toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Electrostrictive behavior of confined water subjected to GPa pressure Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 14 Pages 144111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Water inside a nanocapillary exhibits unconventional structural and dynamical behavior due to its ordered structure. The confining walls, density, and lateral pressures control profoundly the microscopic structure of trapped water. Here we study the electrostriction of confined water subjected to pressures of the order of GPa for two different setups: (i) a graphene nanochannel containing a constant number of water molecules independent of the height of the channel, (ii) an open nanochannel where water molecules can be exchanged with those in a reservoir. For the former case, a square-rhombic structure of confined water is formed when the height of the channel is d = 6.5 angstrom having a density of rho = 1.42 g cm(-3). By increasing the height of the channel, a transition from a flat to a buckled state occurs, whereas the density rapidly decreases and reaches the bulk density for d congruent to 8.5 angstrom. When a perpendicular electric field is applied, the water structure and the lateral pressure change. For strong electric fields (similar to 1 V/angstrom), the square-rhombic structure is destroyed. For an open setup, a solid phase of confined water consisting of an imperfect square-rhombic structure is formed. By applying a perpendicular field, the density and phase of confined water change. However, the density and pressure inside the channel decrease as compared to the first setup. Our study is closely related to recent experiments on confined water, and it reveals the sensitivity of the microscopic structure of confined water to the size of the channel, the external electric field, and the experimental setup.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430809300002 Publication Date 2018-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Fund for Scientific Research-Flanders (FWO-Vl) and the Methusalem programe. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:151574UA @ admin @ c:irua:151574 Serial 5023  
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M. pdf  doi
openurl 
  Title Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 17 Pages 7363-7370  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569375400061 Publication Date 2020-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number UA @ admin @ c:irua:171996 Serial 6546  
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M.; Oboznov, V.; Dubonos, S.V.; Grigorieva, I.V. url  doi
openurl 
  Title Vortex states in mesoscopic superconducting squares: formation of vortex shells Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 78 Issue 10 Pages 104517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We analyze theoretically and experimentally vortex configurations in mesoscopic superconducting squares. Our theoretical approach is based on the analytical solution of the London equation using Green's-function method. The potential-energy landscape found for each vortex configuration is then used in Langevin-type molecular-dynamics simulations to obtain stable vortex configurations. Metastable states and transitions between them and the ground state are analyzed. We present our results of the first direct visualization of vortex patterns in micrometer-sized Nb squares, using the Bitter decoration technique. We show that the filling rules for vortices in squares with increasing applied magnetic field can be formulated, although in a different manner than in disks, in terms of formation of vortex “shells”.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000259690400093 Publication Date 2008-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:102608 Serial 3890  
Permanent link to this record
 

 
Author Zhao, H.J.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Analysis of pattern formation in systems with competing range interactions Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue Pages 063032  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We analyzed pattern formation and identified various morphologies in a system of particles interacting through a non-monotonic potential with a competing range interaction characterized by a repulsive core (r < r(c)) and an attractive tail (r > r(c)), using molecular-dynamics simulations. Depending on parameters, the interaction potential models the inter-particle interaction in various physical systems ranging from atoms, molecules and colloids to vortices in low kappa type-II superconductors and in recently discovered 'type-1.5' superconductors. We constructed a 'morphology diagram' in the plane 'critical radius r(c)-density n' and proposed a new approach to characterizing the different types of patterns. Namely, we elaborated a set of quantitative criteria in order to identify the different pattern types, using the radial distribution function (RDF), the local density function and the occupation factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000306946600003 Publication Date 2012-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 45 Open Access  
  Notes ; We acknowledge useful discussions with Ernst Helmut Brandt, Charles Reichhardt and Cynthia Olson Reichhardt. This work was supported by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:101140 Serial 102  
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Water on graphene: hydrophobicity and dipole moment using density functional theory Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 23 Pages 235440,1-235440,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We apply density-functional theory to study the adsorption of water clusters on the surface of a graphene sheet and find i) graphene is highly hydrophobic and ii) adsorbed water has very little effect on the electronic structure of graphene. A single water cluster on graphene has a very small average dipole moment which is in contrast with an ice layer that exhibits a strong dipole moment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000267699500147 Publication Date 2009-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 292 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77693 Serial 3904  
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M. doi  openurl
  Title Few-particle states in coupled electron-hole quantum dots Type P1 Proceeding
  Year 2003 Publication Functions II Abbreviated Journal  
  Volume Issue Pages 330-337  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract (up) We apply the exact diagonalization technique to calculate the ground and excited states of a bipolar artificial molecule composed of two vertically coupled quantum dots containing different types of carriers electrons and holes in equilibrium. In this system, the magnetic field tunes the relative role of intra-dot Coulomb interaction while the inter-dot separation sets the strength of inter-dot correlations. We find an intricate pattern of the switching of the ground-state angular momentum with increasing magnetic field and a rearrangement of approximate single-particle levels as a function of the inter-dot coupling strength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000229502400029 Publication Date 2007-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103838 Serial 1186  
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M. url  doi
openurl 
  Title Dynamic response of artificial bipolar molecules Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 66 Issue 7 Pages 075311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We calculate the equilibrium properties and the dynamic response of two vertically coupled circular quantum dots populated by particles of different electrical charge sign, i.e., electrons and holes. The equilibrium density profiles are obtained and used to compute the frequencies and oscillator strengths of magnetoplasma excitations. We find a strong coupling between the modes derived from the center-of-mass modes of the individual dots which leads to an anticrossing with a pronounced oscillator strength transfer from the “acoustic” to the “optical” branch. Also, due to the breaking of the generalized Kohn theorem a number of other than center-of-mass modes are excited whose oscillator strengths, however, are rather weak.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000177969800103 Publication Date 2002-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:99397 Serial 765  
Permanent link to this record
 

 
Author Chaves, A.; Low, T.; Avouris, P.; Çakir, D.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic exciton Stark shift in black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 155311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We calculate the excitonic spectrum of few-layer black phosphorus by direct diagonalization of the effective mass Hamiltonian in the presence of an applied in-plane electric field. The strong attractive interaction between electrons and holes in this system allows one to investigate the Stark effect up to very high ionizing fields, including also the excited states. Our results show that the band anisotropy in black phosphorus becomes evident in the direction-dependent field-induced polarizability of the exciton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000353459200005 Publication Date 2015-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 88 Open Access  
  Notes ; Discussions with J. M. Pereira Jr. and J. S. de Souza are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq) through the PQ and Science Without Borders programs, the Flemish Science Foundation (FWO-Vl), the Methusalem programme of the Flemish government, and the Bilateral program (CNPq-FWO) between Flanders and Brazil. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132506 Serial 4141  
Permanent link to this record
 

 
Author Nogaret, A.; Peeters, F.M. url  doi
openurl 
  Title Electrically induced spin resonance fluorescence: 1: theory Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 7 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We calculate the fluorescence of electron spins confined to a plane and driven into resonance by a magnetic field gradient and a constant magnetic field applied at right angles to each other. We solve the equation of motion of two-dimensional electrons in the magnetic field gradient to derive the dispersion curve of spin oscillators, the amplitude of electron oscillations, the effective magnetic field sensed by the electron spin, and the rate at which electrons are injected from an electrode into spin oscillators. We then switch on the interaction between the spin magnetic dipole and the electromagnetic field to find the fluorescence power radiated by the individual spin oscillators. The rate of radiative decay is first derived, followed by the probability of sequential photon emission whereby a series of spontaneous decays occurs at random times separated by intervals during which the spin performs Rabi oscillations. The quantum correlations between random radiative decays manifest as bursts of emission at regular intervals along the wire. We integrate all multiphoton processes to obtain an exact analytical expression for the radiated electromagnetic power. The present theory obtains all parameters of the problem including magnetodipole coupling, the particle dwell time in the magnetic field gradient, and the spin polarization of the incoming current. The output power contains a fine structure arising from the anharmonicity of electron oscillations and from nonlinear optical effects which both give satellite emission peaks at odd multiples of the fundamental frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249155300091 Publication Date 2007-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:66117 Serial 897  
Permanent link to this record
 

 
Author de Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Topological confinement in trilayer graphene Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 3 Pages 035420-35425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We calculate the spectrum of states that are localized at the interface between two regions of opposite bias in trilayer graphene (TLG). These potential profiles, also known as potential kinks, have been predicted to support two different branches of localized states for the case of bilayer graphene, and show similarities to the surface states of topological insulators. On the other hand, we found that ABC stacked TLG exhibits three different unidimensional branches of states in each valley that are confined to the kink interface. They have the property E(k(y)) = -E(-k(y)) when belonging to the same valley and E-K(k(y)) = -E-K' (-k(y)). A kink-antikink potential profile opens a gap in the spectrum of these one-dimensional states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332220800005 Publication Date 2014-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Brazilian Council for Research (CNPq-PRONEX), the Flemish Science Foundation (FWO-Vl), and the Bilateral project between CNPq and FWO-Vl and the Brazilian program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115830 Serial 3676  
Permanent link to this record
 

 
Author Petrovic, M.D.; Milovanović, S.P.; Peeters, F.M. pdf  doi
openurl 
  Title Scanning gate microscopy of magnetic focusing in graphene devices : quantum versus classical simulation Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 28 Pages 185202  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We compare classical versus quantum electron transport in recently investigated magnetic focusing devices (Bhandari et al 2016 Nano Lett. 16 1690) exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Buttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000399273800001 Publication Date 2017-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 7 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:143639 Serial 4607  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H. pdf  doi
openurl 
  Title Effect of edge groups on the electronic transport properties of tetrapodal diazatriptycene molecule Type A1 Journal article
  Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 141 Issue Pages 115212-115216  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We conduct ballistic transport calculations to study the electronic transport properties of diazatriptycene molecule which can be self-assembled on metallic surfaces with uniform coverage and upright orientation of the functional head group. Due to its structural asymmetry, the molecule shows a clear current rectification, where the level of the rectification depends on the nature of the head group. For example, current rectification can be increased by more than a factor of 2 by anchoring the molecules to the electrode by CN functional group or introducing insulating CH2 group between the thiol end group and the adjacent phenyl ring. Our findings show the possibility of creating self-assembled monolayer of DAT molecules with controlled electronic transport properties through functionalization of the head group.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000806548600006 Publication Date 2022-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:189041 Serial 7147  
Permanent link to this record
 

 
Author Carvalho, J.C.N.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Yukawa particles confined in a channel and subject to a periodic potential : ground state and normal modes Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 9 Pages 094109-094109,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive Yukawa potential exp(-r/λ)/r, and confined in a parabolic channel that limits the motion of the particles in the y direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first- or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic potential, and a tunable gap in the phonon spectrum is found as a function of V0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288119700001 Publication Date 2011-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88779 Serial 3928  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. pdf  doi
openurl 
  Title Kronig-Penney model of scalar and vector potentials in graphene Type A1 Journal article
  Year 2010 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 22 Issue 46 Pages 465302,1-465302,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We consider a one-dimensional (1D) superlattice (SL) on graphene consisting of very high and very thin (δ-function) magnetic and potential barriers with zero average potential and zero magnetic field. We calculate the energy spectrum analytically, study it in different limiting cases, and determine the condition under which an electron beam incident on an SL is highly collimated along its direction. In the absence of the magnetic SL the collimation is very sensitive to the value of W/Ws and is optimal for W/Ws = 1, where W is the distance between the positive and negative barriers and L = W + Ws is the size of the unit cell. In the presence of only the magnetic SL the collimation decreases and the symmetry of the spectrum around ky is broken for W/Ws\neq 1 . In addition, a gap opens which depends on the strength of the magnetic field. We also investigate the effect of spatially separated potential and magnetic δ-function barriers and predict a better collimation in specific cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000283838800004 Publication Date 2010-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 41 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 2.649; 2010 IF: 2.332  
  Call Number UA @ lucian @ c:irua:85807 Serial 1767  
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Peeters, F.M.; Foeldi, P. url  doi
openurl 
  Title Oscillating spin-orbit interaction in two-dimensional superlattices : sharp transmission resonances and time-dependent spin-polarized currents Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 235311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable, sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown to appear in themini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space-and time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355956500003 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was partially supported by the European Union and the European Social Fund through Projects No. TAMOP-4.2.2.C-11/1/KONV-2012-0010 and No. TAMOP-4.2.2.A-11/1/KONV-2012-0060, and by the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and No. 116688. The ELI-ALPS Project (GOP-1.1.1-12/B-2012-0001) is supported by the European Union and cofinanced by the European Regional Development Fund. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126432 Serial 2534  
Permanent link to this record
 

 
Author Tomecka, D.M.; Kamieniarz, G.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Ground state configurations and melting of two-dimensional non-uniformly charged classical clusters Type A1 Journal article
  Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 15 Pages 155301,1-155301,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We consider classical two-dimensional (2D) Coulomb clusters consisting of two species containing five particles with charge q1 and five with charge q2, respectively. Using Monte Carlo and molecular dynamics (MD) simulations, we investigated the ground state configurations as well as radial and angular displacements of particles as a function of temperature and their dependence on the ratio q = q2/q1. We found new configurations and a new multi-step melting behavior for q sufficiently different from the uniform charge limit q = 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000264708600007 Publication Date 2009-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:76412 Serial 1384  
Permanent link to this record
 

 
Author Silhanek, A.V.; Kramer, R.G.B.; van de Vondel, J.; Moshchalkov, V.V.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.; Luccas, R.F.; Puig, T. doi  openurl
  Title Freezing vortex rivers Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue 19 Pages 726-729  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We demonstrate experimentally and theoretically that the dissipative state at high current densities of superconducting samples with a periodic array of holes consist of flux rivers resulting from a short range attractive interaction between vortices. This dynamically induced vortexvortex attraction results from the migration of quasiparticles out of the vortex core. We have directly visualized the formation of vortex chains by scanning Hall microscopy after freezing the dynamic state by a field cooling procedure at constant bias current. Similar experiments carried out in a sample without holes show no hint of flux river formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000282454400004 Publication Date 2010-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:85032 Serial 1278  
Permanent link to this record
 

 
Author Silhanek, A.V.; Milošević, M.V.; Kramer, R.B.G.; Berdiyorov, G.R.; Vondel van de, J.; Luccas, R.F.; Puig, T.; Peeters, F.M.; Moshchalkov, V.V. url  doi
openurl 
  Title Formation of stripelike flux patterns obtained by freezing kinematic vortices in a superconducting Pb film Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 1 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We demonstrate experimentally and theoretically that the dissipative state of superconducting samples with a periodic array of holes at high current densities consists of flux rivers resulting from a short-range attractive interaction between vortices. This dynamically induced vortex-vortex attraction results from the migration of quasiparticles out of the vortex core (kinematic vortices). We have directly visualized the formation of vortex chains by scanning Hall probe microscopy after freezing the dynamic state by a field cooling procedure at a constant bias current. Similar experiments carried out in a sample without holes show no hint of flux river formation. We shed light on this nonequilibrium phenomena modeled by time-dependent Ginzburg-Landau simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000273881900033 Publication Date 2010-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 60 Open Access  
  Notes ; This work was supported by Methusalem funding by the Flemish government, the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, and the ESF NES network. A. V. S., G. R. B., and J. V. d. V. acknowledge support from FWO-VI R. F. L. acknowledges support from I3P CSIC program and MAT2008-01022. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:81009 Serial 1265  
Permanent link to this record
 

 
Author Milošević, M.V.; Gillijns, W.; Silhanek, A.V.; Libál, A.; Peeters, F.M.; Moshchalkov, V.V. doi  openurl
  Title Guided nucleation of superconductivity on a graded magnetic substrate Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 3 Pages 032503,1-032503,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We demonstrate the controlled spatial nucleation of superconductivity in a thin film deposited on periodic arrays of ferromagnetic dots with gradually increasing diameter. The perpendicular magnetization of the dots induces vortex-antivortex molecules in the sample, with the number of (anti)vortices increasing with magnet size. The resulting gradient of antivortex density between the dots predetermines local nucleation of superconductivity in the sample as a function of the applied external field and temperature. In addition, the compensation between the applied magnetic field and the antivortices results in an unprecedented enhancement of the critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000273890500034 Publication Date 2010-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-NES program. W. G., A. V. S., and A. L. acknowledge individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:81504 Serial 1400  
Permanent link to this record
 

 
Author Wu, Z.; Zhai, F.; Peeters, F.M.; Xu, H.Q.; Chang, K. url  doi
openurl 
  Title Valley-dependent brewster angles and Goos-Hänchen effect in strained graphene Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 106 Issue 17 Pages 176802,1-176802,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We demonstrate theoretically how local strains in graphene can be tailored to generate a valley-polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K′) show different Brewster-like angles and Goos-Hänchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K′ valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000290100300016 Publication Date 2011-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 235 Open Access  
  Notes ; This work was supported by the NSF of China and the MOST, the Swedish International Development Cooperation Agency (SIDA), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:89715 Serial 3832  
Permanent link to this record
 

 
Author Shakouri, K.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Helical liquid of snake states Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 19 Pages 195404-195405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We derive an exact solution to the problem of spin snake states induced in a nonhomogeneous magnetic field by a combined action of the Rashba spin-orbit and Zeeman fields. The electron spin behavior as a function of the cyclotron orbit center position and an external homogeneous magnetic field was obtained. It is shown that in an antisymmetric magnetic field the electron spin in the snake states has only an in-plane projection, perpendicular to the magnetic interface, which vanishes at large positive momenta. Applying an external homogeneous magnetic field adds a finite out-of-plane spin component and simultaneously gaps out the spectral branches, which results in regular beating patterns of the spin current components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326820200007 Publication Date 2013-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Methusalem program of the Flemish government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112712 Serial 1416  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 14 Pages 144514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309776800001 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101798 Serial 3769  
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214523-214523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292252300009 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90922 Serial 477  
Permanent link to this record
 

 
Author Kanda, A.; Baelus, B.J.; Peeters, F.M.; Kadowaki, K.; Ootuka, Y. openurl 
  Title Experimental distinction between giant vortex and multivortex states in mesoscopic superconductors Type P1 Proceeding
  Year 2006 Publication AIP conference proceedings T2 – 24th International Conference on Low Temperature Physics (LT24), AUG 10-17, 2005, Orlando, FL Abbreviated Journal  
  Volume Issue Pages 739-742  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract (up) We describe an experimental distinction between giant vortex and multivortex states in mesoscopic superconducting disks by using two methods: the multiple-small-tunnel-junction method and the temperature dependence of vortex expulsion fields. The experimental results are in good agreement with the theoretical simulations based on the non-linear Ginzburg-Landau theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 850 Series Issue Edition  
  ISSN 0-7354-0347-3; 0094-243x ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103641 Serial 1138  
Permanent link to this record
 

 
Author Krstajic, P.M.; Ivanov, V.A.; Peeters, F.M.; Fleurov, V.; Kikoin, K. pdf  doi
openurl 
  Title Ferromagnetism in Mn-doped GaAs : the kinematic exchange Type A1 Journal article
  Year 2003 Publication Journal of superconductivity T2 – PASPS Conference 2002, JUL, 2002, WURZBURG, GERMANY Abbreviated Journal J Supercond  
  Volume 16 Issue 1 Pages 111-113  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We developed a microscopic model in order to describe the onset of ferromagnetism (FM) in GaAs:Mn. The proposed kinematic mechanism bears resemblances with the Zener exchange. The calculated Curie temperature for GaAs: Mn is in good agreement with available experimental data of the Curie temperature as a function of the manganese concentration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000182060400027 Publication Date 2003-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0896-1107; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103314 Serial 1183  
Permanent link to this record
 

 
Author Djotyan, A.P.; Avetisyan, A.A.; Hao, Y.L.; Peeters, F.M. doi  openurl
  Title Shallow donor near a semiconductor surface in the presence of locally spherical scanning tunneling microscope tip Type P1 Proceeding
  Year 2012 Publication Proceedings of the Society of Photo-optical Instrumentation Engineers T2 – Conference on Photonics and Micro and Nano-structured Materials, JUN 28-30, 2011, Yerevan, ARMENIA Abbreviated Journal  
  Volume Issue Pages 84140-84148  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (up) We developed a variational approach to investigate the ground state energy and the extend of the wavefunction of a neutral donor located near a semiconductor surface in the presence of scanning tunneling microscope (STM) metallic tip. We apply the effective mass approximation and use a variational wavefunction that takes into account the influence of all image charges that arise due to the presence of a metallic tip. The behavior of the ground state energy when the tip approaches the semiconductor surface is investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000303856600020 Publication Date 2012-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 8414 Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy. One of us (AAA) was supported by a fellowship from the Belgian Federal Science Policy Office (Belspo). ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:113047 Serial 2987  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M. url  doi
openurl 
  Title Bilayer graphene with single and multiple electrostatic barriers: band structure and transmission Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 15 Pages 155402,1-155402,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We evaluate the electronic transmission and conductance in bilayer graphene through a finite number of potential barriers. Further, we evaluate the dispersion relation in a bilayer graphene superlattice with a periodic potential applied to both layers. As a model we use the tight-binding Hamiltonian in the continuum approximation. For zero bias the dispersion relation shows a finite gap for carriers with zero momentum in the direction parallel to the barriers. This is in contrast to single-layer graphene where no such gap was found. A gap also appears for a finite bias. Numerical results for the energy spectrum, conductance, and the density of states are presented and contrasted with those pertaining to single-layer graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265944200091 Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 74 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77025 Serial 235  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 3 Pages 035409,1-035409,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262978200107 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:75983 Serial 3762  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Matulis, A.; Peeters, F.M. pdf  doi
openurl 
  Title Angular confinement and direction-dependent transmission in graphene nanostructures with magnetic barriers Type A1 Journal article
  Year 2009 Publication AIP conference proceedings Abbreviated Journal  
  Volume 1199 Issue Pages 363-364  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We evaluate the transmission through magnetic barriers in graphene-based nanostructures. Several particular cases are considered: a magnetic step, single and double barriers, delta -function barriers as well as barrier structures with inhomogeneous magnetic field profiles but with average magnetic field equal to zero. The transmission exhibits a strong dependence on the direction of the incident wave vector. In general the resonant structure of the transmission is significantly more pronounced for (Dirac) electrons with linear spectrum compared to that for electrons with a parabolic one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000281590800171 Publication Date 2010-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:84892 Serial 115  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 23 Pages 235406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) We examine from first principles the flexoelectric properties of phosphorene nanoribbons under mechanical bending along armchair and zigzag directions. In both cases we find that the radial polarization depends linearly on the strain gradient. The flexoelectricity along the armchair direction is over 40% larger than along the zigzag direction. The obtained flexoelectric coefficients of phosphorene are four orders of magnitude larger than those of graphene and comparable to transition metal dichalcogenides. Analysis of charge density shows that the flexoelectricity mainly arises from the pz orbitals of phosphorus atoms. The electron mobilities in bent phosphorene can be enhanced by over 60% along the armchair direction, which is significantly higher than previous reports of mobility tuned by uniaxial strain. Our results indicate phosphorene is a candidate for a two-dimensional material applicable in flexible-electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657129800006 Publication Date 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179109 Serial 6996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: