call Number UA @ lucian @ c:irua:129509 Serial 4166  
Permanent link to this record
 

 
Author (up) Berthelot, A.; Kolev, S.; Bogaerts, A. pdf  isbn
openurl 
  Title Different pressure regimes of a surface-wave discharge in argon : a modelling investigation Type P2 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 57-62  
  Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UCO Press Place of Publication Cordoba Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-9927-187-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:135094 Serial 4160  
Permanent link to this record
 

 
Author (up) Bertrand, L.; Schoeeder, S.; Anglos, D.; Breese, M.B.H.; Janssens, K.; Moini, M.; Simon, A. pdf  doi
openurl 
  Title Mitigation strategies for radiation damage in the analysis of ancient materials Type A1 Journal article
  Year 2015 Publication Trends in analytical chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 66 Issue Pages 128-145  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The study of materials in cultural heritage artifacts and micro-samples benefits from diagnostic techniques based on intense radiation sources, such as synchrotrons, ion-beam accelerators and lasers. While most of the corresponding techniques are classified as non-destructive, investigation with photons or charged particles entails a number of fundamental processes that may induce changes in materials. These changes depend on irradiation parameters, properties of materials and environmental factors. In some cases, radiation-induced damage may be detected by visual inspection. When it is not, irradiation may still lead to atomic and molecular changes resulting in immediate or delayed alteration and bias of future analyses. Here we review the effects of radiation reported on a variety of cultural heritage materials and describe the usual practice for assessing short-term and long-term effects. This review aims to raise awareness and encourage subsequent research activities to limit radiation side effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352248200020 Publication Date 2014-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited 35 Open Access  
  Notes ; We wish to acknowledge the support of this initiative by the International Atomic Energy Agency. We gratefully thank Professor Manfred Schreiner of the Institute of Natural Sciences and Technology in the Arts (Akademie den bildenden Kunst, Vienna, Austria) for helpful discussions and insights on this work. We thank all colleagues who accepted to have their work reproduced in this review. IPANEMA at Synchrotron SOLEIL, the Hungarian Academy of Science and IESL-FORTH were supported within the Research Infrastructure program CHARISMA of the 7th Framework Programme of the EU (Grant Agreement no. 228330). MM's contribution is based upon work supported by the National Science Foundation under Grant numbers CHE 1241672 and CHE 1440849. We thank Chris McGlinchey and Lauren Klein (Museum of Modern Art, New York, USA) for their critical rereading of the manuscript. ; Approved Most recent IF: 8.442; 2015 IF: 6.472  
  Call Number UA @ admin @ c:irua:124627 Serial 5729  
Permanent link to this record
 

 
Author (up) Bia, P.; Caratelli, D.; Mescia, L.; Gielis, J. pdf  url
doi  openurl
  Title Analysis and synthesis of supershaped dielectric lens antennas Type A1 Journal article
  Year 2015 Publication IET microwaves, antennas and propagation Abbreviated Journal  
  Volume 9 Issue 14 Pages 1497-1504  
  Keywords A1 Journal article; Engineering sciences. Technology; Mass communications; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel class of supershaped dielectric lens antennas, whose geometry is described by the three-dimensional (3D) Gielis formula, is introduced and analysed. To this end, a hybrid modelling approach based on geometrical and physical optics is adopted in order to efficiently analyse the multiple wave reflections occurring within the lens and to evaluate the relevant impact on the radiation properties of the antenna under analysis. The developed modelling procedure has been validated by comparison with numerical results already reported in the literature and, afterwards, applied to the electromagnetic characterisation of Gielis dielectric lens antennas with shaped radiation pattern. Furthermore, a dedicated optimisation algorithm based on quantum particle swarm optimisation has been developed for the synthesis of 3D supershaped lens antennas with single feed, as well as with beamforming capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000364491200002 Publication Date 2015-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-8725 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:128659 Serial 7441  
Permanent link to this record
 

 
Author (up) Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kozák, T. pdf  isbn
openurl 
  Title Computer modeling of a microwave discharge used for CO2 splitting Type P2 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages 41-50  
  Keywords P2 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UCO Press Place of Publication Cordoba Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-9927-187-3 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:135096 Serial 4154  
Permanent link to this record
 

 
Author (up) Bogaerts, A.; Kozak, T.; van Laer, K.; Snoeckx, R. pdf  url
doi  openurl
  Title Plasma-based conversion of CO2: current status and future challenges Type A1 Journal article
  Year 2015 Publication Faraday discussions Abbreviated Journal Faraday Discuss  
  Volume 183 Issue 183 Pages 217-232  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.  
  Address Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Antwerp, Belgium. annemie.bogaerts@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000365914900013 Publication Date 2015-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.588 Times cited 89 Open Access  
  Notes We thank R. Aerts and W. van Gaens for setting up the experimental systems and for the interesting results obtained during their PhD study in our group. We also acknowledge nancial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Fund for Scientic Research Flanders (FWO) and the EU-FP7-ITN network “RAPID”. Approved Most recent IF: 3.588; 2015 IF: 4.606  
  Call Number c:irua:130318 Serial 3983  
Permanent link to this record
 

 
Author (up) Borhani, A.H.; Berghmans, H.; Trashin, S.; De Wael, K.; Fago, A.; Moens, L.; Habibi-Rezaei, M.; Dewilde, S. url  doi
openurl 
  Title Kinetic properties and heme pocket structure of two domains of the polymeric hemoglobin of Artemia in comparison with the native molecule Type A1 Journal article
  Year 2015 Publication Biochimica et biophysica acta : proteins and proteomics Abbreviated Journal Bba-Proteins Proteom  
  Volume 1854 Issue 10a Pages 1307-1316  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this project, we studied some physicochemical properties of two different globin domains of the polymeric hemoglobin of the brine shrimp Artemia salina and compared them with those of the native molecule. Two domains (AsHbC1D1 and AsHbC1D5) were cloned and expressed in BL21(DE3)pLysS strain of Escherichiacoli. The recombinant proteins as well as the native hemoglobin (AfHb) were purified from bacteria and frozen Artemia, respectively by standard chromatographic methods and assessed by SDS-PAGE. The heme environment of these proteins was studied by optical spectroscopy and ligand-binding kinetics (e.g. CO association and O2 binding affinity) were measured for the two recombinant proteins and the native hemoglobin. This indicates that the CO association rate for AsHbC1D1 is higher than that of AsHbC1D5 and AfHb, while the calculated P50 value for AsHbC1D1 is lower than that of AsHbC1D5 and AfHb. The geminate and bimolecular rebinding parameters indicate a significant difference between both domains. Moreover, EPR results showed that the heme pocket in AfHb is in a more closed conformation than the heme pocket in myoglobin. Finally, the reduction potential of − 0.13 V versus the standard hydrogen electrode was determined for AfHb by direct electrochemical measurements. It is about 0.06 V higher than the potential of the single domain AsHbC1D5. This work shows that each domain in the hemoglobin of Artemia has different characteristics of ligand binding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362307500008 Publication Date 2015-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-9639 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.773 Times cited Open Access  
  Notes ; This work was supported by the general grant for visiting scholar of the Ministry of Science, Research and Technology of I. R. Iran and by the University of Antwerp. ; Approved Most recent IF: 2.773; 2015 IF: 2.747  
  Call Number UA @ admin @ c:irua:125909 Serial 5683  
Permanent link to this record
 

 
Author (up) Brammertz, G.; Buffiere, M.; Verbist, C.; Bekaert, J.; Batuk, M.; Hadermann, J.; et al. openurl 
  Title Process variability in Cu2ZnSnSe4 solar cell devices: Electrical and structural investigations Type P1 Proceeding
  Year 2015 Publication The conference record of the IEEE Photovoltaic Specialists Conference T2 – IEEE 42nd Photovoltaic Specialist Conference (PVSC), JUN 14-19, 2015, New Orleans, LA Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We have fabricated 9.7% efficient Cu2ZnSnSe4/CdS/ZnO solar cells by H2Se selenization of sequentially sputtered metal layers. Despite the good efficiency obtained, process control appears to be difficult. In the present contribution we compare the electrical and physical properties of two devices with nominal same fabrication procedure, but 1% and 9.7% power conversion efficiency respectively. We identify the problem of the lower performing device to be the segregation of ZnSe phases at the backside of the sample. This ZnSe seems to be the reason for the strong bias dependent photocurrent observed in the lower performing devices, as it adds a potential barrier for carrier collection. The reason for the different behavior of the two nominally same devices is not fully understood, but speculated to be related to sputtering variability.  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New york Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4799-7944-8 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:132335 Serial 4229  
Permanent link to this record
 

 
Author (up) Brault, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 256 Issue 256 Pages 3-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Magnetron sputtering is a widely used physical vapor deposition technique for deposition and formation of nanocatalyst thin films and clusters. Nevertheless, so far only few studies investigated this formation process at the fundamental level. We here review atomic scale molecular dynamics simulations aimed at elucidating the nanocatalyst growth process through magnetron sputtering. We first introduce the basic magnetron sputtering background and machinery of molecular dynamics simulations, and then describe the studies conducted in this field so far. We also present a perspective view on how the field may be developed further.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000360085300002 Publication Date 2015-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 18 Open Access  
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893  
  Call Number c:irua:127408 Serial 2174  
Permanent link to this record
 

 
Author (up) Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O. doi  openurl
  Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 3 Issue 3 Pages 3971-3979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352870400018 Publication Date 2015-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 19 Open Access  
  Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696  
  Call Number UA @ lucian @ c:irua:132575 Serial 4245  
Permanent link to this record
 

 
Author (up) Brito, B.G.A.; Candido, L.; Hai, G.-Q.; Peeters, F.M. url  doi
openurl 
  Title Quantum effects in a free-standing graphene lattice : path-integral against classical Monte Carlo simulations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 195416  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In order to study quantum effects in a two-dimensional crystal lattice of a free-standing monolayer graphene, we have performed both path-integral Monte Carlo (PIMC) and classical Monte Carlo (MC) simulations for temperatures up to 2000 K. The REBO potential is used for the interatomic interaction. The total energy, interatomic distance, root-mean-square displacement of the atom vibrations, and the free energy of the graphene layer are calculated. The obtained lattice vibrational energy per atom from the classical MC simulation is very close to the energy of a three-dimensional harmonic oscillator 3k(B)T. The PIMC simulation shows that quantum effects due to zero-point vibrations are significant for temperatures T < 1000 K. The quantum contribution to the lattice vibrational energy becomes larger than that of the classical lattice for T < 400 K. The lattice expansion due to the zero-point motion causes an increase of 0.53% in the lattice parameter. A minimum in the lattice parameter appears at T similar or equal to 500 K. Quantum effects on the atomic vibration amplitude of the graphene lattice and its free energy are investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000368095400004 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes ; This research was supported by the Brazilian agencies FAPESP, FAPEG, and CNPq, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:131144 Serial 4232  
Permanent link to this record
 

 
Author (up) Buczyńska, A.J.; Geypens, B.; Van Grieken, R.; De Wael, K. pdf  url
doi  openurl
  Title Optimization of sample clean-up for the GC-C-IRMS and GC-IT-MS analysis of PAHs from air particulate matter Type A1 Journal article
  Year 2015 Publication Microchemical journal Abbreviated Journal Microchem J  
  Volume 119 Issue Pages 83-92  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The optimization of sample clean-up for the analysis of air particulate matter PAHs stable carbon isotope ratio using Solid Phase Extraction (SPE) cartridges is described in this paper. Various adsorbents, such as silica gel, alumina, florisil, commercially available for sample purification were compared. Best performance for the clean-up of 24-h air particulate matter samples was obtained with activated silica-gel columns in terms of selectivity and reproducibility. One step clean-up was optimized for concentration determination and in case of co-elutions, a second step was additionally used for carbon isotope ratio analysis. The method was subsequently validated with standard reference material and was checked for carbon isotope fractionation artefacts. No significant differences in δ13C values were found for unprocessed solutions of PAHs and solution subjected to the extraction and purification procedure. The procedure was tested on air particulate matter samples collected in three different locations in Belgium. Statistically significant differences in carbon isotope ratio of PAHs between Borgerhout location and Zelzate or Gent were noticed, confirming the differences in distribution and diagnostic ratios found during the concentration analyses and different PAH sources in these locations. The results, therefore, seem very promising for the use of δ13C of PAHs as an additional information helpful in source identification of these pollutants  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348957800013 Publication Date 2014-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.034; 2015 IF: 2.746  
  Call Number UA @ admin @ c:irua:120641 Serial 5759  
Permanent link to this record
 

 
Author (up) Buh, J.; Kabanov, V.; Baranov, V.; Mrzel, A.; Kovic, A.; Mihailovic, D. url  doi
openurl 
  Title Control of switching between metastable superconducting states in delta-MoN nanowires Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue 6 Pages 10250  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in d-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367576600002 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number UA @ lucian @ c:irua:131108 Serial 4156  
Permanent link to this record
 

 
Author (up) Cabal, A.; Schalm, O.; Eyskens, P.; Willems, P.; Harth, A.; van Espen, P. pdf  doi
openurl 
  Title Comparison of x-ray absorption and emission techniques for the investigation of paintings Type A1 Journal article
  Year 2015 Publication X-ray spectrometry Abbreviated Journal  
  Volume 44 Issue 3 Pages 141-148  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Four x-ray techniques: computed radiography, emission radiography, energy-resolved radiography and imaging x-ray fluorescence were compared using four mock-up panel paintings. The paintings have different stratigraphy and pigments and are representative for different historical periods. One of the paintings has a hidden underlying painting. The type of pigments used mainly influences the information obtained by both the emission and absorption measurements; high-Z white pigment and high-Z color pigments giving the best contrast. Each of the techniques revealed interesting aspects of the paintings, but none of them could reveal the hidden painting to a satisfactory level. Due to the statistical quality of the spectral data, x-ray fluorescence gives elemental images with high contrast. The radiographic images are better to reveal the internal structure. Imaging x-ray fluorescence and energy-resolved radiography measurements can be done simultaneously, and the combination has the highest potential for the study of complex multilayer paintings. Copyright (c) 2015 John Wiley & Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353644500010 Publication Date 2015-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:126016 Serial 7698  
Permanent link to this record
 

 
Author (up) Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G. pdf  url
doi  openurl
  Title Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 21 Issue 21 Pages 16792-16795  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.  
  Address Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366501600011 Publication Date 2015-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 5 Open Access  
  Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731  
  Call Number c:irua:129215 Serial 3964  
Permanent link to this record
 

 
Author (up) Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G. pdf  url
doi  openurl
  Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 93 Issue 93 Pages 1059-1067  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000360292100108 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 17 Open Access  
  Notes 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:127691 c:irua:127691 Serial 2921  
Permanent link to this record
 

 
Author (up) Caen, J.; Legrand, S.; van der Snickt, G.; Janssens, K. isbn  openurl
  Title Macro X-ray fluorescence (MA-XRF) scanning : a new and efficient method for documenting stained-glass panels Type P3 Proceeding
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-2-9543731-1-9 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:126832 Serial 5697  
Permanent link to this record
 

 
Author (up) Cagno, S.; Cosyns, P.; Ceglia, A.; Nys, K.; Janssens, K. pdf  doi
openurl 
  Title The use of vitrum obsianum in the Roman Empire: some new insights and future prospects Type A1 Journal article
  Year 2015 Publication Periodico di mineralogia Abbreviated Journal Period Mineral  
  Volume 84 Issue 3a Pages 465-482  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The research on the use of obsidian in the Mediterranean is extensive but concerns almost exclusively volcanic glass from prehistoric and Bronze Age contexts. The consumption of obsidian during the Roman imperial period, however, has only occasionally received attention. Never a comprehensive account on what the Romans made in vitrum obsianum has been set up, nor have the sources exploited by them been examined. This paper provides a concise overview of the current knowledge on obsidian during the Roman imperial period and offers an introductory outline on potential research. The ancient writers inform us about the use of volcanic glass to create exclusive vessels, gemstones, mirrors and sculpture, but also about the creation of black appearing man-made glass initiated as a cheap and easier workable substitute of obsidian. The archaeological data on the other hand propose a more complex story with the occurrence of obsidian chunks in early Roman secondary glass workshops, and the bulky use of obsidian in late Antiquity to produce tesserae for the creation of wall and vault mosaics. Because it is extremely difficult to visually distinguish natural obsidian from man-made glass imitations we present in this paper data collected by means of non-destructive chemico-physical analyses SEM-EDX, portable X-ray fluorescence (p-XRF) and Raman spectroscopy to easily distinguish man-made glass from natural obsidian. In particular the use of portable instruments makes possible in situ analysis of objects in archaeological depots or museum collections to help defining distribution networks to better understand the shifting consumption patterns in Antiquity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365632500007 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0369-8963 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.883 Times cited 2 Open Access  
  Notes ; Our sincere gratitude goes to Cecile Evers and Natacha Masar to have granted permission for studying and analysing various obsidian artefacts within the collections of the Royal Museums of Art and History, Brussels (Belgium). We are also very grateful to Roald Doctor, Daniele Foy and Laudine Robin, respectively for having provided the material from Carthage, for the Sidi Jdidi tessera and Lyon. Our appreciation also goes to Ian Freestone and Andrew Meek respectively for having worked out and provided the internal report on the horse foreleg in the British Museum. Finally we wish to thank Jennifer Price, Maria Grazia Diani respectively for the information on the Stanwick fragment and the piece in the Pogliaghi-Varesse collection. This research was supported by the Hercules Foundation (Brussels) with the grant AUHA09004 and FWO (Brussels, Belgium) projects no. G.0C12.13 and G.01769.09 and partly by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/ F50. ; Approved Most recent IF: 0.883; 2015 IF: 0.464  
  Call Number UA @ admin @ c:irua:130244 Serial 5876  
Permanent link to this record
 

 
Author (up) Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M. pdf  doi
openurl 
  Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 13013-13020  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354195300065 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 104 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number c:irua:126394 Serial 2835  
Permanent link to this record
 

 
Author (up) Çakir, D.; Peeters, F.M. pdf  url
doi  openurl
  Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27636-27641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800043 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129477 Serial 4182  
Permanent link to this record
 

 
Author (up) Çakir, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 165406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the number of stacking layers and the type of stacking on the electronic and optical properties of bilayer and trilayer black phosphorus are investigated by using first-principles calculations within the framework of density functional theory. We find that inclusion of many-body effects (i.e., electron-electron and electron-hole interactions) modifies strongly both the electronic and optical properties of black phosphorus. While trilayer black phosphorus with a particular stacking type is found to be a metal by using semilocal functionals, it is predicted to have an electronic band gap of 0.82 eV when many-body effects are taken into account within the G(0)W(0) scheme. Though different stacking types result in similar energetics, the size of the band gap and the optical response of bilayer and trilayer phosphorene are very sensitive to the number of layers and the stacking type. Regardless of the number of layers and the type of stacking, bilayer and trilayer black phosphorus are direct band gap semiconductors whose band gaps vary within a range of 0.3 eV. Stacking arrangements that are different from the ground state structure in both bilayer and trilayer black phosphorus exhibit significant modified valence bands along the zigzag direction and result in larger hole effective masses. The optical gap of bilayer (trilayer) black phosphorus varies by 0.4 (0.6) eV when changing the stacking type. The calculated binding energy of the bound exciton hardly changes with the type of stacking and is found to be 0.44 (0.30) eV for bilayer (trilayer) phosphorous.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362435300005 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 127 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges support from Turkish Academy of Sciences (TUBA-GEBIP). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128320 Serial 4242  
Permanent link to this record
 

 
Author (up) Cambré, S.; Campo, J.; Beirnaert, C.; Verlackt, C.; Cool, P.; Wenseleers, W. pdf  doi
openurl 
  Title Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response Type A1 Journal article
  Year 2015 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 10 Issue 10 Pages 248-252  
  Keywords A1 Journal article; Engineering sciences. Technology; Nanostructured and organic optical and electronic materials (NANOrOPT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Asymmetric dye molecules have unusual optical and electronic properties1, 2, 3. For instance, they show a strong second-order nonlinear optical (NLO) response that has attracted great interest for potential applications in electro-optic modulators for optical telecommunications and in wavelength conversion of lasers2, 3. However, the strong Coulombic interaction between the large dipole moments of these molecules favours a pairwise antiparallel alignment that cancels out the NLO response when incorporated into bulk materials. Here, we show that by including an elongated dipolar dye (p,p′-dimethylaminonitrostilbene, DANS, a prototypical asymmetric dye with a strong NLO response4) inside single-walled carbon nanotubes (SWCNTs)5, 6, an ideal head-to-tail alignment in which all electric dipoles point in the same sense is naturally created. We have applied this concept to synthesize solution-processible DANS-filled SWCNTs that show an extremely large total dipole moment and static hyperpolarizability (β0 = 9,800 × 10−30 e.s.u.), resulting from the coherent alignment of arrays of ∼70 DANS molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350799700016 Publication Date 2015-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387;1748-3395; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 46 Open Access  
  Notes Approved Most recent IF: 38.986; 2015 IF: 34.048  
  Call Number c:irua:125405 Serial 158  
Permanent link to this record
 

 
Author (up) Caretti, I.; Keulemans, M.; Verbruggen, S.W.; Lenaerts, S.; Van Doorslaer, S. pdf  url
doi  openurl
  Title Light-induced processes in plasmonic Gold/TiO2 photocatalysts studied by electron paramagnetic resonance Type A1 Journal article
  Year 2015 Publication Topics in catalysis Abbreviated Journal Top Catal  
  Volume 58 Issue 12 Pages 776-782  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract X-band and W-band continuous-wave (CW) electron paramagnetic resonance (EPR) was used to study in situ light-induced (LI) mechanisms in commercial P90 titania (90 % anatase/10 % rutile) compared to plasmon-enhanced Au-P90 photocatalyst. These materials were excited using UV and 532 nm visible light to generate different excitation states and distinguish pure charge separation from plasmon-assisted resonance processes. Up to nine different photoinduced species of trapped electrons and holes were identified. LI CW EPR of P90 is presented for the first time, showing a UV excitation response similar to the well-known mixed-phase P25 titania. It is shown that incorporation of Au nanoparticles in Au-P90 and formation of a Schottky junction affects the charge separation state of the catalyst under UV light. Moreover, Au impregnation activated P90 through plasmon hot electron injection under visible light excitation (plasmonic sensitization effect). In general, EPR proved to be crucial to determine the different photoexciation paths and reactions that regulate plasmonic photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360011200008 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1022-5528 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.486 Times cited 22 Open Access  
  Notes ; IC and SVD acknowledge the Research Foundation-Flanders (FWO) for financial support (Grant G.0687.13). SV thanks FWO for financial support through a postdoctoral fellowship and MK acknowledges the agency for Innovation by Science and Technology in Flanders (IWT) for financial support (Ph.D. Grant). ; Approved Most recent IF: 2.486; 2015 IF: 2.365  
  Call Number UA @ admin @ c:irua:127413 Serial 5968  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: