toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hamon, A.-L.; Verbeeck, J.; Schryvers, D.; Benedikt, J.; van den Sanden, R.M.C.M. pdf  doi
openurl 
  Title ELNES study of carbon K-edge spectra of plasma deposited carbon films Type A1 Journal article
  Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 14 Issue Pages 2030-2035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron energy loss spectroscopy was used to investigate the bonding of plasma deposited carbon films. The experimental conditions include the use of a specific collection angle for which the shape of the spectra is free of the orientation dependency usually encountered in graphite due to its anisotropic structure. The first quantification process of the energy loss near-edge structure was performed by a standard fit of the collected spectrum, corrected for background and multiple scattering, with three Gaussian functions followed by a comparison with the graphite spectrum obtained under equivalent experimental conditions. In a second approach a fitting model directly incorporating the background subtraction and multiple scattering removal was applied. The final numerical results are interpreted in view of the deposition conditions of the films and the actual fitting procedure with the related choice of parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000222312500017 Publication Date 2004-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.626 Times cited 61 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48782UA @ admin @ c:irua:48782 Serial 1025  
Permanent link to this record
 

 
Author Vlasov, E.; Denisov, N.; Verbeeck, J. pdf  url
doi  openurl
  Title Low-cost electron detector for scanning electron microscope Type A1 Journal article
  Year 2023 Publication HardwareX Abbreviated Journal HardwareX  
  Volume 14 Issue Pages e00413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron microscopy is an indispensable tool for the characterization of (nano) materials. Electron microscopes are typically very expensive and their internal operation is often shielded from the user. This situation can provide fast and high quality results for researchers focusing on e.g. materials science if they have access to the relevant instruments. For researchers focusing on technique development, wishing to test novel setups, however, the high entry price can lead to risk aversion and deter researchers from innovating electron microscopy technology further. The closed attitude of commercial entities about how exactly the different parts of electron microscopes work, makes it even harder for newcomers in this field. Here we propose an affordable, easy-to-build electron detector for use in a scanning electron microscope (SEM). The aim of this project is to shed light on the functioning of such detectors as well as show that even a very modest design can lead to acceptable performance while providing high flexibility for experimentation and customization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001042486000001 Publication Date 2023-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0672 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO [Grant No. S000121N]. JV acknowledges funding from the HORIZON-INFRA-2022-TECH-01-01 project IMPRESS [Grant No. 101094299]. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:195886 Serial 7252  
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S. pdf  url
doi  openurl
  Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal Article
  Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume Issue Pages 1916-1921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001006191600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:197004 Serial 8795  
Permanent link to this record
 

 
Author Hugenschmidt, M.; Jannis, D.; Kadu, A.A.; Grünewald, L.; De Marchi, S.; Perez-Juste, J.; Verbeeck, J.; Van Aert, S.; Bals, S. pdf  doi
openurl 
  Title Low-dose 4D-STEM tomography for beam-sensitive nanocomposites Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal  
  Volume 6 Issue 1 Pages 165-173  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal-organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001141178500001 Publication Date 2023-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to S.B., Grant 770887 PICOMETRICS to S.V.A.). J.P.-J. and S.M. acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants No. PID2019-108954RB-I00) and EU Horizon 2020 research and innovation program under grant agreement no. 883390 (SERSing). J.V., S.B., S.V.A., and L.G. acknowledge funding from the Flemish government (iBOF-21-085 PERsist). Approved no  
  Call Number UA @ admin @ c:irua:202771 Serial 9053  
Permanent link to this record
 

 
Author Guzzinati, G.; Schattschneider, P.; Bliokh, K.Y.; Nori, F.; Verbeeck, J. url  doi
openurl 
  Title Observation of the Larmor and Gouy rotations with electron vortex beams Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 110 Issue 9 Pages 093601  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron vortex beams carrying intrinsic orbital angular momentum (OAM) are produced in electron microscopes where they are controlled and focused by using magnetic lenses. We observe various rotational phenomena arising from the interaction between the OAM and magnetic lenses. First, the Zeeman coupling, proportional to the OAM and magnetic field strength, produces an OAM-independent Larmor rotation of a mode superposition inside the lens. Second, when passing through the focal plane, the electron beam acquires an additional Gouy phase dependent on the absolute value of the OAM. This brings about the Gouy rotation of the superposition image proportional to the sign of the OAM. A combination of the Larmor and Gouy effects can result in the addition (or subtraction) of rotations, depending on the OAM sign. This behavior is unique to electron vortex beams and has no optical counterpart, as Larmor rotation occurs only for charged particles. Our experimental results are in agreement with recent theoretical predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000315380800005 Publication Date 2013-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 91 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:106181UA @ admin @ c:irua:106181 Serial 2422  
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Quantitative measurement of orbital angular momentum in electron microscopy Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 89 Issue 5 Pages 053818  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron vortex beams have been predicted to enable atomic scale magnetic information measurement, via transfer of orbital angular momentum. Research so far has focused on developing production techniques and applications of these beams. However, methods to measure the outgoing orbital angular momentum distribution are also a crucial requirement towards this goal. Here, we use a method to obtain the orbital angular momentum decomposition of an electron beam, using a multipinhole interferometer. We demonstrate both its ability to accurately measure orbital angular momentum distribution, and its experimental limitations when used in a transmission electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000335826300012 Publication Date 2014-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 23 Open Access  
  Notes 7th Framework Program (FP7); ERC Starting Grant No. 278510- VORTEX 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). 7th Framework Program (FP7), ERC Grant No. 246791- COUNTATOMS. SP – 053818-1; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2014 IF: 2.808  
  Call Number UA @ lucian @ c:irua:117093UA @ admin @ c:irua:117093 Serial 2758  
Permanent link to this record
 

 
Author Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Symmetry-constrained electron vortex propagation Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue 93 Pages 063840  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378197200006 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 7 Open Access  
  Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:134086 c:irua:134086 Serial 4090  
Permanent link to this record
 

 
Author Verbeeck, J.; Schattschneider, P.; Lazar, S.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Van Tendeloo, G. pdf  doi
openurl 
  Title Atomic scale electron vortices for nanoresearch Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue 20 Pages 203109-203109,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Å. This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000297786500058 Publication Date 2011-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 90 Open Access  
  Notes Hercules Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:93625UA @ admin @ c:irua:93625 Serial 184  
Permanent link to this record
 

 
Author Verbeeck, J.; Bals, S.; Lamoen, D.; Luysberg, M.; Huijben, M.; Rijnders, G.; Brinkman, A.; Hilgenkamp, H.; Blank, D.H.A.; Van Tendeloo, G. url  doi
openurl 
  Title Electronic reconstruction at n-type SrTiO3/LaAlO3 interfaces Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 8 Pages 085113,1-085113,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electron-energy-loss spectroscopy (EELS) is used to investigate single layers of LaAlO3 grown on SrTiO3 having an n-type interface as well as multilayers of LaAlO3 and SrTiO3 in which both n- and p-type interfaces occur. Only minor changes in Ti valence at the n-type interface are observed. This finding seems to contradict earlier experiments for other SrTiO3/LaAlO3 systems where large deviations in Ti valency were assumed to be responsible for the conductivity of these interfaces. Ab initio calculations have been carried out in order to interpret our EELS results. Using the concept of Bader charges, it is demonstrated that the so-called polar discontinuity is mainly resolved by lattice distortions and to a far lesser extent by changes in valency for both single layer and multilayer geometries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000275053300040 Publication Date 2010-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81768UA @ admin @ c:irua:81768 Serial 1005  
Permanent link to this record
 

 
Author Zhang, H.; Pryds, N.; Park, D.-S.; Gauquelin, N.; Santucci, S.; Christensen, D., V.; Jannis, D.; Chezganov, D.; Rata, D.A.; Insinga, A.R.; Castelli, I.E.; Verbeeck, J.; Lubomirsky, I.; Muralt, P.; Damjanovic, D.; Esposito, V. pdf  url
doi  openurl
  Title Atomically engineered interfaces yield extraordinary electrostriction Type A1 Journal article
  Year 2022 Publication Nature Abbreviated Journal  
  Volume 609 Issue 7928 Pages 695-700  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10(-19) m(2) V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties(1,2). Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized delta-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 x 10(-14) m(2) V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000859073900001 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access OpenAccess  
  Notes This research was supported by the BioWings project, funded by the European Union’s Horizon 2020, Future and Emerging Technologies programme (grant no. 801267), and by the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 2 (grant no. 48293). N.P. and D.V.C. acknowledge funding from Villum Fonden for the NEED project (no. 00027993) and from the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 3 (grant no. 00069 B). V.E. acknowledges funding from Villum Fonden for the IRIDE project (no. 00022862). N.G. and J.V. acknowledge funding from the GOA project ('Solarpaint') of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from the FWO Project (no. G093417N) from the Flemish Fund for Scientific Research. D.C. acknowledges TOP/BOF funding from the University of Antwerp. This project has received funding from the European Union’s Horizon 2020 Research Infrastructure—Integrating Activities for Advanced Communities—under grant agreement no. 823717-ESTEEM3. We thank T. D. Pomar and A. J. Bergne for English proofreading.; esteem3reported; esteem3TA Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190576 Serial 7129  
Permanent link to this record
 

 
Author Schattschneider, P.; Schachinger, T.; Verbeeck, J. pdf  doi
openurl 
  Title Ein Whirlpool aus Elektronen: Transmissions-Elektronenmikroskopie mit Elektronenwirbeln Type A1 Journal article
  Year 2018 Publication Physik in unserer Zeit Abbreviated Journal Phys. Unserer Zeit  
  Volume 49 Issue 1 Pages 22-28  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Elektronen bewegen sich im feldfreien Raum immer gleichförmig geradlinig, so steht es in den Lehrbüchern. Falsch, sagen wir. Elektronen lassen sich zu Tornados formen, die theoretisch Nanopartikel zerreißen können. In der Elektronenmikroskopie eingesetzt, versprechen sie neue Erkenntnisse in der Festkörperphysik.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9252 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @c:irua:148159 Serial 4806  
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; de Backer, S.; Scheunders, P.; Schryvers, D. pdf  doi
openurl 
  Title Acquisition of the EELS data cube by tomographic reconstruction Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 106 Issue 4/5 Pages 269-276  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (up) Energy filtered TEM, EFTEM, provides three-dimensional data, two spatial and one spectral dimension. We propose to acquire these data by measuring a series of images with a defocused energy filter. It will be shown that each image is a projection of the data on the detector and that reconstruction of the data out of a sufficient number of such projections using a tomographic reconstruction algorithm is possible. This technique uses only a fraction of the electron dose an energy filtered series (EFS) needs for the same spectral and spatial resolution and the same mean signal-to-noise ratio. (c) 2005 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000236042300003 Publication Date 2005-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:56910UA @ admin @ c:irua:56910 Serial 55  
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Jannis, D.; Cunha, D.M.; Halisdemir, U.; Piamonteze, C.; Lee, J.H.; Belhadi, J.; Eltes, F.; Abel, S.; Jovanovic, Z.; Spreitzer, M.; Fompeyrine, J.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Strain-engineered metal-to-insulator transition and orbital polarization in nickelate superlattices integrated on silicon Type A1 Journal article
  Year 2020 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 2004995  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3/LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni 3dx2-y2 orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588146500001 Publication Date 2020-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 18 Open Access OpenAccess  
  Notes ; This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-9237 and No. P2-0091). This work received support from the ERC CoG MINT (#615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in the Netherlands. This project has received funding as a transnational access project from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. N.G. and J.V. acknowledge GOA project “Solarpaint” of the University of Antwerp. ; esteem3TA; esteem3reported Approved Most recent IF: 29.4; 2020 IF: 19.791  
  Call Number UA @ admin @ c:irua:173516 Serial 6617  
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M. pdf  url
doi  openurl
  Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 52 Pages 31261-31270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566579400025 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 1 Open Access OpenAccess  
  Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number EMAT @ emat @c:irua:172059 Serial 6416  
Permanent link to this record
 

 
Author Burriel, M.; Casa-Cabanas, M.; Zapata, J.; Tan, H.; Verbeeck, J.; Solis, C.; Roqueta, J.; Skinner, S.J.; Kilner, J.A.; Van Tendeloo, G.; Santiso, J. pdf  doi
openurl 
  Title Influence of the microstructure on the high-temperature transport properties of GdBaCo2O5.5+\delta epitaxial films Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 19 Pages 5512-5520  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Epitaxial thin films of GdBaCo2O5.5+δ (GBCO) grown by pulsed laser deposition have been studied as a function of deposition conditions. The variation in film structure, domain orientation, and microstructure upon deviations in the cation composition have been correlated with the charge transport properties of the films. The epitaxial GBCO films mainly consist of single- and double-perovskite regions that are oriented in different directions depending on the deposition temperature. Additionally, cobalt depletion induces the formation of a high density of stacking defects in the films, consisting of supplementary GdO planes along the c-axis of the material. The presence of such defects progressively reduces the electrical conductivity. The films closer to the stoichiometric composition have shown p-type electronic conductivity at high pO2 with values as high as 800 S/cm at 330 °C in 1 atm O2, and with a pO2 power dependence with an exponent as low as 1/25, consistent with the behavior reported for bulk GBCO. These values place GBCO thin films as a very promising material to be applied as cathodes in intermediate temperature solid oxide fuel cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000282471000013 Publication Date 2010-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 17 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:85412UA @ admin @ c:irua:85412 Serial 1648  
Permanent link to this record
 

 
Author Verbeeck, J.; Lebedev, O.I.; Van Tendeloo, G.; Mercey, B. url  doi
openurl 
  Title SrTiO3(100)/(LaMnO3)m(SrMnO3)n layered heterostructures: a combined EELS and TEM study Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 66 Issue 18 Pages 184426  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Epitaxially grown heterostructures consisting of alternating layers of LaMnO(3) (LMO, 9 or 15 unit cells) and SrMnO(3) (SMO, 4 or 6 unit cells) on a SrTiO(3)(100) (STO(100)) substrate have been studied by a combination of high resolution transmission electron microscopy (HRTEM), electron diffraction, quantitative electron energy loss spectroscopy (EELS) with model fitting, energy filtered TEM (EFTEM) and imaging spectroscopy on an atomic scale. The combination of these techniques is necessary for the structural, chemical, and electronic characterization of these heterostructures. A model is proposed containing chemically and structurally sharp interfaces. The SrMnO(3) layers are stabilized in a Pm3m structure between two LMO layers. Tensile stress causes oxygen deficiency in the SMO layers increasing the number of 3d electrons on the Mn sites to resemble the Mn(3+) sites in LMO. The energy loss near edge structure (ELNES) of O and Mn is compared for both LMO and SMO layers and shows that the Mn-O bonds have a partially covalent character. The absence of a strong valency effect in the Mn ELNES is due to the oxygen vacancies in SMO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000179633100062 Publication Date 2002-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:54741 Serial 3563  
Permanent link to this record
 

 
Author Afanasov, I.M.; Shornikova, O.N.; Kirilenko, D.A.; Vlasov, I.I.; Zhang, L.; Verbeeck, J.; Avdeev, V.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Graphite structural transformations during intercalation by HNO3 and exfoliation Type L1 Letter to the editor
  Year 2010 Publication Carbon Abbreviated Journal Carbon  
  Volume 48 Issue 6 Pages 1862-1865  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract (up) Expandable graphite of two types was synthesized by (1) hydrolysis of graphite nitrate of II stage and (2) anodic polarization of graphite in 60% HNO3. Exfoliated graphite samples were produced by thermal shock of expandable graphite samples in air at 900 °C. A comparative study of microstructural distinctions of both expandable and exfoliated graphite samples was carried out using X-ray diffraction, Raman spectroscopy, electron energy loss spectroscopy and high resolution transmission electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000276132800021 Publication Date 2010-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 43 Open Access  
  Notes Approved Most recent IF: 6.337; 2010 IF: 4.896  
  Call Number UA @ lucian @ c:irua:82315UA @ admin @ c:irua:82315 Serial 1379  
Permanent link to this record
 

 
Author Solmaz, A.; Huijben, M.; Koster, G.; Egoavil, R.; Gauquelin, N.; Van Tendeloo, G.; Verbeeck, J.; Noheda, B.; Rijnders, G. pdf  doi
openurl 
  Title Domain Selectivity in BiFeO3Thin Films by Modified Substrate Termination Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 26 Pages 2882-2889  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Ferroelectric domain formation is an essential feature in ferroelectric thin films. These domains and domain walls can be manipulated depending on the growth conditions. In rhombohedral BiFeO3 thin films, the ordering of the domains and the presence of specific types of domain walls play a crucial role in attaining unique ferroelectric and magnetic properties. In this study, controlled ordering of domains in BiFeO3 film is presented, as well as a controlled selectivity between two types of domain walls is presented, i.e., 71° and 109°, by modifying the substrate termination. The experiments on two different substrates, namely SrTiO3 and TbScO3, strongly indicate that the domain selectivity is determined by the growth kinetics of the initial BiFeO3 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377587800011 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 34 Open Access  
  Notes The authors are grateful to Saeedeh Farokhipoor and Tamalika Banerjee for very useful discussions. This work was supported by the Netherlands Organization for Scientific Research NWO-FOM (under FOM-Nano project 10UNST04–2). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. GOA project “Solarpaint” of the University of Antwerp. The electron microscopy part of the work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791– COUNTATOMS. Funding from the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010–246102 FOX is acknowledged. The Fund for Scientific Research Flanders is acknowledged for FWO Project No. G.0044.13N. Approved Most recent IF: 12.124  
  Call Number c:irua:132641UA @ admin @ c:irua:132641 Serial 4053  
Permanent link to this record
 

 
Author Sankaran, K.J.; Hoang, D.Q.; Kunuku, S.; Korneychuk, S.; Turner, S.; Pobedinskas, P.; Drijkoningen, S.; Van Bael, M.K.; D' Haen, J.; Verbeeck, J.; Leou, K.-C.; Lin, I.-N.; Haenen, K. url  doi
openurl 
  Title Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 29444  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/mum, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/mum with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.  
  Address IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000379391000001 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 15 Open Access  
  Notes The authors like to thank the financial support of the Research Foundation Flanders (FWO) via Research Project G.0456.12, G0044.13N and the Methusalem “NANO” network. Kamatchi Jothiramalingam Sankaran, Stuart Turner, and Paulius Pobedinskas are Postdoctoral Fellows of the Research Foundations Flanders (FWO). Approved Most recent IF: 4.259  
  Call Number c:irua:134643 c:irua:134643UA @ admin @ c:irua:134643 Serial 4119  
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; Müller-Caspary, K.; Guzzinati, G.; Luong, M.A.; Den Hertog, M. pdf  url
doi  openurl
  Title Demonstration of a 2 × 2 programmable phase plate for electrons Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 190 Issue Pages 58-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) First results on the experimental realisation of a 2 × 2 programmable phase plate for electrons are presented. The design consists of an array of electrostatic elements that influence the phase of electron waves passing through 4 separately controllable aperture holes. This functionality is demonstrated in a conventional transmission electron microscope operating at 300 kV and results are in very close agreement with theoretical predictions. The dynamic creation of a set of electron probes with different phase symmetry is demonstrated, thereby bringing adaptive optics in TEM one step closer to reality. The limitations of the current design and how to overcome these in the future are discussed. Simulations show how further evolved versions of the current proof of concept might open new and exciting application prospects for beam shaping and aberration correction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432868800007 Publication Date 2018-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 73 Open Access Not_Open_Access: Available from 19.04.2020  
  Notes J.V. and A.B. acknowledge funding from the Fund for Scientific Research Flanders FWO project G093417N and the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX and ERC proof of concept project DLV-789598 ADAPTEM. The Qu-Ant-EM microscope used in this work was partly funded by the Hercules fund from the Flemish Government. MdH acknowledges financial support from the ANRCOSMOS (ANR-12-JS10-0002). MdH and ML acknowledge funding from the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:150459UA @ admin @ c:irua:150459 Serial 4920  
Permanent link to this record
 

 
Author Béché, A.; Winkler, R.; Plank, H.; Hofer, F.; Verbeeck, J. pdf  url
doi  openurl
  Title Focused electron beam induced deposition as a tool to create electron vortices Type A1 Journal article
  Year 2015 Publication Micron Abbreviated Journal Micron  
  Volume 80 Issue 80 Pages 34-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Focused electron beam induced deposition (FEBID) is a microscopic technique that allows geometrically controlled material deposition with very high spatial resolution. This technique was used to create a spiral aperture capable of generating electron vortex beams in a transmission electron microscope (TEM). The vortex was then fully characterized using different TEM techniques, estimating the average orbital angular momentum to be approximately 0.8variant Planck's over 2pi per electron with almost 60% of the beam ending up in the l=1 state.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366770100006 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 21 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V., R.W., H.P. and F.H. acknowledge financial support from the European Union under the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). R.W and H.P also acknowledge financial support by the COST action CELINA (Nr. CM1301) and the EUROSTARS project TRIPLE-S (Nr. E!8213). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government.; esteem2jra3 ECASJO; Approved Most recent IF: 1.98; 2015 IF: 1.988  
  Call Number c:irua:129203 c:irua:129203UA @ admin @ c:irua:129203 Serial 3946  
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W. pdf  url
doi  openurl
  Title Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
  Year 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 31 Issue 44 Pages 445702  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561424400001 Publication Date 2020-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 13 Open Access OpenAccess  
  Notes ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44  
  Call Number UA @ admin @ c:irua:171119 Serial 6649  
Permanent link to this record
 

 
Author Jannis, D.; Hofer, C.; Gao, C.; Xie, X.; Béché, A.; Pennycook, Tj.; Verbeeck, J. pdf  url
doi  openurl
  Title Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 233 Issue Pages 113423  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Four dimensional scanning transmission electron microscopy (4D STEM) records the scattering of electrons in a material in great detail. The benefits offered by 4D STEM are substantial, with the wealth of data it provides facilitating for instance high precision, high electron dose efficiency phase imaging via centre of mass or ptychography based analysis. However the requirement for a 2D image of the scattering to be recorded at each probe position has long placed a severe bottleneck on the speed at which 4D STEM can be performed. Recent advances in camera technology have greatly reduced this bottleneck, with the detection efficiency of direct electron detectors being especially well suited to the technique. However even the fastest frame driven pixelated detectors still significantly limit the scan speed which can be used in 4D STEM, making the resulting data susceptible to drift and hampering its use for low dose beam sensitive applications. Here we report the development of the use of an event driven Timepix3 direct electron camera that allows us to overcome this bottleneck and achieve 4D STEM dwell times down to 100 ns; orders of magnitude faster than what has been possible with frame based readout. We characterize the detector for different acceleration voltages and show that the method is especially well suited for low dose imaging and promises rich datasets without compromising dwell time when compared to conventional STEM imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000734396800003 Publication Date 2021-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 31 Open Access OpenAccess  
  Notes This project has received funding from the Euro- pean Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3. J.V. and A.B. acknowledge funding from FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’). J.V. and D.J. ac- knowledge funding from FWO project G042920N ‘Co- incident event detection for advanced spectroscopy in transmission electron microscopy’. We acknowledge funding under the European Union’s Horizon 2020 re- search and innovation programme (J.V. and D.J un- der grant agreement No 101017720, FET-Proactive EBEAM, and C.H., C.G., X.X. and T.J.P. from the Eu- ropean Research Council (ERC) Grant agreement No. 802123-HDEM).; esteem3JRA; esteem3reported Approved Most recent IF: 2.2  
  Call Number EMAT @ emat @c:irua:183948 Serial 6828  
Permanent link to this record
 

 
Author Juchtmans, R.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 94 Pages 033858  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384374500010 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 13 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314  
Permanent link to this record
 

 
Author Tan, H.; Tian, H.; Verbeeck, J.; Janssens, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species Type A1 Journal article
  Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 52 Issue 43 Pages 11360-11363  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of coreshell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330735800026 Publication Date 2013-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 29 Open Access  
  Notes Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 11.994; 2013 IF: 11.336  
  Call Number UA @ lucian @ c:irua:110947UA @ admin @ c:irua:110947 Serial 2266  
Permanent link to this record
 

 
Author Park, D.-s.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; Verbeeck, J.; Gorfman, S.; Pryds, N.; Muralt, P.; Damjanovic, D. url  doi
openurl 
  Title Induced giant piezoelectricity in centrosymmetric oxides Type A1 Journal article
  Year 2022 Publication Science Abbreviated Journal Science  
  Volume 375 Issue 6581 Pages 653-657  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Giant piezoelectricity can be induced in centrosymmetric oxides by controlling the long-range motion of oxygen vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753975300036 Publication Date 2022-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 51 Open Access OpenAccess  
  Notes D.-S.P., V.E., N.P., P.M., and D.D. acknowledge the European Commission for project Biowings H2020 Fetopen 2018-2022 (grant no. 80127). N.P. acknowledges funding from the Villum Fonden for the NEED project (grant no. 00027993) and the Danish Council for Independent Research Technology and Production Sciences for the DFF-Research Project 3 (grant no. 00069B). S.G. acknowledges funding from the Israel Science Foundation (research grant 1561/18 and equipment grant 2247/18). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 823717 – ESTEEM3. D.C. acknowledges TOP/BOF funding of the University of Antwerp. M.H. and P.M. acknowledge funding from the Swiss National Science Foundation (grant nos. 200020-162664/1 and 200021-143424/1); esteem3reported; esteem3TA Approved Most recent IF: 56.9  
  Call Number EMAT @ emat @c:irua:185876 Serial 6909  
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C. url  doi
openurl 
  Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
  Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 13 Issue 6 Pages 1035  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000960297000001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553  
  Call Number EMAT @ emat @c:irua:196115 Serial 7378  
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 221 Issue Pages 113191  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612539600003 Publication Date 2020-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 15 Open Access OpenAccess  
  Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:174551 Serial 6660  
Permanent link to this record
 

 
Author Pullini, D.; Sgroi, M.; Mahmoud, A.; Gauquelin, N.; Maschio, L.; Lorenzo-Ferrari, A.M.; Groenen, R.; Damen, C.; Rijnders, G.; van den Bos, K.H.W.; Van Aert, S.; Verbeeck, J. pdf  url
doi  openurl
  Title One step toward a new generation of C-MOS compatible oxide p-n junctions: Structure of the LSMO/ZnO interface elucidated by an experimental and theoretical synergic work Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 20974-20980  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Heterostructures formed by La0.7Sr0.3MnO3/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p–n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404090000079 Publication Date 2017-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 4 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Commission – DG research and innovation to the collaborative research project named Interfacing oxides (IFOX, Contract No. NMP3-LA-2010-246102). N.G. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. S.V.A. and K.H.W.B. acknowledge financial support from the Research Foundation Flanders through project fundings (G.0374.13N , G.0368.15N, and G.0369.15N) and a Ph.D. research grant to K.H.W.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. CINECA is acknowledged for computational facilities (Iscra project HP10CMO1UP). Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:144431UA @ admin @ c:irua:144431 Serial 4621  
Permanent link to this record
 

 
Author Keunecke, M.; Lyzwa, F.; Schwarzbach, D.; Roddatis, V.; Gauquelin, N.; Müller-Caspary, K.; Verbeeck, J.; Callori, S.J.; Klose, F.; Jungbauer, M.; Moshnyaga, V. url  doi
openurl 
  Title High-TCInterfacial Ferromagnetism in SrMnO3/LaMnO3Superlattices Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv. Funct. Mater.  
  Volume Issue Pages 1808270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, TC ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535358900008 Publication Date 2019-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.621 Times cited 26 Open Access  
  Notes The authors thank EU FP7 Framework (Project IFOX) and DFG (SFB 1073, TP B04, A02, Z02) for the financial support. J.V., K.M.C and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. The PNR experiment was funded by the Australian Nuclear Science and Technology Organization (proposal number P3985). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:162108 Serial 5294  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: