toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.; Pereira, J.M. url  doi
openurl 
  Title Bilayer graphene with single and multiple electrostatic barriers: band structure and transmission Type A1 Journal article
  Year (down) 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 15 Pages 155402,1-155402,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We evaluate the electronic transmission and conductance in bilayer graphene through a finite number of potential barriers. Further, we evaluate the dispersion relation in a bilayer graphene superlattice with a periodic potential applied to both layers. As a model we use the tight-binding Hamiltonian in the continuum approximation. For zero bias the dispersion relation shows a finite gap for carriers with zero momentum in the direction parallel to the barriers. This is in contrast to single-layer graphene where no such gap was found. A gap also appears for a finite bias. Numerical results for the energy spectrum, conductance, and the density of states are presented and contrasted with those pertaining to single-layer graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265944200091 Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 74 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77025 Serial 235  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: