|
Record |
Links |
|
Author |
Brito, B.G.A.; Candido, L.; Hai, G.-Q.; Peeters, F.M. |
|
|
Title |
Quantum effects in a free-standing graphene lattice : path-integral against classical Monte Carlo simulations |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
92 |
Issue |
92 |
Pages |
195416 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
In order to study quantum effects in a two-dimensional crystal lattice of a free-standing monolayer graphene, we have performed both path-integral Monte Carlo (PIMC) and classical Monte Carlo (MC) simulations for temperatures up to 2000 K. The REBO potential is used for the interatomic interaction. The total energy, interatomic distance, root-mean-square displacement of the atom vibrations, and the free energy of the graphene layer are calculated. The obtained lattice vibrational energy per atom from the classical MC simulation is very close to the energy of a three-dimensional harmonic oscillator 3k(B)T. The PIMC simulation shows that quantum effects due to zero-point vibrations are significant for temperatures T < 1000 K. The quantum contribution to the lattice vibrational energy becomes larger than that of the classical lattice for T < 400 K. The lattice expansion due to the zero-point motion causes an increase of 0.53% in the lattice parameter. A minimum in the lattice parameter appears at T similar or equal to 500 K. Quantum effects on the atomic vibration amplitude of the graphene lattice and its free energy are investigated. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Lancaster, Pa |
Editor |
|
|
|
Language |
|
Wos |
000368095400004 |
Publication Date |
2015-11-13 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121; 1550-235x |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
22 |
Open Access |
|
|
|
Notes |
; This research was supported by the Brazilian agencies FAPESP, FAPEG, and CNPq, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; |
Approved |
Most recent IF: 3.836; 2015 IF: 3.736 |
|
|
Call Number |
UA @ lucian @ c:irua:131144 |
Serial |
4232 |
|
Permanent link to this record |