toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fatermans, J.; Van Aert, S.; den Dekker, A.J. url  doi
openurl 
  Title The maximum a posteriori probability rule for atom column detection from HAADF STEM images Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 201 Issue Pages 81-91  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466343800009 Publication Date 2019-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved (up) Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157176 Serial 5153  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A. pdf  url
doi  openurl
  Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue 203 Pages 95-104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000013 Publication Date 2018-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved (up) Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:160213 Serial 5242  
Permanent link to this record
 

 
Author Susi, T.; Madsen, J.; Ludacka, U.; Mortensen, J.J.; Pennycook, T.J.; Lee, Z.; Kotakoski, J.; Kaiser, U.; Meyer, J.C. doi  openurl
  Title Efficient first principles simulation of electron scattering factors for transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 197 Issue 197 Pages 16-22  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456311700003 Publication Date 2018-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access  
  Notes Approved (up) Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165938 Serial 6296  
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; Nellist, P.D.; Meyer, J.C. doi  openurl
  Title High dose efficiency atomic resolution imaging via electron ptychography Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 196 Issue 196 Pages 131-135  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Radiation damage places a fundamental limitation on the ability of microscopy to resolve many types of materials at high resolution. Here we evaluate the dose efficiency of phase contrast imaging with electron ptychography. The method is found to be far more resilient to temporal incoherence than conventional and spherical aberration optimized phase contrast imaging, resulting in significantly greater clarity at a given dose. This robustness is explained by the presence of achromatic lines in the four dimensional ptychographic dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451180800018 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access  
  Notes Approved (up) Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165939 Serial 6301  
Permanent link to this record
 

 
Author Leuthner, G.T.; Hummel, S.; Mangler, C.; Pennycook, T.J.; Susi, T.; Meyer, J.C.; Kotakoski, J. pdf  doi
openurl 
  Title Scanning transmission electron microscopy under controlled low-pressure atmospheres Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue 203 Pages 76-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10(-7) mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2 x 10(-10 )mbar, and can be varied up to 10(-6) mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O(2 )and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two 0 atoms per molecule. H(2 )and N-2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000010 Publication Date 2019-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access  
  Notes Approved (up) Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165937 Serial 6321  
Permanent link to this record
 

 
Author Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; Ostrikov, K.K. pdf  url
doi  openurl
  Title White paper on the future of plasma science in environment, for gas conversion and agriculture Type A1 Journal article
  Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 16 Issue 1 Pages 1700238  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Climate change, environmental pollution control, and resource utilization efficiency, as well as food security, sustainable agriculture, and water supply are among the main challenges facing society today. Expertise across different academic fields, technologies,anddisciplinesisneededtogeneratenewideastomeetthesechallenges. This “white paper” aims to provide a written summary by describing the main aspects and possibilities of the technology. It shows that plasma science and technology can make significant contributions to address the mentioned issues. The paper also addresses to people in the scientific community (inside and outside plasma science) to give inspiration for further work in these fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455413600004 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 19 Open Access Not_Open_Access  
  Notes This paper is a result of the PlasmaShape project, supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 316216. During this project, young scientists and renowned and outstanding scientists collaborated in the development of a political-scientific consensus paper as well as six scientific, strategic white papers. In an unique format core themes such as energy, optics and glass, medicine and hygiene, aerospace and automotive, plastics and textiles, environment and agriculture and their future development were discussed regarding scientific relevance and economic impact. We would like to thank our colleagues from 18 nations from all over the world (Australia, Belgium, Czech Republic, PR China, France, Germany, Great Britain, Italy, Japan, The Netherlands, Poland, Romania, Russia, Slovakia, Slovenia, Sweden, Switzerland, USA) who have participated both workshops of Future in Plasma Science I and II in Greifswald in 2015/2016. The valuable contribution of all participants during the workshops, the intensive cooperation between the project partners, and the comprehensive input of all working groups of Future in Plasma Science was the base for the present paper. Kindly acknowledged is the support of graphical work by C. Desjardins and K. Drescher. Approved (up) Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156389 Serial 5146  
Permanent link to this record
 

 
Author Van der Paal, J.; Fridman, G.; Bogaerts, A. pdf  doi
openurl 
  Title Ceramide cross-linking leads to pore formation: Potential mechanism behind CAP enhancement of transdermal drug delivery Type A1 Journal article
  Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 16 Issue 16 Pages 1900122  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years, cold atmospheric plasma (CAP) has been proposed as a novel method to enhance transdermal drug delivery, while avoiding tissue damage. However, the underlying mechanism for the increasing skin permeability upon CAP treatment is still undefined. We propose a mechanism in which CAP-generated reactive species induce cross-linking of skin lipids, leading to the generation of nanopores, thereby facilitating the permeation of drug molecules. Molecular dynamics simulations support this proposed mechanism. Furthermore, our results indicate that to achieve maximum enhancement of the permeability, the optimal treatment will depend on the exact lipid composition of the skin, as well as on the CAP source used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000479747500001 Publication Date 2019-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.846  
  Call Number UA @ admin @ c:irua:161874 Serial 6287  
Permanent link to this record
 

 
Author Chekol Zewdie, M.; Van Passel, S.; Cools, J.; Tenessa, D.B.; Ayele, Z.A.; Tsegaye, E.A.; Minale, A.S.; Nyssen, J. pdf  doi
openurl 
  Title Direct and indirect effect of irrigation water availability on crop revenue in northwest Ethiopia : a structural equation model Type A1 Journal article
  Year 2019 Publication Agricultural Water Management Abbreviated Journal Agr Water Manage  
  Volume 220 Issue 220 Pages 27-35  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Development of a clear understanding of the relationship between the availability of dam-driven irrigation water and crop revenue is important in poverty reduction and food security process. As a result, large research efforts are devoted to understanding the relationship between the availability of irrigation water and crop revenue. However, earlier studies do have several limitations. For example, without considering its indirect effect, prior studies focused solely on the direct effect of availability of irrigation water on crop revue. In this study, using a structural equation model analysis, the direct and indirect effect of availability of dam-driven irrigation water on crop revenue is decomposed and quantified specifically for the Koga irrigation scheme, located in the Mecha district of Amhara region in Ethiopia. A primary data set was collected from a randomly selected sample of 450 households in the Koga irrigation scheme. More than half of the households (254) are supported by the Koga Dam irrigation water during the dry season, and the other 196 households depended only on rainfall. The results of the study showed that, in addition to its direct effect, the availability of irrigation water indirectly affected crop revenue through receptivity of the farmers to use modern farm inputs. Around 27 percent of the total effect of dam-driven irrigation water on crop revenue was mediated by farmers’ receptivity to use yield-enhancing modern farm inputs. The results of this study suggested that the availability of irrigation water is essential to improve both crop revenue and receptivity of the farmers to use modern farm inputs. This finding also drives a strategic framework that the receptivity of the farmers to use modern farm inputs is crucial for utilizing the positive effects of irrigation water availability on crop revenue.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000470941300003 Publication Date 2019-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-3774 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.848 Times cited 1 Open Access  
  Notes ; The authors would like to thank Bahir Dar University – Institutional University Cooperation (BDU-IUC) VLIR_UOS project for providing us enough funds for the completion of this study. Special gratitude is given to Abrehet Kahassay and Kassahun Birhanu for helping us to map the study area; and to the data collectors (Hilemichael Fentahun, Etsehewot Birara, and Tsegachewu Degu) for their commitment. The authors gratefully acknowledge the Koga Irrigation Scheme office managers, Tewachewu Abebe, and his colleagues for their support during the data collection. The authors also acknowledge the farmers (respondents) for their willingness to spend time responding honestly to questions. ; Approved (up) Most recent IF: 2.848  
  Call Number UA @ admin @ c:irua:159246 Serial 6182  
Permanent link to this record
 

 
Author Bottari, F.; Moro, G.; Sleegers, N.; Florea, A.; Cowen, T.; Piletsky, S.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Electropolymerized o-phenylenediamine on graphite promoting the electrochemical detection of nafcillin Type A1 Journal article
  Year 2019 Publication Electroanalysis Abbreviated Journal Electroanal  
  Volume 32 Issue 32 Pages 135-141  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract By combining molecular modelling and electrochemistry we envision the creation of modified electrodes tailored for a more sensitive and selective detection of a single analyte. In this study we report on a graphite screen printed electrode modified with electropolymerized o-phenylenediamine, selected by rational design, which promotes the detection of nafcillin (NAF), an antibiotic. Parameters such as monomer concentration, pH and number of electropolymerization cycles were optimized to obtain the highest current signal for the target upon amperometric detection. NAF identification was based on the redox process at +1.1 V (vs pseudo Ag), ascribed to the oxidation of the C-7 side chain. With the optimized modification protocol, a two-fold increase in nafcillin signal could be obtained: the calibration plot in 0.1 M Britton-Robinson buffer pH 4 showed a limit of detection of 80 nM with improved sensitivity and reproducibility (RSD<5 %) compared to the detection at non-modified electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482596300001 Publication Date 2019-08-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.851 Times cited 1 Open Access  
  Notes ; FB and GM devised the study and performed the experiments, FB wrote the original draft of the paper and analysed the data, NS and AvN performed the MS experiments, AF helped with the optimization of the protocol and correction of the first draft, TC and SP performed the rational monomer design, KdW supervised the work and corrected the final draft. All authors gave their suggestions and corrections to the final version of the paper. This work was financially supported by the University of Antwerp (BOF) and the Research Foundation Flanders (FWO). ; Approved (up) Most recent IF: 2.851  
  Call Number UA @ admin @ c:irua:162870 Serial 5601  
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. url  doi
openurl 
  Title Stabilization of the Perovskite Phase in the Y-Bi-O System By Using a BaBiO3 Buffer Layer Type A1 Journal Article
  Year 2019 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R  
  Volume 13 Issue 7 Pages 1970028  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y–Bi–O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links  
  Impact Factor 3.032 Times cited Open Access  
  Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project Solarpaint of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved (up) Most recent IF: 3.032  
  Call Number EMAT @ emat @ Serial 5358  
Permanent link to this record
 

 
Author Bizindavyi, J.; Verhulst, A.S.; Verreck, D.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Large variation in temperature dependence of band-to-band tunneling current in tunnel devices Type A1 Journal article
  Year 2019 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L  
  Volume 40 Issue 11 Pages 1864-1867  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The observation of a significant temperature-dependent variation in the ${I}$ – ${V}$ characteristics of tunneling devices is often interpreted as a signature of a trap-assisted-tunneling dominated current. In this letter, we use a ballistic 2D quantum-mechanical simulator, calibrated using the measured temperature-dependent ${I}$ – ${V}$ characteristics of Esaki diodes, to demonstrate that the temperature dependence of band-to-band tunneling (BTBT) current can vary significantly in both Esaki diodes and tunnel FETs. The variation of BTBT current with temperature is impacted by doping concentration, gate voltage, possible presence of a highly-doped pocket at the tunnel junction, and material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000496192600040 Publication Date 2019-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.048 Times cited Open Access  
  Notes Approved (up) Most recent IF: 3.048  
  Call Number UA @ admin @ c:irua:164636 Serial 6306  
Permanent link to this record
 

 
Author Liu, M.; Yi, Y.; Wang, L.; Guo, H.; Bogaerts, A pdf  url
doi  openurl
  Title Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 3 Pages 275  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Due to the increasing emission of carbon dioxide (CO2), greenhouse effects are becoming more and more severe, causing global climate change. The conversion and utilization of CO2 is one of the possible solutions to reduce CO2 concentrations. This can be accomplished, among other methods, by direct hydrogenation of CO2, producing value-added products. In this review, the progress of mainly the last five years in direct hydrogenation of CO2 to value-added chemicals (e.g., CO, CH4, CH3OH, DME, olefins, and higher hydrocarbons) by heterogeneous catalysis and plasma catalysis is summarized, and research priorities for CO2 hydrogenation are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465012800055 Publication Date 2019-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited Open Access OpenAccess  
  Notes Fundamental Research Funds for the Central Universities of China , DUT18JC42 32249 ; National Natural Science Foundation of China , 21503032 ; PetroChina Innovation Foundation , 2018D-5007-0501 ; Approved (up) Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158094 Serial 5162  
Permanent link to this record
 

 
Author Bogaerts, A. pdf  url
doi  openurl
  Title Editorial Catalysts: Special Issue on Plasma Catalysis Type Editorial
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 2 Pages 196  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, and CH4 conversion into higher hydrocarbons or oxygenates [...]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460702200090 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 1 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159153 Serial 5166  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. url  doi
openurl 
  Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 1 Pages 51  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459732000051 Publication Date 2019-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 4 Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 3.082  
  Call Number UA @ admin @ c:irua:158666 Serial 5268  
Permanent link to this record
 

 
Author Admasu, W.F.; Van Passel, S.; Minale, A.S.; Tsegaye, E.A.; Azadi, H.; Nyssen, J. pdf  doi
openurl 
  Title Take out the farmer: An economic assessment of land expropriation for urban expansion in Bahir Dar, Northwest Ethiopia Type A1 Journal article
  Year 2019 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 87 Issue 87 Pages 104038  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract In Ethiopia, the demand for land for urbanisation is primarily met by converting rural land through expropriation. However, land expropriations are adversely affecting the previous land users by reducing the amount of production and their sources of income. In Bahir Dar, one of the fastest-growing cities in Ethiopia, approximately 300 landholdings are expropriated each year, on average, for urban expansion. This paper assesses the land expropriations to examine whether they offer economically appropriate compensation for the previous land users. Land expropriations for urbanisation between 2007/2008 and 2016/2017 were analysed based on data on land expropriation and its compensation payment obtained from the Bahir Dar City Land Administration and Management Office. Data were analysed using an exponential growth model and a stochastic budgeting technique in which Monte Carlo simulations are performed. Between 2007/2008 and 2016/2017, more than 1500 ha of land were included in the city's boundary through expropriation from 2900 landholders. The affected farmers received compensation that represents only 37 per cent of the value of current crop yields and its growth. The current compensation scheme ignores the impact of inflation on the prices of crops and assumes constant yields. It also excludes the value of crop residuals. We propose a workable discounted compensation framework that considers crop price and yield growths. This will make the compensation scheme more appropriate and make the affected farmers better off.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000483419100026 Publication Date 2019-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.089 Times cited 1 Open Access  
  Notes ; The authors acknowledge the Bahir Dar City Administration for sharing its compensation data, Bahir Dar Zuria Wereda Agriculture Office for sharing yield data, and the Industry and Trade Development Office for sharing crop price data. The Institutional University Cooperation with Bahir Dar University (BDU-IUC), funded by the Belgian authorities, through the Flemish Interuniversity Council University Development Cooperation, funded the research activities. We also thank the two anonymous reviewers and the editor of Land Use Policy for all constructive comments and suggestions. ; Approved (up) Most recent IF: 3.089  
  Call Number UA @ admin @ c:irua:162837 Serial 6261  
Permanent link to this record
 

 
Author Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A. pdf  url
doi  openurl
  Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
  Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 740-741 Issue Pages 274-284  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453494500029 Publication Date 2018-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020  
  Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved (up) Most recent IF: 3.094  
  Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061  
Permanent link to this record
 

 
Author Zhao, L.; Macias, J.G.S.; Ding, L.; Idrissi, H.; Simar, A. pdf  doi
openurl 
  Title Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions Type A1 Journal article
  Year 2019 Publication Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 764 Issue 764 Pages 138210  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Selective laser melting (SLM) manufactured AlSi10Mg alloys present a fine silicon-rich network and precipitates which grant high mechanical strength but low ductility. Post-treatments, aiming at eliminating inherent defects related to SLM such as residual stresses, porosity or inhomogeneity, result in significant changes in the microstructure and impact both the hardening and the damage mechanisms of the post-treated material. The present work is dedicated to the investigation of the fracture of SLM AlSi10Mg under as built and three post-treatment conditions, namely two stress relieve heat treatments and friction stir processing (FSP). It is found that the interconnected Si network fosters damage at low strain due to the brittleness of the Si phase. The onset of damage transfers load to the enclosed Al phase which then fractures quickly under high stress, thus leading to low material ductility. In contrast, when the Si network is globularized into Si particles, the ductility is highly increased even in the case where the porosity and inhomogeneity of the microstructure remain after the post-treatment. The ductility enhancement results from the delay in void nucleation on the Si particles as well as from the tolerance for void growth in the Al matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486360100029 Publication Date 2019-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 1 Open Access  
  Notes ; This research work has been supported by the WALInnov LongLifeAM project, Convention n 1810016, funded by Service public de Wallonie Economic Emploi Recherche (SPW-EER). L. Ding and A. Simar acknowledge the financial support of the European Research Council (ERC) for the Starting Grant ALUFIX project (grant agreement n 716678). J. G. Santos Macias acknowledges the support of the Fonds de la recherche scientifique -FNRS (FRIA grant), Belgium. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSRFNRS). Any-Shape is acknowledged for material supply. We thank Prof. P. J. Jacques from UCLouvain for fruitful discussion and critical reading of the paper. ; Approved (up) Most recent IF: 3.094  
  Call Number UA @ admin @ c:irua:162800 Serial 5386  
Permanent link to this record
 

 
Author Li, J.; Zhao, C.; Yang, Y.; Li, C.; Hollenkamp, T.; Burke, N.; Hu, Z.-Y.; Van Tendeloo, G.; Chen, W. pdf  doi
openurl 
  Title Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors Type A1 Journal article
  Year 2019 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 810 Issue 810 Pages 151841  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Binary metal oxides with superior charge capacity and electrochemical activity have gained great interests. In this work, monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons were fabricated by a facile self-developed impregnation method. The synthesized hybrids possess improved wettability, high specific surface area (> 700m(2)/g) and regular mesoporous channels (similar to 4 nm), resulting in improved electrochemical performance for supercapacitors. These well-dispersed CoMoO4 nanoclusters exhibit a significant specific capacitance up to 367 F/g in the aqueous KNO3 electrolyte and good reversibility with a cycling efficiency of 99.8%. It is proposed that the mesoporous structure can facilitate the diffusion of electrolyte ions and then accelerate the electrochemical utilization of CoMoO4 nanoclusters. The results demonstrate that the produced binary metal oxide nanoclusters with excellent capacitance and good retention can be used as promising electrodes for the environment-friendly supercapacitors. (C) 2019 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486596000030 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 6 Open Access  
  Notes ; Financial support by the National Key R&D Program of China (2016YB0303900) and the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX) are gratefully acknowledged. The authors extend their appreciation to the support by CSIRO. ; Approved (up) Most recent IF: 3.133  
  Call Number UA @ admin @ c:irua:162759 Serial 5398  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport of cystine across xC-antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 664 Issue Pages 117-126  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461411200014 Publication Date 2019-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.165 Times cited 3 Open Access OpenAccess  
  Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved (up) Most recent IF: 3.165  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 674 Issue Pages 108114  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525439700011 Publication Date 2019-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.165 Times cited Open Access  
  Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved (up) Most recent IF: 3.165  
  Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372  
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S. pdf  doi
openurl 
  Title Effective bioeconomy policies for the uptake of innovative technologies under resource constraints Type A1 Journal article
  Year 2019 Publication Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 120 Issue 120 Pages 91-106  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The bioeconomy is a shared vision for a future European industry entirely based on organic matter. Authorities support this technological development with subsidies and policies stimulating R&D. One major limitation for the bioeconomy is that R&D and industrial growth require the continuous availability of biomass as a primary resource. This resource dependence is already present during the formative years of new biobased innovations and influences the pilot and demonstration phase of the development. Traditionally, it is assumed that public support for pilot and demonstration initiatives may overcome this hurdle. In this paper, we investigate how this resource constraint limits the effectiveness of bioeconomy policies. The future development of the biobased sector is simulated including the inherent dependence of industrial activity on biomass. We simulate the future growth and technological diversity of an emerging biotechnological sector: the sector of manure transformation in Belgium. The paper reports the evolutions for three policy scenarios. The model explicitly accounts for endogenous innovation and knowledge transfer mechanisms. The results show that policies may have an important impact on the sector structure in the long run, but the sector growth remains ultimately constrained by the availability of inputs. So bioeconomy policies to promote innovation will be less effective, unless mechanisms are included to alleviate the resource constraint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454887700011 Publication Date 2018-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 3 Open Access  
  Notes ; ; Approved (up) Most recent IF: 3.219  
  Call Number UA @ admin @ c:irua:156757 Serial 6191  
Permanent link to this record
 

 
Author Kosov, A.D.; Dubrinina, T.V.; Borisova, N.E.; Ivanov, A.V.; Drozdov, K.A.; Trashin, S.A.; De Wael, K.; Kotova, M.S.; Tomilova, L.G. pdf  url
doi  openurl
  Title Novel phenyl-substituted pyrazinoporphyrazine complexes of rare-earth elements : optimized synthetic protocols and physicochemical properties Type A1 Journal article
  Year 2019 Publication New journal of chemistry Abbreviated Journal New J Chem  
  Volume 43 Issue 7 Pages 3153-3161  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Novel synthetic protocols based on both template and multi-step methods were developed for phenyl-substituted pyrazinoporphyrazine complexes of rare-earth elements (Y, Eu, Gd, Dy, Er and Lu). p-Hydroquinone was employed as a reaction medium and as a reducing agent in the process of porphyrazine macrocycle formation. Both thermal and microwave irradiation techniques were successfully applied for activation of the template macrocyclization process. An alternative multi-step approach involving the initial stage of free-base ligand formation was realized for the lutetium compound. The target complexes were identified by high-resolution mass spectrometry, infrared spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Electrochemical behavior in solution and UV-vis absorbance in solutions and films were studied as well. Shifts in the position of the Q band and oxidationreduction potentials in comparison with corresponding phthalocyanine analogues were noticed. Using the IR absorption spectra recorded in the temperature range of 170300 K, the position of the Fermi level of −4.7 ± 0.1 eV and a characteristic energy diagram were obtained for the erbium complex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459944500035 Publication Date 2019-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 1 Open Access  
  Notes ; We are grateful for main financial support from the Russian Foundation for Basic Research (Grant No. 16-33-60005 and 18-33-00519). Investigation of optical properties was supported by the Russian Science Foundation (Grant 17-13-01197). Electrochemical investigations were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No. 18-53-76006 ERA). We also thank the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grants MK-3115.2018.3) and partial support from the framework of the State Assignment of 2019 (Theme 45.5 Creation of compounds with given physicochemical properties). Investigation of electrophysical properties was supported by the RFBR (Grant 16-07-00961). K. A. Drozdov and M. S. Kotova thank Prof. L. I. Ryabova for productive discussion of the electrophysical data. ; Approved (up) Most recent IF: 3.269  
  Call Number UA @ admin @ c:irua:156555 Serial 5750  
Permanent link to this record
 

 
Author Wang, L.; Wen, D.-Q.; Zhang, Q.-Z.; Song, Y.-H.; Zhang, Y.-R.; Wang, Y.-N. pdf  url
doi  openurl
  Title Disruption of self-organized striated structure induced by secondary electron emission in capacitive oxygen discharges Type A1 Journal article
  Year 2019 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 28 Issue 5 Pages 055007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Self-organized striated structure has been observed experimentally and numerically in CF4 plasmas in radio-frequency capacitively coupled plasmas recently (Liu et al 2016 Phys. Rev. Lett. 116 255002). In this work, the striated structure is investigated in a capacitively coupled oxygen discharge with the introduction of the effect from the secondary electron emission, based on a particle-in-cell/Monte Carlo collision model. As we know, the transport of positive and negative ions plays a key role in the formation of striations in electronegative gases, for which, the electronegativity needs to be large enough. As the secondary electron emission increases, electrons in the sheaths gradually contribute more ionization to the discharge. Meanwhile, the increase of the electron density, especially in the plasma bulk, leads to an increased electrical conductivity and a reduced bulk electric field, which would shield the ions' mobility. These changes result in enlarged striation gaps. And then, with more emitted electrons, obvious disruption of the striations is observed accompanied with a transition of electron heating mode. Due to the weakened field, the impact ionization in the plasma bulk is attenuated, compared with the enhanced ionization caused by secondary electrons. This would lead to the electron heating mode transition from striated (STR) mode to gamma-mode. Besides, our investigation further reveals that gamma-mode is more likely to dominate the discharge under high gas pressures or driving voltages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000467827800001 Publication Date 2019-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 2 Open Access Not_Open_Access: Available from 13.05.2020  
  Notes Approved (up) Most recent IF: 3.302  
  Call Number UA @ admin @ c:irua:160365 Serial 5270  
Permanent link to this record
 

 
Author Alaerts, L.; Van Acker, K.; Rousseau, S.; De Jaeger, S.; Moraga, G.; Dewulf, J.; De Meester, S.; Van Passel, S.; Compernolle, T.; Bachus, K.; Vrancken, K.; Eyckmans, J. url  doi
openurl 
  Title Towards a more direct policy feedback in circular economy monitoring via a societal needs perspective Type A1 Journal article
  Year 2019 Publication Resources, conservation and recycling Abbreviated Journal Resour Conserv Recy  
  Volume 149 Issue 149 Pages 363-371  
  Keywords A1 Journal article; Economics; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing focus on circular economy at the level of governments and policy requires the development of appropriate indicators to effectively monitor the progress towards the circular economy. Currently two very different types of indicator areas are under development: (i) monitoring frameworks based on macro indicators that summarize the progress at (supra)national level, and (ii) micro indicators tailored towards assessing circularity at the level of products. It is not possible to obtain sufficiently direct feedback about the impact of policy interventions by either macro or micro indicators alone. In this paper, a conceptual approach is developed that aims to bridge the gap between the micro and macro level with meso level indicators, and thus ultimately deliver more direct feedback for policymakers, via the insertion of an extra level of meso indicators in between the macro and the micro level. These indicators have been extracted from a dedicated workshop that involved policy, sector and societal stakeholders. The aim of these indicators is to report on progress towards circular economy objectives based on the fulfillment of societal needs. In this way the consumption perspective is given a central position, and the role of circular business models is acknowledged. Following the development of the concept, the next steps towards tailored, flexible and agile monitoring frameworks for circular economy at (supra)national and regional level are outlined. The paper concludes with an illustrative example of the framework applied to the mobility system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000483414300034 Publication Date 2019-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited 1 Open Access  
  Notes ; The authors are very grateful for financial support received from the Flemish administration via the Steunpunt Circulaire Economie (Policy Research Centre Circular Economy). This publication contains the opinions of the authors, not that of the Flemish administration. The Flemish administration will not carry any liability with respect to the use that can be made of the produced data or conclusions. The authors are also grateful to the numerous stakeholders for extended discussions and comments. ; Approved (up) Most recent IF: 3.313  
  Call Number UA @ admin @ c:irua:162774 Serial 6271  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Springael, J.; Van Dael, M.; Malina, R.; Van Passel, S. pdf  doi
openurl 
  Title Sustainability indicators for biobased chemicals : a Delphi study using multi-criteria decision analysis Type A1 Journal article
  Year 2019 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 144 Issue 144 Pages 198-208  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Biobased chemistry has gained interest and has the potential to tackle some of the sustainability challenges the chemical industry must endure. Sustainability impacts need to be evaluated and monitored to highlight the advantages and pitfalls of different biobased routes over the entire product life cycle. This study aims for expert consensus concerning indicators needed and preferred for sustainability analysis of biobased chemicals in Europe. Experts are consulted by means of a Delphi method with stakeholders selected from three core groups: the private, public and academic sector. Best-Worst Scaling (BWS) is performed to gather data on the prioritization of the sustainability indicators per respondent. Afterwards, Multi-Criteria Decision Analysis (MCDA) is used to develop a consensus ranking among the experts. The results show that GHG emissions, market potential and acceptance of biobased materials are deemed the most crucial indicators for respectively environmental, economic and social sustainability. Expert consensus is positive in all three sustainability domains, with the strongest consensus measured for environmental sustainability showing a median Kendalls τ of 0.63 (τ ranging from -1 to 1) and the weakest consensus found within social sustainability showing a median Kendalls τ of 0.50. Further research can apply the ranked indicators on specific case studies to evaluate the practicability of the defined indicator set.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461534800021 Publication Date 2019-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited 4 Open Access  
  Notes ; ; Approved (up) Most recent IF: 3.313  
  Call Number UA @ admin @ c:irua:156929 Serial 6255  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  doi
openurl 
  Title Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study Type A1 Journal article
  Year 2019 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 496 Issue 496 Pages 143618  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The ever increasing global production and dispersion of methane requires novel chemistry to transform it into easily condensable energy carriers that can be integrated into the chemical infrastructure. In this context, single atom catalysts have attracted considerable interest due to their outstanding catalytic activity. We here use density functional theory (DFT) computations to compare the reaction and activation energies of M and MN4 embedded graphene (M = Ni and Si) on the methane-to-methanol conversion near room temperature. Thermodynamically, conversion of methane to methanol is energetically favorable at ambient conditions. Both singlet and triplet spin state of the studied systems are considered in all of the calculations. The DFT results show that the barriers are significantly lower when the complexes are in the triplet state than in the singlet state. In particular, Si-G with the preferred spin multiplicity of triplet seems to be viable catalysts for methane oxidation thanks to the corresponding lower energy barriers and higher stability of the obtained configurations. Our results provide insights into the nature of methane conversion and may serve as guidance for fabricating cost-effective graphene-based single atom catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488957400004 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes Approved (up) Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:163695 Serial 6294  
Permanent link to this record
 

 
Author Ghimire, B.; Szili, E.J.; Lamichhane, P.; Short, R.D.; Lim, J.S.; Attri, P.; Masur, K.; Weltmann, K.-D.; Hong, S.-H.; Choi, E.H. pdf  url
doi  openurl
  Title The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 9 Pages 093701  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasma jets (plasma) operated in ambient air provide a rich source of reactive oxygen and nitrogen species (RONS), which are known to influence biological processes important in disease. In the plasma treatment of diseased tissue such as subcutaneous cancer tumors, plasma RONS need to first traverse an interface between the plasma-skin surface and second be transported to millimeter depths in order to reach deep-seated diseased cells. However, the mechanisms in the plasma generation of RONS within soft tissues are not understood. In this study, we track the plasma jet delivery of RONS into a tissue model target and we delineate two processes: through target delivery of RONS generated (primarily) in the plasma jet and in situ RONS generation by UV photolysis within the target. We demonstrate that UV photolysis promotes the rapid generation of RONS in the tissue model target’s surface after which the RONS are transported to millimeter depths via a slower molecular process. Our results imply that the flux of UV photons from plasma jets is important for delivering RONS through seemingly impenetrable barriers such as skin. The findings have implications not only in treatments of living tissues but also in the functionalization of soft hydrated biomaterials such as hydrogels and extracellular matrix derived tissue scaffolds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460820600048 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access Not_Open_Access  
  Notes National Research Foundation of Korea, NRF-2016K1A4A3914113 ; Australian Research Council, DP16010498 ; This work was supported by the National Research Foundation of Korea (NRF) Grant No. NRF-2016K1A4A3914113 and in part by Kwangwoon University 2018, Korea. E.J.S., S.-H.H., and R.D.S. wish to thank the Australian Research Council for partially supporting this research through Discovery Project No. DP16010498 and UniSA through the Vice Chancellor Development Fund. Approved (up) Most recent IF: 3.411  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158111 Serial 5159  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Spectroscopic coincidence experiments in transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 14 Pages 143101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal

correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a

delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both

events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or

EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many

difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input

and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations

of elements need to be detected in a matrix of other elements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464450200022 Publication Date 2019-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 18 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G093417 ; Horizon 2020 Framework Programme, 823717 ESTEEM3 ; Helmholtz Association, VH-NG-1327 ; Approved (up) Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159155 Serial 5168  
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J. url  doi
openurl 
  Title Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243501  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)  
  Abstract Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with a very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with a subnanometer resolution. Here, we present a method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5 × 10−4 and an accuracy of 1.5 × 10−3, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472599100019 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 17 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, RO2057/12-2 ; Fonds Wetenschappelijk Onderzoek, G.0934.17N ; Approved (up) Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160119 Serial 5181  
Permanent link to this record
 

 
Author Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243102  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472599100029 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved (up) Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:161327 Serial 5428  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: