toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. doi  openurl
  Title Magnetic-field induced quantum-size cascades in superconducting nanowires Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 78 Issue 2 Pages 024505,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000258190200105 Publication Date 2008-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:70559 Serial 1876  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. doi  openurl
  Title Nanoscale superconductivity: nanowires and nanofilms Type A1 Journal article
  Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 468 Issue 7/10 Pages 593-598  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000257355300021 Publication Date 2008-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.404; 2008 IF: 0.740  
  Call Number UA @ lucian @ c:irua:69623 Serial 2273  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. url  doi
openurl 
  Title Oscillations of the superconducting temperature induced by quantum well states in thin metallic films: numerical solution of the Bogoliubov-de Gennes equations Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 1 Pages 014519,1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000243894600126 Publication Date 2007-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 85 Open Access  
  Notes Fwo-Vi; Bof-Top; Iap Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:63749 Serial 2535  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. url  doi
openurl 
  Title Quantum-size effects on T-c in superconducting nanofilms Type A1 Journal article
  Year 2006 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 76 Issue 3 Pages 498-504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000241434300022 Publication Date 2006-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 31 Open Access  
  Notes Approved Most recent IF: 1.957; 2006 IF: 2.229  
  Call Number UA @ lucian @ c:irua:61463 Serial 2788  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. url  doi
openurl 
  Title Superconducting nanofilms: Andreev-type states induced by quantum confinement Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 5 Pages 054505,1-054505,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract Quantum confinement of the transverse electron motion is the major effect governing the superconducting properties of high-quality metallic nanofilms, leading to a nonuniform transverse distribution of the superconducting condensate. In this case the order parameter can exhibit significant local enhancements due to these quantum-size effects and, consequently, quasiparticles have lower energies when they avoid the local enhancements of the pair condensate. Such excitations can be considered as new Andreev-type quasiparticles but now induced by quantum confinement. By numerically solving the Bogoliubovde Gennes equations and using Anderson's approximate solution to these equations, we: (a) formulate a criterion for such new Andreev-type states (NATS) and (b) study their effect on the superconducting characteristics in metallic nanofilms. We also argue that nanofilms made of low-carrier-density materials, e.g., of superconducting semiconductors, can be a more optimal choice for the observations of NATS and other quantum-size superconducting effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000259368200109 Publication Date 2008-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76526 Serial 3356  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M. openurl 
  Title Superconductivity in the quantum-size regime Type P1 Proceeding
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages 79-103  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract Recent technological advances resulted in high-quality superconducting metallic nanofilms and nanowires. The physical properties of such nanostructures are governed by the size-quantization of the transverse electron spectrum. This has a substantial impact on the basic superconducting characteristics, e.g., the order parameter, the critical temperature and the critical magnetic field. In the present paper we give an overview of our theoretical results on this subject. Based on a numerical self-consistent solution of the Bogoliubov-de Gennes equations, we investigate how the superconducting properties are modified in the quantum-size regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4020-9144-5 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:75944 Serial 3374  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M. url  doi
openurl 
  Title Giant drop in the Bardeen-Cooper-Schrieffer coherence length induced by quantum size effects in superconducting nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 10 Pages 104524-104524,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size effects. In particular, for nanowires made of conventional superconducting materials, we show that the longitudinal zero-temperature coherence length exhibits width-dependent drops by 23 orders of magnitude each time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an important exception: it is driven by the transverse quantization of the electron motion rather than by the externally controlled strength of the fermion-fermion interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000282269600005 Publication Date 2010-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-network: INSTANS. M. D. C. acknowledges support from the Alexander von Humboldt Foundation. A. A. S. thanks R. G. Mints, W. V. Pogosov, D. Y. Vodolazov, A. Perali, and A. Bianconi for fruitful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85419 Serial 1337  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M. doi  openurl
  Title Superconducting nanowires : new type of BCS-BEC crossover driven by quantum-size effects Type P1 Proceeding
  Year 2011 Publication Abbreviated Journal  
  Volume Issue Pages 119-127  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract We show that a superconducting quantum nanowire undergoes a new type of BCS-BEC crossover each time when an electron subband approaches the Fermi surface. In this case the longitudinal Cooper-pair size drops by two-three orders of magnitude down to a few nanometers. This unconventional BCS-BEC crossover is driven by quantum-size effects rather than by tuning the fermion-fermion interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor  
  Language Wos 000289872900009 Publication Date 2010-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-6500;1874-6535; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the ESF-network: INSTANS. M.D.C. acknowledges support from the Alexander von Humboldt Foundation. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:89946 Serial 3359  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Vagov, A.V.; Axt, V.M.; Perali, A.; Peeters, F.M. url  doi
openurl 
  Title Atypical BCS-BEC crossover induced by quantum-size effects Type A1 Journal article
  Year 2012 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 86 Issue 3 Pages 033612  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum-size oscillations of the basic physical characteristics of a confined fermionic condensate are a well-known phenomenon. Its conventional understanding is based on the single-particle physics, whereby the oscillations follow variations in the single-particle density of states driven by the size quantization. Here we present a study of a cigar-shaped ultracold superfluid Fermi gas, which demonstrates an important many-body aspect of the quantum-size coherent effects, overlooked previously. The many-body physics is revealed here in the atypical crossover from the Bardeen-Cooper-Schrieffer (BCS) superfluid to the Bose-Einstein condensate (BEC) induced by the size quantization of the particle motion. The single-particle energy spectrum for the transverse dimensions is tightly bound, whereas for the longitudinal direction it resembles a quasi-free dispersion. This results in the formation of a series of single-particle subbands (shells) so that the aggregate fermionic condensate becomes a coherent mixture of subband condensates. Each time when the lower edge of a subband crosses the chemical potential, the BCS-BEC crossover is approached in this subband, and the aggregate condensate contains both BCS and BEC-like components.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000308639500004 Publication Date 2012-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 34 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). The authors thank C. Salomon and C. Vale for their valuable explications of the experimental situation and interest to our work. We are grateful to G. C. Strinati, D. Neilson, and P. Pieri for useful discussions. M. D. C. acknowledges support of the EU Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). A. P. gratefully acknowledges financial support of the European Science Foundation, POLATOM Research Networking Programme, Ref. No. 4844 for his visit to the University of Antwerp. A. A. S. acknowledges financial support of the European Science Foundation, POLATOM Research Networking Programme, Ref. No. 5200 for his visit to the University of Camerino. ; Approved Most recent IF: 2.925; 2012 IF: 3.042  
  Call Number UA @ lucian @ c:irua:101844 Serial 203  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Croitoru, M.D.; Zgirski, M.; Peeters, F.M.; Arutyunov, K. url  doi
openurl 
  Title Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 5 Pages 052502,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000240238400015 Publication Date 2007-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 95 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:60806 Serial 3034  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Ivanov, V.A. pdf  doi
openurl 
  Title Effects of confining interaction in meso-superconductors Type A1 Journal article
  Year 2004 Publication Physics letters : A Abbreviated Journal Phys Lett A  
  Volume 322 Issue 5-6 Pages 384-389  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This Letter presents a generalized Ginzburg-Landau equation for the superconducting order parameter which includes the terms resulting from the confining interaction associated with the specimen boundary. While the original Ginzburg-Landau theory had been developed for a bulk superconductor, this generalization is meant for study of a meso-superconductor. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000220123600018 Publication Date 2004-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.772 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.772; 2004 IF: 1.454  
  Call Number UA @ lucian @ c:irua:103244 Serial 859  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Extended Ginzburg-Landau formalism for two-band superconductors Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 106 Issue 4 Pages 047005-047005,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent observation of unusual vortex patterns in MgB2 single crystals raised speculations about possible type-1.5 superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bandsand does not support the type-1.5 behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/Tc parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→Tc. The extended version of the two-band GL formalism improves the validity of GL theory below Tc and suggests revisiting the earlier calculations based on the standard model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000286734100010 Publication Date 2011-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 84 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. Discussions with M. D. Croitoru are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:88038 Serial 1154  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27003-27006  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000319617700019 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 8 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109859 Serial 2257  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Smondyrev, M.A.; Devreese, J.T. openurl 
  Title Stabilisation of bipolarons by polaron environment Type A1 Journal article
  Year 1996 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 98 Issue Pages 1091  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1996UT02900012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.897 Times cited 11 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:16186 Serial 3115  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Tempère, J.; Brosens, F.; Devreese, J.T. doi  openurl
  Title Mesoscopic samples: the superconducting condensate via the Gross.Pitaevskii scenario Type A1 Journal article
  Year 2004 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 131 Issue Pages 409-414  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000223011700012 Publication Date 2004-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.554; 2004 IF: 1.523  
  Call Number UA @ lucian @ c:irua:48282 Serial 2000  
Permanent link to this record
 

 
Author (up) Shanenko, A.A.; Vagov, A.; Peeters, F.M.; Aguiar, J.A. doi  openurl
  Title Nanofilms as effectively multiband superconductors: Intraband-pairing approximation and Ginzburg-Landau theory Type A1 Journal article
  Year 2014 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 455 Issue Pages 3-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is well-known that the Ginzburg-Landau (GL) theory is a reliable and powerful theoretical tool to investigate the magnetic response of a superconducting state. However, in its standard form, this approach is not applicable to atomically uniform nano-thin superconducting films which are effective multiband superconductors. Here we discuss a relevant generalization of the GL theory, focusing on the underlying intraband-pairing approximation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000344239200002 Publication Date 2014-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.386 Times cited 1 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government, the Flemish Science Foundation (FWO-VI), and the Methusalem program. A.A.S. acknowledges the support of the Brazilian agencies CNPq and FACEPE (APQ-0589-1.05/08). ; Approved Most recent IF: 1.386; 2014 IF: 1.319  
  Call Number UA @ lucian @ c:irua:121192 Serial 2256  
Permanent link to this record
 

 
Author (up) Smondyrev, M.A.; Shanenko, A.A.; Devreese, J.T. openurl 
  Title Stability criterion for large bipolarons in a polaron-gas background Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 63 Issue Pages 024302,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:34310 Serial 3122  
Permanent link to this record
 

 
Author (up) Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 14 Pages 144514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309776800001 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101798 Serial 3769  
Permanent link to this record
 

 
Author (up) Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M. url  doi
openurl 
  Title Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375527500001 Publication Date 2016-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141732 Serial 4480  
Permanent link to this record
 

 
Author (up) Vagov, A.V.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Extended Ginzburg-Landau formalism : systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 1 Pages 014502-014502,17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Based on the Gor'kov formalism for a clean s-wave superconductor, we develop an extended version of the single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical temperature T(c), i.e., tau = 1 – T/T(c). We calculate different contributions to the order parameter and the magnetic field: the leading contributions (proportional to tau(1/2) in the order parameter and. t in the magnetic field) are controlled by the standard GL theory, while the next-to-leading terms (proportional to tau(3/2) in the gap and proportional to tau(2) in the magnetic field) constitute the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and the thermodynamic critical field with temperature calculated within the EGL theory are found in very good agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of the formalism compared to its standard predecessor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298985100002 Publication Date 2012-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). A. V. V. is grateful to V. Zalipaev for important comments. A. A. S. thanks W. Pogosov for helpful notes. Discussions with E. H. Brandt and A. Perali are appreciated. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:96232 Serial 1155  
Permanent link to this record
 

 
Author (up) Vargas Paredes, A.A.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title Crossband versus intraband pairing in superconductors: signatures and consequences of the interplay Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 9 Pages 094516-94517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We analyze the paradigmatic competition between intraband and crossband Cooper-pair formation in twoband superconductors, neglected in most works to date. We derive the phase-sensitive gap equations and describe the crossover between the intraband-dominated and the crossband-dominated regimes, delimited by a “gapless” state. Experimental signatures of crosspairing comprise notable gap splitting in the excitation spectrum, non-BCS behavior of gaps versus temperature, as well as changes in the pairing symmetry as a function of temperature. The consequences of these findings are illustrated on the examples of MgB2 and Ba0.6K0.4Fe2As2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522074900002 Publication Date 2020-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 14 Open Access  
  Notes ; This collaborative work was fostered within the international Multi Super network on Multi-condensate Superconductivity and Superfluidity [70]. The authors thank Andrea Guidini for his help during the initial stage of this work and Laura Fanfarillo for useful discussions. This work was partially supported by the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001) and the Research Foundation -Flanders (FWO). A.A.V.-P. acknowledges support by the joint doctoral program and by the Erasmus+ exchange between the University of Antwerp and the University of Camerino. M.V.M. gratefully acknowledges support from a Visiting Professorship at the University of Camerino. A.S. and A.V. acknowledge support from the CAPES/Print Grant, Process No. 88887.333666/ 2019-00 (Brazil) and the Russian Science Foundation Project No. 18-12-00429, respectively. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168605 Serial 6479  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: