toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Loenders, B.; Michiels, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions Type A1 Journal Article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 85 Issue Pages 501-533  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Plasma-catalytic dry reforming of CH4 (DRM) is promising to convert the greenhouse gasses CH4 and CO2 into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products, because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex, as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, highlighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems. Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures, at which vibrational excitation can enhance the surface reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the FWO-SBO project PlasMa- CatDESIGN (FWO grant ID S001619N), the FWO fellowship of R. Michiels (FWO grant ID 1114921N), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198159 Serial 8806  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Hussain, S.; Kovacevic, E.; Brault, P.; Boulmer-Leborgne, C.; Neyts, E.C. pdf  url
doi  openurl
  Title Nanoscale mechanisms of CNT growth and etching in plasma environment Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages 184001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-enhanced chemical deposition (PECVD) of carbon nanotubes has already been shown to allow chirality control to some extent. In PECVD, however, etching may occur simultaneously with the growth, and the occurrence of intermediate processes further significantly complicates the growth process.

We here employ a computational approach with experimental support to study the plasma-based formation of Ni nanoclusters, Ni-catalyzed CNT growth and subsequent etching processes, in order to understand the underpinning nanoscale mechanisms. We find that hydrogen is the dominant factor in both the re-structuring of a Ni film and the subsequent appearance of Ni nanoclusters, as well as in the CNT nucleation and etching processes. The obtained results are compared with available theoretical and experimental studies and provide a deeper understanding of the occurring nanoscale mechanisms in plasma-assisted CNT nucleation and growth.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398300900001 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access OpenAccess  
  Notes UK gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof A C T van Duin for sharing the ReaxFF code. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:141918 Serial 4533  
Permanent link to this record
 

 
Author Rezaei, F.; Vanraes, P.; Nikiforov, A.; Morent, R.; De Geyter, N. url  doi
openurl 
  Title Applications of plasma-liquid systems : a review Type A1 Journal article
  Year 2019 Publication Materials Abbreviated Journal Materials  
  Volume 12 Issue 17 Pages 2751  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488880300104 Publication Date 2019-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.654  
  Call Number UA @ admin @ c:irua:163805 Serial 6285  
Permanent link to this record
 

 
Author Neyts, E.C.; Brault, P. pdf  url
doi  openurl
  Title Molecular Dynamics Simulations for Plasma-Surface Interactions: Molecular Dynamics Simulations… Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600145  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-surface interactions are in general highly complex due to the interplay of many concurrent processes. Molecular dynamics simulations provide insight in some of these processes, subject to the accessible time and length scales, and the availability of suitable force fields. In this introductory tutorial-style review, we aim to describe the current capabilities and limitations of molecular dynamics simulations in this field, restricting ourselves to low-temperature nonthermal plasmas. Attention is paid to the simulation of the various fundamental processes occurring, including sputtering, etching, implantation, and deposition, as well as to what extent the basic plasma components can be accounted for, including ground state and excited species, electric fields, ions, photons, and electrons. A number of examples is provided, giving an bird’s eye overview of the current state of the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393184600009 Publication Date 2016-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 13 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:141758 Serial 4488  
Permanent link to this record
 

 
Author Heirman, P.; Van Boxem, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 24 Pages 12881-12894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472214000012 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161314 Serial 6320  
Permanent link to this record
 

 
Author Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G. url  doi
openurl 
  Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 5 Pages 053002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384715400001 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 460 Open Access  
  Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628  
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Tinck, S.; de Marneffe, J.-F.; Zhang, L.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanisms for plasma cryogenic etching of porous materials Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 111 Issue 17 Pages 173104  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Porous materials are commonly used in microelectronics, as they can meet the demand for continuously shrinking electronic feature dimensions. However, they are facing severe challenges in plasma etching, due to plasma induced damage. In this paper, we present both the plasma characteristics and surface processing during the etching of porous materials. We explain how the damage occurs in the porous material during plasma etching for a wide range of chuck temperatures and the responsible mechanism for plasma damage-free etching at cryogenic temperature, by a combination of experiments and numerical modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413863400032 Publication Date 2017-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 2 Open Access OpenAccess  
  Notes We acknowledge the support from Marie Skłodowska- Curie actions (Grant Agreement-702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. L. Zhang and J.-F. de Marneffe acknowledge Dr. M. Cooke and A. Goodyear from Oxford Instruments Plasma Technology for processing the samples at their Yatton facility in the United Kingdom. Approved Most recent IF: 3.411  
  Call Number PLASMANT @ plasmant @c:irua:147022 Serial 4762  
Permanent link to this record
 

 
Author Khanam, A.; Vohra, A.; Slotte, J.; Makkonen, I.; Loo, R.; Pourtois, G.; Vandervorst, W. url  doi
openurl 
  Title A demonstration of donor passivation through direct formation of V-As-i complexes in As-doped Ge1-XSnx Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 127 Issue 19 Pages 195703  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Positron annihilation spectroscopy in the Doppler and coincidence Doppler mode was applied on Ge1 xSnx epitaxial layers, grown by chemical vapor deposition with different total As concentrations (1019-1021 cm3), high active As concentrations (1019 cm3), and similar Sn concentrations (5.9%-6.4%). Positron traps are identified as mono-vacancy complexes. Vacancy-As complexes, V-Asi, formed during the growth were studied to deepen the understanding of the electrical passivation of the Ge1 xSnx:As epilayers. Larger monovacancy complexes, V-Asi (i 2), are formed as the As doping increases. The total As concentration shows a significant impact on the saturation of the number of As atoms (i 1/4 4) around the vacancies in the sample epilayers. The presence of V-Asi complexes decreases the dopant activation in the Ge1 xSnx:As epilayers. Furthermore, the presence of Sn failed to hinder the formation of larger V-Asi complexes and thus failed to reduce the donor-deactivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536196000003 Publication Date 2020-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:170252 Serial 6447  
Permanent link to this record
 

 
Author Truong, B.; Siegert, K.; Lin, A.; Miller, V.; Krebs, F.C. pdf  doi
openurl 
  Title Apical application of nanosecond-pulsed dielectric barrier discharge plasma causes the basolateral release of adenosine triphosphate as a damage-associated molecular pattern from polarized HaCaT cells Type A1 Journal article
  Year 2017 Publication Plasma medicine Abbreviated Journal  
  Volume 7 Issue 2 Pages 117-131  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Promising biomedical uses for nonthermal plasma (NTP) in the fields of regenerative medicine, cancer therapy, and vaccine delivery involve the noninvasive application of uniform nonequilibrium plasma (including dielectric barrier discharge plasma) to living skin. Whereas most investigations have focused on achieving desired therapeutic outcomes, fewer studies have examined the mechanisms and pathways by which epithelial cells respond to NTP exposure. Using a transwell apical-basolateral-chambered system to culture the human keratinocyte HaCaT cell line, in vitro experiments were performed to demonstrate the effects of nanosecond-pulsed dielectric barrier discharge (nsDBD) plasma on polarized epithelial cell viability, monolayer permeability, intracellular oxidative stress, and the release of adenosine triphosphate (ATP). Application of nsDBD plasma at 60 Hz or below had minimal or no effect on HaCaT monolayer viability or permeability. nsDBD plasma exposure did, however, result in frequency-dependent reductions in intracellular glutathione (indicating direct induction of oxidative stress by nsDBD plasma) and increased extracellular ATP concentrations in the ba-solateral (subepithelial) media, which are indicators of cellular stress and an NTP-induced inflammatory response. These studies provide new insights into nsDBD plasma-induced inflammation and local innate immune responses initiated by polarized epithelial tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155656 Serial 7465  
Permanent link to this record
 

 
Author Attri, P.; Yusupov, M.; Park, J.H.; Lingamdinne, L.P.; Koduru, J.R.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 34419  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.  
  Address Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385172300001 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 23 Open Access  
  Notes We gratefully acknowledge the grant received from the SRC program of the National Research Foundation of Korea (NRF), funded by the Korean Government (MEST) (No. 20100029418). PA is thankful to FY 2015 Japan Society for the Promotion of Science (JSPS) invitation fellowship. This work was partly supported by MEXT KAKENHI Grant Number 24108009 and JSPS KAKENHI Grant Number JP16H03895. M. Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant number 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:135847 Serial 4283  
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P. pdf  doi
openurl 
  Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
  Year 2023 Publication Waste and biomass valorization Abbreviated Journal  
  Volume Issue Pages 1-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract (up) Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001117290800003 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1877-2641; 1877-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:202709 Serial 9005  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Khalilov, U.; van Duin, A.C.T.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species : a reactive molecular dynamics study Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 162-171  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Reactive molecular dynamics simulations are performed to study the interaction of reactive oxygen species, such as OH, HO2 and H2O2, with the endotoxic biomolecule lipid A of the gram-negative bacterium Escherichia coli. It is found that the aforementioned plasma species can destroy the lipid A, which consequently results in reducing its toxic activity. All bond dissociation events are initiated by hydrogen-abstraction reactions. However, the mechanisms behind these dissociations are dependent on the impinging plasma species, i.e. a clear difference is observed in the mechanisms upon impact of HO2 radicals and H2O2 molecules on one hand and OH radicals on the other hand. Our simulation results are in good agreement with experimental observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000350275400005 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:123540 Serial 1589  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Unraveling the permeation of reactive species across nitrated membranes by computer simulations Type A1 Journal Article;Reactive oxygen and nitrogen species
  Year 2021 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med  
  Volume 136 Issue Pages 104768  
  Keywords A1 Journal Article;Reactive oxygen and nitrogen species; Nitro-oxidative stress; Molecular dynamics simulations; Nitrated membranes; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitrooxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the perme­ation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hy­drophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hy­drophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignif­icant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696938800003 Publication Date 2021-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.836 Times cited Open Access OpenAccess  
  Notes We thank University of Antwerp and Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted and for providing the computational resources needed for completion of this work. M. Yusupov acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 1.836  
  Call Number PLASMANT @ plasmant @c:irua:181082 Serial 6807  
Permanent link to this record
 

 
Author Shaw, P. url  openurl
  Title Dual action of reactive species as signal and stress agents in plasma medicine : combined computational and experimental research Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 191 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract (up) Reactive oxygen and nitrogen species (RONS) generated by cold atmospheric plasma (CAP) can activate discrete signaling transduction pathways or disrupt redox cellular homeostasis, depending on their concentration. This makes that CAP possesses therapeutic potential towards wound healing, cancer, and other diseases. In order to effectively use CAP in the clinic, a clear understanding of the interaction of RONS with biomolecules (lipids, proteins and nucleic acids) from the atomic to the macro scale, and their biological significance, is needed. In this work, I have therefore studied the dual role of CAP-derived RONS, i.e., (i) in the signaling pathways involved in wound healing, and (ii) in their reaction with biomolecules to cause oxidation-mediated damage. I performed computer simulations to provide fundamental insight about the occurring processes that are difficult or even impossible to obtain experimentally. Furthermore, next to computational studies, I used both 2D and 3D tissue cultures. 3D model allows proliferation in a more physiologically relevant geometry that stimulates the production of extracellular matrix proteins. I investigated the treatment of human gingival fibroblasts with low doses of CAP-generated RONS. This treatment demonstrated that it can inhibit colony formation but does not induce cell death, induce the expression of metalloprotease proteins, induce extracellular matrix degradation, and promote cell migration, which could result in enhanced wound healing. In contrast, at high concentrations, RONS can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. I discovered how oxidation of the cell membrane (lipid-peroxidation) can facilitate the access of a drug (Melittin) into cancer cells, and in this way, reduce the required therapeutic dose of Melittin in melanoma and breast cancer cells (demonstrated using in vitro, in ovo and in silico approaches). Furthermore, I studied how excessive lipid-oxidation in chemoresistant pancreatic cancer cells promotes ferroptotic cell death. This was due to the stimulation of the iron-dependent Fenton reaction by targeting a redox specific signaling network. However, upon oxidative stress, cells protect themselves via a sophisticated intracellular antioxidant system that involves the regulation of glutathione/glutathione peroxidase 4 (lipid repair enzyme). Cancer cells exhibited increased levels of intracellular RONS due to their hyper metabolism, leading to high expression of anti-oxidant systems. I therefore focus on the effect of reactive species on the intracellular anti-oxidant system and corresponding DNA damages in both temozolomide-sensitive as well as temozolomide-resistant glioblastoma spheroids, in a 3-dimensional tumor model with a more complex tumor microenvironment than cell monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183751 Serial 7828  
Permanent link to this record
 

 
Author Lackmann, J.-W.; Wende, K.; Verlackt, C.; Golda, J.; Volzke, J.; Kogelheide, F.; Held, J.; Bekeschus, S.; Bogaerts, A.; Schulz-von der Gathen, V.; Stapelmann, K. url  doi
openurl 
  Title Chemical fingerprints of cold physical plasmas – an experimental and computational study using cysteine as tracer compound Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages 7736  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432275800035 Publication Date 2018-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 19 Open Access OpenAccess  
  Notes This work was supported by the German Research Foundation (DFG, grant PAK816 to V.SvdG.), the Federal German Ministry of Education and Research (grant number 03Z22DN12 to K.W. and 03Z22DN11 to S.B.), and the FWO-Flanders (grant number G012413N to A.B.). K.W. likes to thank T. von Woedtke and K.-D. Weltmann for constant support. The authors thank K. Kartaschew for fruitful discussion and G. Bruno for support during mock studies. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:151241 Serial 4957  
Permanent link to this record
 

 
Author Khalili, M.; Daniels, L.; Lin, A.; Krebs, F.C.; Snook, A.E.; Bekeschus, S.; Bownel, W.B.; Miller, V. pdf  url
doi  openurl
  Title Non-thermal plasma-induced immunogenic cell death in cancer Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue 42 Pages 423001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Recent advances in biomedical research in cancer immunotherapy have identified the use of an oxidative stress-based approach to treat cancers, which works by inducing immunogenic cell death (ICD) in cancer cells. Since the anti-cancer effects of non-thermal plasma (NTP) are largely attributed to the reactive oxygen and nitrogen species that are delivered to and generated inside the target cancer cells, it is reasonable to postulate that NTP would be an effective modality for ICD induction. NTP treatment of tumors has been shown to destroy cancer cells rapidly and, under specific treatment regimens, this leads to systemic tumorspecific immunity. The translational benefit of NTP for treatment of cancer relies on its ability to enhance the interactions between NTP-exposed minor cells and local immune cells which initiates subsequent protective immune responses. This review discusses results from recent investigations of NTP application to induce ICD in cancer cells. With further optimization of clinical devices and treatment protocols, NTP can become an essential part of the therapeutic armament against cancer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000479103100001 Publication Date 2019-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:161774 Serial 6313  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. doi  openurl
  Title Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 2141-2147  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600021 Publication Date 2012-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 45 Open Access  
  Notes Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99079 Serial 2976  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Atanasov, I.; Hou, M. url  doi
openurl 
  Title Calculation of binary and ternary metallic immiscible clusters with icosahedral structures Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume Issue Pages 115415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Recently, core-shell Ag-Co, Ag-Cu, and “onionlike” Cu-Co equilibrium configurations were predicted in the case of isolated face centered cubic (fcc) bimetallic clusters, and three shell onionlike configurations were predicted in the case of ternary metallic clusters with spherical and truncated octahedral morphologies. In the present paper, immiscible binary CuCo and ternary AgCuCo clusters with icosahedral structures are studied as functions of their size and composition. Clusters studied are formed by 13, 55, 147, 309, and 561 atoms corresponding to the five smallest possible closed shell icosahedral structures. An embedded atom model potential is used to describe their cohesion. Equilibrium configurations are investigated by means of Metropolis Monte Carlo free energy minimization in the (NPT) canonical ensemble. Most simulations are achieved at 10 and 300 K. The effect of temperature on segregation ordering is systematically investigated. Selected cases are used to identify the effect of size and composition on melting. In contrast with fcc clusters, homogeneous onionlike configurations of binary clusters are not predicted. When it is allowed by the composition, a complete outer shell is formed by Cu in binary Cu-Co clusters and by Ag in ternary Ag-Cu-Co clusters. Depending on temperature, Co may precipitate into decahedral groups under the Cu vertices of the icosahedra in binary clusters, while the Co-Cu configuration in ternary clusters drastically depends on the Ag coating. Despite the multicomponent character of the clusters and the immiscibility of the species forming them, for most compositions and sizes, equilibrium structures remain close to perfectly icosahedral at 10 K as well as at 300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800167 Publication Date 2008-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:104033 Serial 4517  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Sarmadian, N.; Neyts, E.C.; Partoens, B. url  doi
openurl 
  Title A first principles study of p-type defects in LaCrO3 Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 34 Pages 22870-22876  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Recently, Sr-doped LaCrO3 has been experimentally introduced as a new p-type transparent conducting oxide. It is demonstrated that substituting Sr for La results in inducing p-type conductivity in LaCrO3. Performing first principles calculations we study the electronic structure and formation energy of various point defects in LaCrO3. Our results for the formation energies show that in addition to Sr, two more divalent defects, Ca and Ba, substituting for La in LaCrO3, behave as shallow acceptors in line with previous experimental reports. We further demonstrate that under oxygen-poor growth conditions, these shallow acceptors will be compensated by intrinsic donor-like defects (an oxygen vacancy and Cr on an oxygen site), but in the oxygen-rich growth regime the shallow acceptors have the lowest formation energies between all considered defects and will lead to p-type conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000408671600026 Publication Date 2017-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 16 Open Access OpenAccess  
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services were provided by the Flemish Supercomputer Center and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:145621 Serial 4735  
Permanent link to this record
 

 
Author Snoeckx, R.; Ozkan, A.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 409-424  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H2O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H2, as well as O2 and H2O2, whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000394571900012 Publication Date 2016-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 25 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Inter-university Attraction Pole (IAP; grant number IAP-VII/12, P7/34) program “PSI-Physical Chemistry of Plasma-Surface Interactions”, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO; grant number G.0066.12N). This work was performed in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. We also would like to thank the financial support given by “Fonds David et Alice Van Buuren”. Finally, we are very grateful to M. Kushner for providing the Global kin code, to T. Dufour for his support during the experiments, and to R. Aerts for his support during the model development. Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:139880 Serial 4412  
Permanent link to this record
 

 
Author Van Alphen, S.; Jardali, F.; Creel, J.; Trenchev, G.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Sustainable gas conversion by gliding arc plasmas: a new modelling approach for reactor design improvement Type A1 Journal article
  Year 2021 Publication Sustainable energy & fuels Abbreviated Journal Sustainable Energy Fuels  
  Volume 5 Issue 6 Pages 1786-1800  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Research in plasma reactor designs is developing rapidly as plasma technology is gaining increasing interest for sustainable gas conversion applications, like the conversion of greenhouse gases into value-added chemicals and renewable fuels, and fixation of N<sub>2</sub>from air into precursors of mineral fertilizer. As plasma is generated by electric power and can easily be switched on/off, these applications allows for efficient conversion and energy storage of intermittent renewable electricity. In this paper, we present a new comprehensive modelling approach for the design and development of gliding arc plasma reactors, which reveals the fluid dynamics, the arc behaviour and the plasma chemistry by solving a unique combination of five complementary models. This results in a complete description of the plasma process, which allows one to efficiently evaluate the performance of a reactor and indicate possible design improvements before actually building it. We demonstrate the capabilities of this method for an experimentally validated study of plasma-based NO<sub>x</sub>formation in a rotating gliding arc reactor, which is gaining increasing interest as a flexible, electricity-driven alternative for the Haber–Bosch process. The model demonstrates the importance of the vortex flow and the presence of a recirculation zone in the reactor, as well as the formation of hot spots in the plasma near the cathode pin and the anode wall that are responsible for most of the NO<sub>x</sub>formation. The model also reveals the underlying plasma chemistry and the vibrational non-equilibrium that exists due to the fast cooling during each arc rotation. Good agreement with experimental measurements on the studied reactor design proves the predictive capabilities of our modelling approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000631643300013 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n ; Vlaamse regering, HBC.2019.0107 ; European Research Council, 810182 ; This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), the 1798 | Sustainable Energy Fuels, 2021, 5, 1786–1800 Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177540 Serial 6745  
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Chen, C.Y.; Goux, L.; Govoreanu, B.; Degraeve, R.; Fantini, A.; Jurczak, M.; Pourtois, G. url  doi
openurl 
  Title First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 119 Issue 119 Pages 225107  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottom Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000378925400035 Publication Date 2016-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ lucian @ c:irua:134651 Serial 4181  
Permanent link to this record
 

 
Author Clima, S.; Sankaran, K.; Chen, Y.Y.; Fantini, A.; Celano, U.; Belmonte, A.; Zhang, L.; Goux, L.; Govoreanu, B.; Degraeve, R.; Wouters, D.J.; Jurczak, M.; Vandervorst, W.; Gendt, S.D.; Pourtois, G.; doi  openurl
  Title RRAMs based on anionic and cationic switching : a short overview Type A1 Journal article
  Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 8 Issue 6 Pages 501-511  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Resistive random access memories are emerging as a new type of memory that has the potential to combine both the speed of volatile and the retention of nonvolatile memories. It operates based on the formation/dissolution of a low-resistivity filament being constituted of either metallic ions or atomic vacancies within an insulating matrix. At present, the mechanisms and the parameters controlling the performances of the device remain unclear. In that respect, first-principles simulations provide useful insights on the atomistic mechanisms, the thermodynamic and kinetics factors that modulate the material conductivity, providing guidance into the engineering of the operation of the device. In this paper, we review the current state-of-the-art knowledge on the atomistic switching mechanisms driving the operation of copper-based conductive bridge RRAM and HfOx valence change RRAM. [GRAPHICS] Conceptual illustration of the RRAM device with the filament formation and disruption during its operation. AE/IM/CE are the active electrode/insulating matrix/counterelectrode. The blue circles represent the conducting defects. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000338021200004 Publication Date 2014-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.032; 2014 IF: 2.142  
  Call Number UA @ lucian @ c:irua:118679 Serial 2933  
Permanent link to this record
 

 
Author Phung, Q.M.; Vancoillie, S.; Delabie, A.; Pourtois, G.; Pierloot, K. doi  openurl
  Title Ruthenocene and cyclopentadienyl pyrrolyl ruthenium as precursors for ruthenium atomic layer deposition : a comparative study of dissociation enthalpies Type A1 Journal article
  Year 2012 Publication Theoretical chemistry accounts : theory, computation, and modeling Abbreviated Journal Theor Chem Acc  
  Volume 131 Issue 7 Pages 1238  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) RuCp2 (ruthenocene) and RuCpPy (cyclopentadienyl pyrrolyl ruthenium) complexes are used in ruthenium (Ru) atomic layer deposition (ALD) but exhibit a markedly different reactivity with respect to the substrate and co-reactant. In search of an explanation, we report here the results of a comparative study of the heterolytic and homolytic dissociation enthalpy of these two ruthenium complexes, making use of either density functional theory (DFT) or multiconfigurational perturbation theory (CASPT2). While both methods predict distinctly different absolute dissociation enthalpies, they agree on the relative values between both molecules. A reduced heterolytic dissociation enthalpy is obtained for RuCpPy compared to RuCp2, although the difference obtained from CASPT2 (19.9 kcal/mol) is slightly larger than the one obtained with any of the DFT functionals (around 17 kcal/mol). Both methods also agree on the more pronounced stability of the Cp- ligand in RuCpPy than in RuCp2 (by around 9 kcal/mol with DFT and by 6 kcal/mol with CASPT2).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000307274300003 Publication Date 2012-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-881X;1432-2234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.89 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.89; 2012 IF: 2.233  
  Call Number UA @ lucian @ c:irua:101139 Serial 2935  
Permanent link to this record
 

 
Author Zhou, R.; Zhou, R.; Xian, Y.; Fang, Z.; Lu, X.; Bazaka, K.; Bogaerts, A.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Plasma-enabled catalyst-free conversion of ethanol to hydrogen gas and carbon dots near room temperature Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 382 Issue 382 Pages 122745  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Selective conversion of bio-renewable ethanol under mild conditions especially at room temperature remains a major challenge for sustainable production of hydrogen and valuable carbon-based materials. In this study, adaptive non-thermal plasma is applied to deliver pulsed energy to rapidly and selectively reform ethanol in the absence of a catalyst. Importantly, the carbon atoms in ethanol that would otherwise be released into the environment in the form of CO or CO2 are effectively captured in the form of carbon dots (CDs). Three modes of non-thermal spark plasma discharges, i.e. single spark mode (SSM), multiple spark mode (MSM) and gliding spark mode (GSM), provide additional flexibility in ethanol reforming by controlling the processes of energy transfer and distribution, thereby affecting the flow rate, gas content, and energy consumption in H-2 production. A favourable combination of low temperature (< 40 degrees C), attractive conversion rate (gas flow rate of similar to 120 mL/min), high hydrogen yield (H-2 content > 90%), low energy consumption (similar to 0.96 kWh/m(3) H-2) and the effective generation of photoluminescent CDs (which are applicable for bioimaging or biolabelling) in the MSM indicate that the proposed strategy may offer a new carbon-negative avenue for comprehensive utilization of alcohols and mitigating the increasingly severe energy and environmental issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503381200200 Publication Date 2019-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited 20 Open Access  
  Notes ; ; Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number UA @ admin @ c:irua:165648 Serial 6318  
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon  
  Volume 118 Issue 118 Pages 452-457  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401120800053 Publication Date 2017-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 2 Open Access OpenAccess  
  Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531  
Permanent link to this record
 

 
Author Wang, L.; Wen, D.-Q.; Zhang, Q.-Z.; Song, Y.-H.; Zhang, Y.-R.; Wang, Y.-N. pdf  url
doi  openurl
  Title Disruption of self-organized striated structure induced by secondary electron emission in capacitive oxygen discharges Type A1 Journal article
  Year 2019 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 28 Issue 5 Pages 055007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Self-organized striated structure has been observed experimentally and numerically in CF4 plasmas in radio-frequency capacitively coupled plasmas recently (Liu et al 2016 Phys. Rev. Lett. 116 255002). In this work, the striated structure is investigated in a capacitively coupled oxygen discharge with the introduction of the effect from the secondary electron emission, based on a particle-in-cell/Monte Carlo collision model. As we know, the transport of positive and negative ions plays a key role in the formation of striations in electronegative gases, for which, the electronegativity needs to be large enough. As the secondary electron emission increases, electrons in the sheaths gradually contribute more ionization to the discharge. Meanwhile, the increase of the electron density, especially in the plasma bulk, leads to an increased electrical conductivity and a reduced bulk electric field, which would shield the ions' mobility. These changes result in enlarged striation gaps. And then, with more emitted electrons, obvious disruption of the striations is observed accompanied with a transition of electron heating mode. Due to the weakened field, the impact ionization in the plasma bulk is attenuated, compared with the enhanced ionization caused by secondary electrons. This would lead to the electron heating mode transition from striated (STR) mode to gamma-mode. Besides, our investigation further reveals that gamma-mode is more likely to dominate the discharge under high gas pressures or driving voltages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000467827800001 Publication Date 2019-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 2 Open Access Not_Open_Access: Available from 13.05.2020  
  Notes Approved Most recent IF: 3.302  
  Call Number UA @ admin @ c:irua:160365 Serial 5270  
Permanent link to this record
 

 
Author Bosch, B.; Leleu, M.; Oustrière, P.; Sarcia, C.; Sureau, J.F.; Blommaert, W.; Gijbels, R.; Sadurski, A.; Vandelannoote, R.; Van Grieken, R.; Van 'T Dack, L.; pdf  doi
openurl 
  Title Hydrogeochemistry in the zinclead mining district of Les Malines (Gard, France) Type A1 Journal article
  Year 1986 Publication Chemical geology Abbreviated Journal Chem Geol  
  Volume 55 Issue 1/2 Pages 31-44  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Sensitive multi-element analysis techniques together with major-element and isotopic analyses were applied to spring, mine and surface waters in the vicinity of an important known zinclead deposit in a carbonate environment, in the Les Malines area (Gard, France). Both the dissolved and suspended phases were investigated, and concretions and sediments were also considered in some cases. This methodological test shows that the ore body leaves various clear fingerprints, such as the Zn, As, Sb, Pb and U levels in the dissolved phase, the sulfate increment and the δ 34S. Some of the elements in solution are controlled by slightly soluble compounds, e.g. Zn by smithsonite and hydrozincite, Ba by barite, and Pb by hydrocerussite. Mapping the saturation indices for these elements appears useful for displaying the hydrogeochemical anomaly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1986C743300003 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.524 Times cited 3 Open Access  
  Notes Approved CRYSTALLOGRAPHY 19/26 Q3 # PHYSICS, CONDENSED MATTER 53/67 Q4 #  
  Call Number UA @ lucian @ c:irua:111481 Serial 1537  
Permanent link to this record
 

 
Author Vandelannoote, R.; Blommaert, W.; Sadurski, A.; Van 'T Dack, L.; Gijbels, R.; Van Grieken, R.; Bosch, B.; Leleu, M.; Rochon, J.; Sarcia, C.; Sureau, J.F.; pdf  doi
openurl 
  Title Trace-elemental anomalies in surface water near a small lead-zinc mineralization at Menez-Albot (Brittany, France) Type A1 Journal article
  Year 1984 Publication Journal of geochemical exploration Abbreviated Journal J Geochem Explor  
  Volume 20 Issue 1 Pages 33-46  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Sensitive multi-element analysis techniques were applied to water samples collected in the vicinity of a small Zn-Pb-Cu sulfide mineralization in the region of Menez-Albot (Finistère, France). The variation of the trace-element content along a local stream shows the presence of the mineralization, mainly through a simultaneous positive anomaly in solution for a group of about 10 elements (e.g. Ni, Cu, Zn, As, Sb) which are connected with this type of mineralization. The anomaly decreases steeply due to the influx of swamp water rich in Fe, Mn and organic matter. The precipitation barrier is reflected in the stream sediment composition. Contamination from fertilizers was observed in some samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1984SF42900004 Publication Date 2003-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.747 Times cited 4 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:111449 Serial 3695  
Permanent link to this record
 

 
Author Vandelannoote, R.; Blommaert, W.; Van 't dack, L.; Gijbels, R.; van Grieken, R. doi  openurl
  Title Statistical grouping and controlling factors of dissolved trace elements in a surface water system Type A3 Journal article
  Year 1983 Publication Environmental technology letters Abbreviated Journal  
  Volume 4 Issue 8/9 Pages 363-376  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Sensitive multi‐element analytical techniques were applied to determine 24 dissolved trace components in 25 different water samples from a 10 km2 zone in Brittany, France. Correspondence factor and multiple regression analyses showed that the elements considered are influenced mainly by the presence of: Fe‐Mn oxide accumulations, a local poly‐metallic sulfide mineralization, and non‐mineralized host rocks, agricultural activity and abundant organic material in local swamps. Via these numerical techniques the location of the poly‐metallic ore body can be derived from the data set.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 2008-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-2060; ISBN Additional Links UA library record  
  Impact Factor Times cited 1 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:111443 Serial 3157  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: