toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R. doi  openurl
  Title Matrix-enhanced secondary ion mass spectrometry: the influence of MALDI matrices on molecular ion yields of thin organic films Type A1 Journal article
  Year 2005 Publication Rapid communications in mass spectrometry Abbreviated Journal Rapid Commun Mass Sp  
  Volume 19 Issue 8 Pages 1017-1024  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000228571700007 Publication Date 2005-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0951-4198;1097-0231; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.998 Times cited 24 Open Access  
  Notes Approved Most recent IF: 1.998; 2005 IF: 3.087  
  Call Number UA @ lucian @ c:irua:51981 Serial 1958  
Permanent link to this record
 

 
Author (up) Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R. doi  openurl
  Title S-SIMS and MetA-SIMS study of organic additives in thin polymer coatings Type A1 Journal article
  Year 2006 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 252 Issue 19 Pages 6628-6631  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000240609900057 Publication Date 2006-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 3 Open Access  
  Notes Approved Most recent IF: 3.387; 2006 IF: 1.436  
  Call Number UA @ lucian @ c:irua:60083 Serial 2937  
Permanent link to this record
 

 
Author (up) Aerts, R. openurl 
  Title Experimental and computational study of dielectric barrier discharges for environmental applications Type Doctoral thesis
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:121350 Serial 1135  
Permanent link to this record
 

 
Author (up) Aerts, R.; Martens, T.; Bogaerts, A. doi  openurl
  Title Influence of vibrational states on CO2 splitting by dielectric barrier discharges Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 44 Pages 23257-23273  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the splitting of CO2 in a pulsed plasma system, such as a dielectric barrier discharge (DBD), is evaluated from a chemical point of view by means of numerical modeling. For this purpose, a chemical reaction set of CO2 in an atmospheric pressure plasma is developed, including the vibrational states of CO2, O2, and CO. The simulated pulses are matched to the conditions of a filament (or microdischarge) and repeated with intervals of 1 μs. The influence of vibrationally excited CO2 as well as other neutral species, ions, and electrons on the CO2 splitting is discussed. Our calculations predict that the electrons have the largest contribution to the CO2 splitting at the conditions under study, by electron impact dissociation. The contribution of vibrationally excited CO2 levels in the splitting of CO2 is found be 6.4%, when only considering one microdischarge pulse and its afterglow, but it can be much higher for consecutive discharge pulses, as is typical for a filamentary DBD, when the interpulse time is short enough and accumulation effects in the vibrationally excited CO2 densities can occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000310769300012 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 112 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:101764 Serial 1659  
Permanent link to this record
 

 
Author (up) Aerts, R.; Snoeckx, R.; Bogaerts, A. pdf  doi
openurl 
  Title In-situ chemical trapping of oxygen in the splitting of carbon dioxide by plasma Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 11 Issue 10 Pages 985-992  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000344180900008 Publication Date 2014-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:118302 Serial 1575  
Permanent link to this record
 

 
Author (up) Aerts, R.; Somers, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon dioxide splitting in a dielectric barrier discharge plasma : a combined experimental and computational study Type A1 Journal article
  Year 2015 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 8 Issue 8 Pages 702-716  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2. We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000349954400019 Publication Date 2015-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 131 Open Access  
  Notes Approved Most recent IF: 7.226; 2015 IF: 7.657  
  Call Number c:irua:123930 Serial 279  
Permanent link to this record
 

 
Author (up) Aerts, R.; Tu, X.; De Bie, C.; Whitehead, J.C.; Bogaerts, A. doi  openurl
  Title An investigation into the dominant reactions for ethylene destruction in non-thermal atmospheric plasmas Type A1 Journal article
  Year 2012 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 9 Issue 10 Pages 994-1000  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A crucial step, which is still not well understood in the destruction of volatile organic compounds (VOCs) with low temperature plasmas, is the initiation of the process. Here, we present a kinetic model for the destruction of ethylene in low temperature plasmas that allows us to calculate the relative importance of all plasma species and their related reactions. Modifying the ethylene concentration and/or the SED had a major impact on the relative importance of the radicals (i.e., mainly atomic oxygen) and the metastable nitrogen (i.e., more specifically N2(equation image)) in the destruction process. Our results show that the direct destruction by electron impact reactions for ethylene can be neglected; however, we can certainly not neglect the influence of N2(equation image)).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000309750300008 Publication Date 2012-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 46 Open Access  
  Notes Approved Most recent IF: 2.846; 2012 IF: 3.730  
  Call Number UA @ lucian @ c:irua:101765 Serial 1727  
Permanent link to this record
 

 
Author (up) Aerts, R.; Tu, X.; Van Gaens, W.; Whitehead, J.C.; Bogaerts, A. pdf  doi
openurl 
  Title Gas purification by nonthermal plasma : a case study of ethylene Type A1 Journal article
  Year 2013 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol  
  Volume 47 Issue 12 Pages 6478-6485  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The destruction of ethylene in a dielectric barrier discharge plasma is investigated by the combination of kinetic modeling and experiments, as a case study for plasma-based gas purification. The influence of the specific energy deposition on the removal efficiency and the selectivity toward CO and CO2 is studied for different concentrations of ethylene. The model allows the identication of the destruction pathway in dry and humid air. The latter is found to be mainly initiated by metastable N2 molecules, but the further destruction steps are dominated by O atoms and OH radicals. Upon increasing air humidity, the removal efficiency drops by ±15% (from 85% to 70%), but the selectivity toward CO and CO2 stays more or less constant at 60% and 22%, respectively. Beside CO and CO2, we also identified acetylene, formaldehyde, and water as byproducts of the destruction process, with concentrations of 1606 ppm, 15033 ppm, and 185 ppm in humid air (with 20% RH), respectively. Finally, we investigated the byproducts generated by the humid air discharge itself, which are the greenhouse gases O3, N2O, and the toxic gas NO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000320749000051 Publication Date 2013-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited 56 Open Access  
  Notes Approved Most recent IF: 6.198; 2013 IF: 5.481  
  Call Number UA @ lucian @ c:irua:108743 Serial 1319  
Permanent link to this record
 

 
Author (up) Aghaei, M. isbn  openurl
  Title Computational study of inductively coupled plasma mass spectroscopy (ICP-MS) Type Doctoral thesis
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-5728-447-2 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:117062 Serial 457  
Permanent link to this record
 

 
Author (up) Aghaei, M.; Bogaerts, A. url  doi
openurl 
  Title Particle transport through an inductively coupled plasma torch: elemental droplet evaporation Type A1 Journal article
  Year 2016 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 31 Issue 31 Pages 631-641  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the transport of copper droplets through an inductively coupled plasma, connected to the sampling cone of a mass spectrometer, by means of a computational model. The sample droplets are followed until they become evaporated. They are inserted as liquid particles from the central inlet and the effects of injection position (i.e. “on” and “off” axis), droplet diameter, as well as mass loading flow rate are investigated. It is shown that more “on-axis” injection of the droplets leads to a more straight path line, so that the droplets move less in the radial direction and are evaporated more on the central axis, enabling a better sample transfer efficiency to the sampler cone. Furthermore, there are optimum ranges of diameters and flow rates, which guarantee the proper position of evaporation along the torch, i.e. not too early, so that the sample can get lost in the torch, and not too late, which reduces the chance of becoming ionized before reaching the sampler.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372857300003 Publication Date 2015-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 21 Open Access  
  Notes The authors are very grateful to H. Lindner for the many fundamental and fruitful discussions. They are also gratefully acknowledge nancial support from the Fonds voor Wetenschappelijk Onderzoek (FWO). Approved Most recent IF: 3.379  
  Call Number c:irua:133240 Serial 4024  
Permanent link to this record
 

 
Author (up) Aghaei, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Flowing Atmospheric Pressure Afterglow for Ambient Ionization: Reaction Pathways Revealed by Modeling Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 17 Pages 6620-6628  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We describe the plasma chemistry in a helium flowing atmospheric pressure afterglow (FAPA) used for analytical spectrometry, by means of a quasione-dimensional (1D) plasma chemical kinetics model. We study the effect of typical impurities present in the feed gas, as well as the afterglow in ambient humid air. The model provides the species density profiles in the discharge and afterglow regions and the chemical pathways. We demonstrate that H, N, and O atoms are formed in the discharge region, while the dominant reactive neutral species in the afterglow are O3 and NO. He* and He2* are responsible for Penning ionization of O2, N2, H2O, H2, and N, and especially O and H atoms. Besides, He2+ also contributes to ionization of N2, O2, H2O, and O through charge transfer reactions. From the pool of ions created in the discharge, NO+ and (H2O)3H+ are the dominant ions in the afterglow. Moreover, negatively charged clusters, such as NO3H2O− and NO2H2O−, are formed and their pathway is discussed as well. Our model predictions are in line with earlier observations in the literature about the important reagent ions and provide a comprehensive overview of the underlying pathways. The model explains in detail why helium provides a high analytical sensitivity because of high reagent ion formation by both Penning ionization and charge transfer. Such insights are very valuable for improving the analytical performance of this (and other) ambient desorption/ionization source(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648505900008 Publication Date 2021-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 6713 ; The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO) grant number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the UA. The authors also thank J. T. Shelley for providing experimental data for the gas velocity behind the anode disk and before the mass spectrometer interface, to validate our model. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:178126 Serial 6762  
Permanent link to this record
 

 
Author (up) Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A. pdf  doi
openurl 
  Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
  Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 29 Issue 2 Pages 249-261  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329934000005 Publication Date 2013-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 21 Open Access  
  Notes Approved Most recent IF: 3.379; 2014 IF: 3.466  
  Call Number UA @ lucian @ c:irua:112896 Serial 2427  
Permanent link to this record
 

 
Author (up) Aghaei, M.; Lindner, H.; Bogaerts, A. doi  openurl
  Title Effect of a mass spectrometer interface on inductively coupled plasma characteristics : a computational study Type A1 Journal article
  Year 2012 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 27 Issue 4 Pages 604-610  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma connected to a mass spectrometer interface (sampling cone) is computationally investigated. Typical plasma characteristics, such as gas flow velocity, plasma temperature and electron density, are calculated in two dimensions (cylindrical symmetry) and compared with and without a mass spectrometer sampling interface. The results obtained from our model compare favorably with experimental data reported in the literature. A dramatic increase in the plasma velocity is reported in the region close to the interface. Furthermore, a cooled metal interface lowers the plasma temperature and electron density on the axial channel very close to the sampling cone but the corresponding values in the off axial regions are increased. Therefore, the effect of the interface strongly depends on the measurement position. It is shown that even a small shift from the actual position of the sampler leads to a considerable change of the results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000301496700005 Publication Date 2012-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.379; 2012 IF: 3.155  
  Call Number UA @ lucian @ c:irua:97386 Serial 791  
Permanent link to this record
 

 
Author (up) Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  doi
openurl 
  Title The effect of the sampling cone position and diameter on the gas flow dynamics in an ICP Type A1 Journal article
  Year 2013 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 28 Issue 9 Pages 1485-1492  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to a sampling cone of a mass spectrometer, is computationally investigated. The effects of the sampler orifice diameter (ranging from 1 to 2 mm) and distance of the sampler cone from the load coil (ranging from 7 to 17 mm) are studied. An increase in sampler orifice diameter leads to a higher central plasma temperature at the place of the sampler, as well as more efficient gas transfer through the sampler, by reducing the interaction of the plasma gas with the sampling cone. However, the flow velocity at the sampler position is found to be independent of the sampler orifice diameter. Moreover, by changing the sampler orifice diameter, we can control whether only the central gas or also the auxiliary gas can exit through the sampler. Finally, with the increasing distance of the sampler from the load coil, the plasma temperature at the place of the sampler decreases slightly, which might also have consequences for the ion generation and transport through the sampling cone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000322922300016 Publication Date 2013-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.379; 2013 IF: 3.396  
  Call Number UA @ lucian @ c:irua:109204 Serial 848  
Permanent link to this record
 

 
Author (up) Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  doi
openurl 
  Title Optimization of operating parameters for inductively coupled plasma mass spectrometry : a computational study Type A1 Journal article
  Year 2012 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 76 Issue Pages 56-64  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An inductively coupled plasma, connected to a mass spectrometer interface, is computationally investigated. The effect of pressure behind the sampler, injector gas flow rate, auxiliary gas flow rate, and applied power is studied. There seems to be an optimum range of injector gas flow rate for each setup which guaranties the presence and also a proper length of the central channel in the torch. Moreover, our modeling results show that for any specific purpose, it is possible to control that either only the central gas flow passes through the sampler orifice or that it is accompanied by the auxiliary gas flow. It was also found that depending on geometry, the variation of outgoing gas flow rate is much less than the variation of the injector gas flow rate and this causes a slightly higher pressure inside the torch. The general effect of increasing the applied power is a rise in the plasma temperature, which results in a higher ionization in the coil region. However, the negative effect is reducing the length of the cool central channel which is important to transfer the sample substances to the sampler. Using a proper applied power can enhance the efficiency of the system. Indeed, by changing the gas path lines, the power can control which flow (i.e., only from injector gas or also from the auxiliary gas) goes to the sampler orifice. Finally, as also reported from experiments in literature, the pressure behind the sampler has no dramatic effect on the plasma characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000311008600008 Publication Date 2012-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 18 Open Access  
  Notes Approved Most recent IF: 3.241; 2012 IF: 3.141  
  Call Number UA @ lucian @ c:irua:101356 Serial 2488  
Permanent link to this record
 

 
Author (up) Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  url
doi  openurl
  Title Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations Type A1 Journal article
  Year 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 88 Issue 88 Pages 8005-8018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.  
  Address Research Group PLASMANT, Chemistry Department, University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000381654800020 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 9 Open Access  
  Notes The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO), Grant Number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @ c:irua:135644 Serial 4293  
Permanent link to this record
 

 
Author (up) Alexiades, V.; Autrique, D. openurl 
  Title Enthalpy model for heating, melting, and vaporization in laser ablation Type A1 Journal article
  Year 2010 Publication Electronic journal of differential equations Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a selfconsistent way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455668500001 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1072-6691 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190550 Serial 7925  
Permanent link to this record
 

 
Author (up) Ali, S.; Myasnichenko, V.S.; Neyts, E.C. pdf  url
doi  openurl
  Title Size-dependent strain and surface energies of gold nanoclusters Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 792-800  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Gold nanocluster properties exhibit unique size-dependence. In this contribution, we employ reactive molecular dynamics simulations to calculate the size- and temperature-dependent surface energies, strain energies and atomic displacements for icosahedral, cuboctahedral, truncated octahedral and decahedral Au-nanoclusters. The calculations demonstrate that the surface energy decreases with increasing cluster size at 0 K but increases with size at higher temperatures. The calculated melting curves as a function of cluster size demonstrate the Gibbs-Thomson effect. Atomic displacements and strain are found to strongly depend on the cluster size and both are found to increase with increasing cluster size. These results are of importance for understanding the size-and temperature-dependent surface processes on gold nanoclusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000369480600017 Publication Date 2015-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 37 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:131626 Serial 4243  
Permanent link to this record
 

 
Author (up) Almohammadi, G.; O'Modhrain, C.; Kelly, S.; Sullivan, J.A. url  doi
openurl 
  Title Ti-doped SBA-15 catalysts used in phenol oxidation reactions Type A1 Journal article
  Year 2020 Publication ACS Omega Abbreviated Journal  
  Volume 5 Issue 1 Pages 791-798  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Two Ti-SBA-15 catalysts are synthesized using techniques that should either deposit Ti atoms specifically at the SBA-15 surface or allow Ti-containing species to exist at both the surface and within the bulk of SBA-15. The materials have been characterized by Fourier transform infrared (FTIR), Raman and UV visible spectroscopies, transmission electron microscopy, scanning electron microscopy/energy-dispersive X-ray spectrometry microscopies, and N-2 physisorption experiments. They have been applied in the total oxidation of phenol under catalytic wet air oxidation (CWAO) conditions and using photo- and plasma promotion. The materials retain the structure of SBA-15 following the doping in both cases and Ti incorporation is confirmed. The nature of the incorporated Ti remains unclear-with evidence for anatase TiO2 (from Raman and UV vis analysis) and evidence for atomically dispersed Ti from FTIR. In terms of reactivity, the presence of Ti in the in situ-prepared catalyst improves reactivity in the photopromoted reaction (increasing conversion from 28 to 60%), while both Ti catalysts improve reactivity in the CWAO reaction (by 7% over the in situ catalyst and by 25% over the grafted material). The presence of Ti has no beneficial effect on conversion in the plasma-promoted reaction. Here, however, Ti does affect the nature of the oxidized intermediates formed during the total phenol oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507578300086 Publication Date 2019-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.1 Times cited Open Access  
  Notes ; The KSA Ministry of Higher Education is acknowledged for providing G.A.'s studentship, and IRC funded the plasma work under grant ref: GOIPD/2017/1000. ; Approved Most recent IF: 4.1; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:166578 Serial 6629  
Permanent link to this record
 

 
Author (up) Alves, L.L.; Bogaerts, A. pdf  url
doi  openurl
  Title Special Issue on Numerical Modelling of Low-Temperature Plasmas for Various Applications – Part I: Review and Tutorial Papers on Numerical Modelling Approaches Type Editorial
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1690011  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record  
  Impact Factor 2.846 Times cited 3 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:141721 Serial 4475  
Permanent link to this record
 

 
Author (up) Alves, L.L.; Bogaerts, A.; Guerra, V.; Turner, M.M. pdf  url
doi  openurl
  Title Foundations of modelling of nonequilibrium low-temperature plasmas Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 2 Pages 023002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma–surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425688600001 Publication Date 2018-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 17 Open Access OpenAccess  
  Notes The authors would like to thank A Tejero-Del-Caz and A Berthelot for their technical contributions in writing the manuscript. This work was partially funded by Portuguese FCT —Fundação para a Ciência e a Tecnologia, under projects UID/ FIS/50010/2013, PTDC/FISPLA/1243/2014 (KIT-PLAS- MEBA) and PTDC/FIS-PLA/1420/2014 (PREMiERE). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:149391 Serial 4810  
Permanent link to this record
 

 
Author (up) Amini, M.N.; Altantzis, T.; Lobato, I.; Grzelczak, M.; Sánchez-Iglesias, A.; Van Aert, S.; Liz-Marzán, L.M.; Partoens, B.; Bals, S.; Neyts, E.C. url  doi
openurl 
  Title Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods Type A1 Journal article
  Year 2018 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 35 Issue 35 Pages 1800051  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The presence of iodide ions during the growth of gold nanorods strongly affects the shape of the final products, which is proposed to be due to selective iodide adsorption on certain crystallographic facets. Therefore, a detailed structural and morphological characterization of the starting rods is crucial toward understanding this effect. Electron tomography is used to determine the crystallographic indices of the lateral facets of gold nanorods, as well as those present at the tips. Based on this information, density functional theory calculations are used to determine the surface and interface energies of the observed facets and provide insight into the relationship between the amount of iodide ions in the growth solution and the final morphology of anisotropic gold nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441893400002 Publication Date 2018-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 6 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (grant 335078 COLOURATOM to S.B.). T.A., S.V.A. S.B. and E.C.N., acknowledge funding from the Research Foundation Flanders (FWO, Belgium), through project funding (G.0218.14N and G.0369.15N) and a postdoctoral grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). Mozhgan N. Amini and Thomas Altantzis contributed equally to this work. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @c:irua:152998UA @ admin @ c:irua:152998 Serial 5010  
Permanent link to this record
 

 
Author (up) Andersen, J.A.; Christensen, J.M.; Østberg, M.; Bogaerts, A.; Jensen, A.D. url  doi
openurl 
  Title Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor Type A1 Journal article
  Year 2022 Publication International Journal Of Hydrogen Energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 47 Issue 75 Pages 32081-32091  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia decomposition as a method for producing hydrogen was studied in a packed-bed dielectric barrier discharge (DBD) reactor at ambient pressure and a fixed plasma power. The influence of packing the plasma zone with various dielectric materials, typically used as catalyst supports, was examined. At conditions (21 W, 75 Nml/min NH3) where an NH3 conversion of 5% was achieved with plasma alone, an improved decomposition was found when introducing dielectric materials with dielectric constants between 4 and 30. Of the tested materials, MgAl2O4 yielded the highest conversion (15.1%). The particle size (0.3-1.4 mm) of the MgAl2O4 packing was found to have a modest influence on the conversion, which dropped from 15.1% to 12.6% with increasing particle size. Impregnation of MgAl2O4 with different metals was found to decrease the NH3 conversion, with the Ni impregnation still showing an improved conversion (7%) compared to plasma-only. The plasma-assisted ammonia decomposition occurs in the gas phase due to micro-discharges, as evident from a linear correlation between the conversion and the frequency of micro-discharges for both plasma alone and with the various solid packing materials. The primary function of the solid is thus to facilitate the gas phase reaction by assisting the creation of micro-discharges. Lastly, insulation of the reactor to raise the temperature to 230 degrees C in the plasma zone was found to have a negative effect on the conversion, as a change from volume discharges to surface discharges occurred. The study shows that NH3 can be decomposed to provide hydrogen by exposure to a non-thermal plasma, but further developments are needed for it to become an energy efficient technology. (C)2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865421200012 Publication Date 2022-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.2  
  Call Number UA @ admin @ c:irua:191512 Serial 7191  
Permanent link to this record
 

 
Author (up) Andersen, Ja.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 397 Issue Pages 125519  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The combination of catalysis with non-thermal plasma is a promising alternative to thermal catalysis. A dielectric-barrier discharge reactor was used to study plasma-catalytic dry reforming of methane at ambient pressure and temperature and a fixed plasma power of 45 W. The effect of different catalytic packing materials was evaluated in terms of conversion, product selectivity, and energy efficiency. The conversion of CO2 (~22%) and CH4 (~33%) were found to be similar in plasma-only and when introducing packing materials in plasma. The main reason is the shorter residence time of the gas due to packing geometry, when compared at identical flow rates. H2, CO, C2-C4 hydrocarbons, and oxygenates were identified in the product gas. High selectivity towards H2 and CO were found for all catalysts and plasma-only, with a H2/CO molar ratio of ~0.9. The lowest syngas selectivity was obtained with Cu/Al2O3 (~66%), which instead, had the highest alcohol selectivity (~3.6%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000542296100011 Publication Date 2020-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access  
  Notes Department of Chemical and Biochemical Engineering, Technical University of Denmark; We thank Haldor Topsoe A/S for providing all the catalytic materials used and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:170613 Serial 6406  
Permanent link to this record
 

 
Author (up) Andersen, Ja.; Holm, Mc.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling Type A1 Journal Article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141294  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor has emerged as a possible route for electrification of nitrogen fixation. In this study, we use a combination of experiments and a plasma kinetic model to investigate the ammonia synthesis from N2 and H2, both with and without a solid packing material in the plasma zone. The effect of plasma power, feed flow rate, N2:H2 feed ratio, gas residence time, temperature, and packing material (MgAl2O4 alone or impregnated with Co or Ru) on the ammonia synthesis rate were examined in the experiments. The kinetic model was employed to improve our understanding of the ammonia formation pathways and identify possible changes in these pathways when altering the N2:H2 feed ratio. A higher NH3 synthesis rate was achieved when increasing the feed flow rate, as well as when increasing the gas tem-perature from 100 to 200 ◦C when a packing material was present in the plasma. At the elevated temperature of 200 ◦C, an optimum in the NH3 synthesis rate was observed at an equimolar feed ratio (N2:H2 =1:1) for the plasma alone and MgAl2O4, while a N2-rich feed was favored for Ru/MgAl2O4 and Co/MgAl2O4. The optimum in the synthesis rate with the N2-rich feed, where high energy electrons are more likely to collide with N2, suggests that the rate-limiting step is the dissociation of N2 in the gas phase. This is supported by the kinetic model when packing material was used. However, for the plasma alone, the model found that the N2 dissociation is only rate limiting in H2-rich feeds, whereas the limited access to H in N2-rich feeds makes the hydrogenation of N species limiting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001058978000001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the catalytic materials used in the study, the research group PLASMANT (University of Antwerp) for sharing their plasma kinetic model and allocating time on their cluster for the calculations, and the Department of Chemical and Biochemical Engineering (Technical University of Denmark) for funding the project. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195877 Serial 7234  
Permanent link to this record
 

 
Author (up) Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering science Abbreviated Journal  
  Volume 271 Issue Pages 118550  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946293200001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237  
Permanent link to this record
 

 
Author (up) Angeli, J.; Bengtson, A.; Bogaerts, A.; Hoffmann, V.; Hodoroaba, V.-D.; Steers, E. doi  openurl
  Title Glow discharge optical emission spectrometry: moving towards reliable thin film analysis: a short review Type A1 Journal article
  Year 2003 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 18 Issue Pages 670-679  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000183300800023 Publication Date 2003-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 75 Open Access  
  Notes Approved Most recent IF: 3.379; 2003 IF: 3.200  
  Call Number UA @ lucian @ c:irua:44018 Serial 1351  
Permanent link to this record
 

 
Author (up) Ariskin, D.A.; Schweigert, I.V.; Alexandrov, A.L.; Bogaerts, A.; Peeters, F.M. doi  openurl
  Title Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2 Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 105 Issue 6 Pages 063305,1-063305,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the properties of a capacitive 13.56 MHz discharge with a mixture of Ar/C<sub>2</sub>H<sub>2</sub> taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ion transports and plasmochemical processes. A significant change in plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000264774000059 Publication Date 2009-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:74496 Serial 2121  
Permanent link to this record
 

 
Author (up) Armelao, L.; Bertagnolli, H.; Bleiner, D.; Groenewolt, M.; Gross, S.; Krishnan, V.; Sada, C.; Schubert, U.; Tondello, E.; Zattin, A. doi  openurl
  Title Highly dispersed mixed zirconia and hafnia nanoparticles in a silica matrix: First example of a ZrO2-HfO2-SiO2 ternary oxide system Type A1 Journal article
  Year 2007 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract ZrO2 and HfO2 nanoparticles are homogeneously dispersed in SiO2 matrices (supported film and bulk powders) by copolymerization of two oxozirconium and oxohafnium clusters (M4O(2)(OMc)(12), M= Zr, Hf; OMc = OC(O)-C(CH3)=CH2) with (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2=C(CH3)C(O)O)-(CH2)(3)Si(OCH3)(3)). After calcination (at a temperature >= 800 degrees C), a silica matrix with homogeneously distributed MO2 nanocrystallites is obtained. This route yields a spatially homogeneous dispersion of the metal precursors inside the silica matrix, which is maintained during calcination. The composition of the films and the powders is studied before and after calcination by using Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The local environment of the metal atoms in one of the calcined samples is investigated by using X-ray Absorption Fine Structure (XAFS) spectroscopy. Through X-ray diffraction (XRD) the crystallization of Hf and Zr oxides is seen at temperatures higher than those expected for the pure oxides, and transmission electron microscopy (TEM) shows the presence of well-distributed and isolated crystalline oxide nanoparticles (540 nm).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000248062100011 Publication Date 2007-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 34 Open Access  
  Notes Approved Most recent IF: 12.124; 2007 IF: 7.496  
  Call Number UA @ lucian @ c:irua:95083 Serial 4521  
Permanent link to this record
 

 
Author (up) Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Perspectives of Plasma-treated Solutions as Anticancer Drugs Type A1 Journal article
  Year 2019 Publication Anti-cancer agents in medicinal chemistry Abbreviated Journal Anti-Cancer Agent Me  
  Volume 19 Issue 4 Pages 436-438  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472726300001 Publication Date 2019-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1871-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.598 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.598  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160694 Serial 5189  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: