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Abstract. We analyzed pattern formation and identified various morphologies
in a system of particles interacting through a non-monotonic potential with
a competing range interaction characterized by a repulsive core (r < r.) and
an attractive tail (r > r.), using molecular-dynamics simulations. Depending
on parameters, the interaction potential models the inter-particle interaction
in various physical systems ranging from atoms, molecules and colloids to
vortices in low « type-II superconductors and in recently discovered ‘type-1.5’
superconductors. We constructed a ‘morphology diagram’ in the plane ‘critical
radius r.—density n’ and proposed a new approach to characterizing the different
types of patterns. Namely, we elaborated a set of quantitative criteria in order to
identify the different pattern types, using the radial distribution function (RDF),
the local density function and the occupation factor.
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1. Introduction

In a variety of systems pattern formation is governed by competing interactions [1]. Examples
of such systems are: Langmuir monolayers [2, 3], colloids and gels [4-8], ferrofluids [9-12],
magnetic garnet thin films, type-I superconductors [13], the pasta phase in neutron stars [14],
etc. In general, there is a strong correlation between pattern formation and inter-particle
interaction. Thus, attraction favors aggregation while repulsion favors low local densities. This
competition between repulsive and attractive interactions leads to very rich morphologies and
phases, such as stripes, clusters, bubbles, etc [15]. Those different patterns were observed in
many diverse systems. In ferrofluid systems, rich phases due to the competition between dipolar
forces and short-range forces opposing density variations were found experimentally [9] and
theoretically [10]. In neutron stars, the competition between the short-range nuclear attraction
and the long-range Coulomb repulsion leads to complex pasta phases [14].

Pattern formation was extensively studied in colloidal systems where the colloid—colloid
interaction is characterized by the competition of the hardcore excluded volume interaction,
on the one hand, and the polarization of the particles, on the other. The interaction potential
can be further controlled by introducing other contributions to the interaction. As a result,
rich configurations, such as clusters, repulsive or attractive glassy states and gels, were found
numerically [16-21], analytically [22, 23] and experimentally [5, 7] in colloidal systems with
short-range attractive interaction. The properties of isolated clusters formed by the short-range
attractive and long-range repulsive interaction were studied recently [24]. By controlling the
interaction, the growth of the cluster was shown to change from nearly spherical to one-
dimensional (1D) patterns. The 1D growth of the clusters facilitated the collective packing into
columnar or lamellar phases [24]. The columnar and lamellar phases in three dimensions were
analyzed using molecular dynamics (MD) simulations [25].

In superconductors, the vortex—vortex interaction is usually considered to be either
repulsive (in type-II superconductors, where the Ginzburg—Landau parameter «, i.e. the ratio
of the magnetic field penetration depth A to the coherence length £, is >1/+/2) or attractive
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(in type-I superconductors, where k < 1/+/2 and vortices are unstable), while vortices do not
interact with each other at the so-called ‘dual point’ when x = 1/+/2 [26]. However, a somewhat
deeper analysis of the inter-vortex interaction in type-II superconductors near the dual point
revealed an attractive tail [27, 28]. This repulsive—attractive inter-vortex interaction was used
for the interpretation of unusual patterns in the intermediate state in low-x superconductors
(e.g. Nb): islands of the Meissner phase surrounded by the vortex phase or vice versa, i.e. vortex
clusters surrounded by the Meissner phase [27, 28].

The recent discovery of ‘type-1.5" superconductors [29] induced a new wave of interest in
systems with non-monotonic interactions (see, e.g., [30, 31]), due to the fact that the observed
vortex patterns in the new superconductors revealed a clear signature of repulsive—attractive
inter-vortex interaction. In particular, some typical characteristics of the observed vortex
patterns (e.g. vortex lattice with voids and the nearest-neighbor distribution) were explained
using a simple model involving a non-monotonic inter-vortex interaction based on a more
general approach to multi-order-parameter condensates [32].

In this paper, we consider a model competing range interaction potential which is repulsive
for the short range and attractive for the longer range. In principle, this type of interaction
potential could be used as a model for various systems with non-monotonic inter-particle
interaction, e.g. atoms or molecules (i.e. the Lennard—Jones potential), or vortices in two-band
superconductors, depending on specific parameters of the potential. We investigate the pattern
formation in 2D systems for various interaction potential profiles; for example, we distinguish
‘soft-core’ and ‘hard-core’ interactions and analyze the transitions between different types of
patterns. Based on this analysis, we construct a ‘morphology diagram’ for various interaction
parameters and particle densities. We propose a new approach to characterizing the different
morphologies: instead of qualitative characterization of the patterns (e.g. clusters or labyrinths),
we introduce a number of quantitative criteria to distinguish these. In particular, the obtained
patterns are analyzed in terms of the radial distribution function (RDF) and additional quantities
characterizing, e.g., the local density of particles in clusters.

The paper is organized as follows. In section 2, we describe the model. The pattern
formation for different interaction parameters is discussed in section 3. In section 4, we analyze
different types of patterns using the RDF and discuss criteria for the identification of different
patterns. The conclusions are given in section 5.

2. The model

The model inter-particle interaction potential is chosen in the following form:
a
Viy = Vo (3 Kolbris /%) = Ko(rij /1)) ()

Here, K| is the zeroth-order modified Bessel function, r;; = |r; — r;| is the inter-vortex distance,
Vo and A are the units of energy and length, respectively. These units can be specified, depending
on the system. For example, in the case of a type-II superconductor, the appropriate units
of length A and energy V), correspondingly, are the magnetic field penetration depth A and
Vo = @3 /8%, where @y = hc/2e (see, e.g., [33]).

In the dimensionless form, the interaction potential (1) reads as

vV

a ’ /
ij V() = EKO(br[j) - KO(”U), (2)
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where the dimensionless length is defined as r/; = r;;/A. Further on, we will omit the primes
and use the dimensionless form of the potential (2). The interaction force is then given by

F;j = —VVij = (aK,(br;j) — K\(ri)))¥;;, (3)

where K is the first-order modified Bessel function, t;; = (r; —r;)/r;;, and a and b are two
positive coefficients.

The first term of equation (3) is repulsive, while the second term describes an attractive
interaction force. Indeed, for r — oo, K;(x) — /7/(2x)e™ . The interaction force (3) has a
repulsive (attractive) tail when b <1 (b > 1), while for r — 0, K;(x) — 1/x and thus Fj; —
(a/b—1)/r. Therefore, for the short range the interaction force (3) is repulsive (attractive)
when a > b (a < b), and we only consider the case a > b since an attractive interaction for
short distances would result in a collapse of our system of point particles. When a > b and
b < 1, the interaction is always repulsive, and particles form a Wigner crystal structure. The
most interesting case is realized when a > b and b > 1, and the interaction has a repulsive
core and attractive tail '. In this case, there exists a critical distance r., where the inter-particle
interaction energy (1) reaches a minimum (and the interaction force (3) changes sign). By setting
the force equal to zero, the coefficient a is given by

= K 1 (}" c)
K 1 (b T c) .
The pattern formation is determined by the coefficients b, r. and the particle density n.
We study pattern formation in a system of interacting point-like particles using the

Langevin equations. The dynamics of a single particle i obeys the following overdamped
equation of motion [16-18, 33]:

“4)

nvl:Fl:ZFU-'_Ff-l-F’IT (5)
J#

Here, n is the viscosity, which is set to unity, F;; is the inter-particle interaction force defined by
equation (3) and F?, given by

Np ®
— | —=r
F=Y (&) -re (—”" | — )r?iﬁ (©)
r
k

p

is the pinning force (although often neglected, in the general case we introduced random pinning
sites, see section 3). Here, N, is the number of pinning sites, f, is the maximum pinning force of
each potential well, r,, is the range of the pinning potential, ® is the Heaviside step function, and

£ = (r; —r”)/|r; — r”|. The thermal stochastic term FT in equation (5) obeys the following
conditions:

(F' (1) =0 @)
and

(FI(n)F} (1)) = 2nksT8;;6(t — 1. 8)

! Note that we do not characterize the interaction force as ‘short-range repulsive and long-range attractive’ since
both the contributions are rather ‘short-range’, due to the Bessel functions. The fact that the interaction is short-
range allows us to use a cut-off for long distances.
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Figure 1. The profile of the model inter-particle interaction force, given by
equation (2), versus the distance. The main panel and the inset panel show the
change in the force profile due to an increase of r. and b, respectively.

We consider a 2D square simulation region L, x L, in the xy-plane and apply periodic
boundary conditions in the x- and y-directions. For the interaction force given by equation (3),
which exponentially decays for large distances, we use a cut-off for » > 8. Note that in this way
the interaction in our system is finite-range. The length of the square cell L, = L, = L has been
varied from 60 to 180 to examine the finite-size effects, and we set L = 120 to optimize the
calculations, without appreciable influence on the results. To obtain stable particle patterns, we
performed simulated annealing simulations of interacting particles. For this purpose, particles
were initially randomly distributed inside the simulation region at some suitable non-zero
temperature. Then the temperature was gradually reduced to zero, and the simulation was
continued until the total force acting on any single particle became much smaller than typical
forces in the system.

3. Pattern formation

In this section, we study pattern formation and identify different morphologies depending on
parameters of the interaction r., b and the particle density n. In figure 1, we illustrate the change
of the interaction force profile due to the increase of r. and b. The interaction force is very
sensitive to r., since its increase directly leads to an increase in the repulsive part in equation (3)
(see the main panel of figure 1). On the other hand, an increase of b leads to an increase of both
the repulsive and attractive parts (see the inset of figure 1). However, the repulsive interaction
increases much faster for r < r. than the attractive interaction for r > r..

Thus, increasing b facilitates stabilization of the minimum inter-particle distance at r.. In
other words, an increase of b results in hardening of the core in the interaction force (3), i.e. the
interaction changes continuously from a ‘soft-core’ to a ‘hard-core’ regime.
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Figure 2. Patterns for N = 1500 particles in a unit cell L x L with L = 120 for
varying r.: r. = 1.9 (a), 2.1 (b), 2.3 (¢), 2.5 (d), 2.7 (e) and 2.9 (f).

3.1. Soft-core interaction

In this subsection, we analyze pattern formation in the absence of additional pinning. The
influence of random pinning on the pattern formation will be discussed in the next subsection.
To study pattern formation in the soft-core regime, we set the coefficient b = 1.1. We define
the critical density as n, = 8r; %/ V/3, which is the density of an ideal (hexagonal) Wigner crystal
with the lattice constant a = r.. The density is defined as n = N /S, where § = 120 x 120 is the
area of the simulation region and N is the number of particles (further on, in our analysis of
various patterns, we will refer either to the number of particles N in the simulation cell or to the
density which is n = N /14 400). For the case of n < n. which is considered here, the Wigner
crystal is not stable due to the attractive interaction. In figure 2, we present patterns formed by
N = 1500 particles when r. increases from 1.9 (a) to 2.9 (f). Note that the condition n < n.
is always fulfilled for all the values of r. in this range. We found that for r. < 2.1 particles
form clusters similar to the formation of the ‘clump’ phase found in colloids and 2D electrons
[1, 16-18] (see figures 2(a) and (b)). The main difference to the patterns found in [16—18] is
that the relatively softer core in our case is compressed due to the attractive interaction, and the
clusters acquire a circular shape. In addition, the interaction between the clusters (decaying
exponentially for long distances within the interaction range) becomes negligible for inter-
cluster distance of the order of a few to several ry. Therefore, the clusters can be considered
as non-interacting for low densities (although they still do not approach each other), contrary
to the situation described in [16, 18] where a super-lattice is formed due to the long-range
cluster—cluster repulsion. As r. increases, the clusters expand. In particular, for r. > 2.1, the
clusters start elongating, which is an indication of the instability with respect to the transition
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Figure 3. Patterns for N = 5500 particles in a unit cell L x L with L = 120 for
varying r.: r. = 1.9 (a), 2.1 (b), 2.3 (c), 2.5 (d), 2.7 (e) and 2.9 ().

to stripes. For 2.1 <r. < 2.3, a mixed state with both stripes and clusters is observed (see
figure 2(c)). Further increase of r. gradually destroys the clusters and leads to the formation
of labyrinths (see figures 2(d)—(f)).

In order to reveal the influence of the density on the pattern formation, we gradually
increase the number of particles from 1500 to 10 500 in our simulation cell. First, in figure 3, we
present patterns formed by N = 5500 particles for varying r.. Note that n > n. for N = 5500.
As compared to the lower density case shown in figure 2, in the case of clusters, the additional
particles lead to the expansion of the clusters (see figures 3(a) and (b)). A mixture of clusters
and stripes is formed when the additional particles form bridges connecting the clusters (see
figure 3(c)), which will be discussed in detail below. For labyrinths (shown in figures 2(d)—(f)
for N = 1500), the additional particles fill the empty regions (voids), resulting in the formation
of the hexagonal lattice with varying local density (figure 3(d)) and, finally, a regular hexagonal
lattice (see figures 3(e) and (f)). Note that the lattice with varying local density (figure 3(d)) is
not stable in systems with pure repulsive interaction such as vortices in type-II superconductors.

We analyzed in detail the intermediate regime (i.e. corresponding to the transition from
clusters to stripes, see figure 2(c)) where r. =~ 2.3. The resulting patterns for varying density
are shown in figure 4. Figure 4(a) displays a configuration at low density with N = 1500
when many individual clusters are formed. With increasing the density (see figure 4(b)), the
clusters connect to each other and form stripes. A further increase of the number of particles
(figure 4(c)) results in the formation of a complex mixture of interconnected stripes with
voids. A very interesting and counter-intuitive evolution is observed when the number of
particles increases from N = 5500 to N = 6500 (see figure 4(d)): in contrast to the gradual
transition from a void-rich configuration to a lattice-rich configuration when N changes from
N = 3500 (b) to N = 5500 (¢), in the case of N = 6500 we observe ‘re-entrant’ behavior, i.e. the
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W

Figure 4. Patterns for r. =2.3 and varying number of particles N (in the
computational unit cell L x L with L = 120): N = 1500 (a), 3500 (b), 5500 (c),
6500 (d), 7500 (e) and 9500 (f).

void-rich configuration starts recovering, which is compensated for by an increase of the local
density in the stripes. However, further increasing the density results in the expansion of the
stripes to the empty regions, which is accompanied by a decrease of the local density in the
stripes, as shown in figure 4(e). The distribution of particles becomes more uniform, with only
a few small voids. Finally, for N = 9500 (figure 4(f)), we obtain a deformed hexagonal lattice
characterized by a varying local density with only one small void.

Our calculations show that the obtained patterns are very sensitive to variations in r.. Thus,
if r. slightly decreases (e.g. r. = 2.25), the number of clusters greatly increases as compared to
the case r. = 2.3, for the same density of particles. For r. = 2.25, we also observe the transition
from a void-rich configuration to a lattice-rich configuration. However, since the decrease of r,
increases the attractive component of the inter-particle interaction this occurs at a much higher
density. For even smaller values of r., i.e. r. < 2.1, we do not observe a lattice pattern, even for
an extremely large number of particles (up to N = 20 000).

3.2. Analysis of the stability of the patterns

To further study the stability of the patterns, here we analyze the influence of the cut-off
procedure and the annealing time used in our simulations. Alternatively, we consider the effect
of additional weak pinning and modify the inter-particle interaction by introducing a weak
repulsive tail.

First, we consider the case when clusters are formed (i.e. r. < 2.3). We choose r. = 1.9
and increase the cut-off distance from 8 to 16A. We also increase the annealing time from
typically (10000-20000)At to 200000A¢, where At =0.04 is the time step of the MD
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450 ]

0 10000 20000 30000 40000 50000
t

Figure 5. The evolution of the energy E versus time t (a); snapshots
corresponding to various annealing times (b—e). Two merging clusters are shown
in red (gray) in (d).

simulation. In figure 5, we plot the evolution of the energy with time, and we show some
representative snapshots in the insets. We start from a random configuration of particles (see
figure 5(b)). During the annealing, the energy first drops rapidly due to the clusterization of
the particles. After a relatively short time, small clusters start to merge and form larger clusters
(see figure 5(c)). The average inter-cluster distance increases when the total number of clusters
decreases. The merging becomes more difficult and considerably slows down when the clusters
are well separated. As a result, short-living metastable states are formed (see figure 5(d)).
However, during the merging of the clusters, the lifetime of the metastable states increases
very rapidly, and gradually the short-living metastable states evolve into long-living metastable
states when the clusters are well separated (see figure 5(e)). Comparing with the relatively faster
annealing case (i.e. 20000A¢), we see that the slower annealing process results in a decrease of
the number of clusters inside the simulation cell, which increases the lifetime of the metastable
states. However, even for the shorter annealing times (i.e. 20 000A¢), we arrive at long-living
metastable configurations which can have either slightly higher energy or even the same energy
as those states obtained during the long-time annealing (note that the energy of the configuration
does not change over the time interval from ~15 000A7 to 50 000A¢). It is worth noting that the
morphology is similar to that found in the ‘fast’ annealing process.

Thermodynamically stable states can be obtained in the presence of weak random pinning.
To verify this, we introduce weak random pinning sites in the system, with the maximum
pinning force f, =0.2 and radius r, = 0.3 and the density of random pinning sites being the
same as the density of the particles. We found that such a weak pinning produces no appreciable
impact on stripes, labyrinths or lattices. In the case of clusters, the bonding energy due to
the inter-particle interaction within every individual cluster is strong, and the weak pinning
is not sufficient to destroy the structure of the clusters. However, the inter-cluster interaction is
weak, therefore, those clusters can be easily stabilized by weak pinning. Thus, comparing to
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Figure 6. Calculated patterns for r, =2.1, N =4500 and the annealing time
50000A¢z: without pinning (a) and in the presence of weak random pinning with
the maximum pinning force f, = 0.2 and radius r, = 0.3 (b).

the patterns obtained without pinning, we find that slightly smaller clusters are formed in the
presence of pinning, and the merging of clusters is prevented even for two relatively close but
small neighbor clusters (see figure 6). Note that in the absence of pinning, clusters have nearly
circular shape while their shape is less regular in the case of weak pinning. In the latter case,
some of the particles were pinned individually, i.e. outside the clusters, see figure 6(b).

An alternative way to stabilize clusters (and approach the thermodynamically stable
configurations) consists in using a modified force with an additional weak repulsive tail, e.g.
taken in the form: F; ;= F;; cosh(r. —r), where r. is a parameter chosen as r. = 10, and the
cut-off of the interaction is set at 16A. Then the resulting modified force coincides with that
given by equation (3) for r < 8 but the weak attractive tail smoothly evolves to repulsive when
r > 10. The modified interaction force leads to very similar patterns as the original one (given
by equation (3)) because the weak repulsive tail is not efficient for the clusters to form super-
structures (see, e.g., [16, 18, 21]), but is sufficient for stabilizing the configurations of particles.
When we increase the inter-cluster repulsive interaction by increasing the particle density, the
resulting patterns are similar to the previously calculated long-living metastable states. The
reason for this behavior is that the radius of a cluster is insensitive to the particle numbers
within the cluster. As a result, the inter-cluster repulsion increases very slowly as the density
increases.

3.3. Morphology diagram

Based on the above analysis of the patterns, we constructed a ‘morphology diagram’ (as we
explained above, the calculated patterns are long-living metastable states, i.e. in the absence
of additional pinning or the long-range repulsive tail—rather than real thermodynamic phases;
thus the diagram presents various morphologies) in the plane of r. and the number density n
(see figure 7). For extremely low density (n < 0.03), particles form small clusters that are well
separated, and the patterns are rather insensitive to variations in r.. However, morphologies
become richer when density n increases (i.e. n > 0.1). Low values of r. (i.e. r. <2.1) still
favor cluster formation for a broad range of densities, although the particle density in clusters
increases for large n. With increasing r., clusters become unstable with respect to the formation
of the ‘bridges’ between separate clusters, which is a precursor of the formation of stripes.
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Figure 7. The ‘morphology diagram’ in the plane ‘critical radius r.—density n’
(n) and representative patterns (a—m). For r. < 2.1 and extremely low density
(n < 0.03), particles form small, well-separated clusters. For larger r., the size of
the clusters increases (see the change from (d) to (e) and from (b) to (c)). Increase
of the density results in increasing size of the clusters (see the change from (d) to
(b) and from (e) to (c)). Further increase of r. leads to elongation of the clusters
and the formation of ‘bridges’ between them (a). Thus, the configurations change
gradually from clusters to stripes (1). At larger r. or n, stripes interconnect and
form patterns with voids (j). Thus the stripes are divided into two sub-groups,
I and II. When r, becomes even larger, labyrinth-like configurations are formed
for n < n. (see (g) and (f)). With further increase of r. or n, deformed hexagonal
lattices with (k) or without voids (1) are formed. The deformation of a hexagonal
lattice is reduced for even larger values of r. and n (m).

Stripes are formed in a rather narrow range of . when r. > 2.1 (see figure 7). The stripe patterns
can be divided into two sub-groups, I and II, i.e. void-rich (see figure 7(i)) and void-poor (lattice-
rich) stripes (figure 7(j)). For larger r. and n < n., particles form labyrinth structures. However,
when increasing the density, additional particles fill the empty regions and finally they form
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Figure 8. The potential energy per particle U versus the total number of particles
within the cluster, N, for r. = 1.8 (a), 2.3 (b) and 2.5 (c).

a deformed hexagonal lattice with varying density. Depending on r. and n < n., deformed lattice
is characterized by a varying local density or by the appearance of voids. Correspondingly,
we distinguish two regions (1 and 2 in figure 7). Note that in the vicinity of the morphology
boundaries, patterns are always mixtures of the two morphologies (e.g. clusters and stripes)
except the transition from the stripes to the deformed hexagonal lattice. Near this morphology
boundary, particles form either stripes with high local density or deformed hexagonal lattices
with lower local density. The probability of finding the lattice configuration greatly increases
when r. or n increases. Finally, for very high density, when the average inter-particle distance
becomes smaller than r. the repulsive interaction prevails, resulting in the formation of an almost
perfect hexagonal lattice.

The stability of clusters for varying parameter of the inter-particle interaction, r., can be
examined by applying an additional weak confinement potential and calculating the energy
corresponding to the varying number of particles in the system. For this purpose, we use a
parabolic potential, similar to F; in equation (6), to confine all the particles and gradually
decrease f,, to zero during the annealing. This allows us to obtain one large cluster for various
r.. Then we study the stability of these induced clusters, by analyzing the average energy per
particle U for various r. and N., where N, is the total number of particles composing the
cluster. We found that for r. < 2.3, the clusters are stable: U is approximately proportional
to Nc2 and decreases while N, increases (see figure 8(a)). The size of the cluster grows with
the number of constituent particles: it goes to infinity for N, — oo, which corresponds to phase
separation. Note that this result could be understood from a comparison of the model potential
(equation (2)) with the Lennard-Jones potential: for small r., both the potentials become very
similar, in particular, for r. & 1. On the other hand, it is well known that the Lennard-Jones
potential leads to phase separation.

For r. = 2.3, which is a typical value for stripe formation, there is a saddle point in the
function U versus N., which shows that the clusters have an optimal size, e.g. N. ~ 280 (see
figure 8(b)). Finally, for r. > 2.3, U changes sign when N, > 7, resulting in a positive energy,
indicating that the clusters in this case are overheated by the parabolic potential and therefore
are not stable. Labyrinths are more favorable in this case.

The patterns presented in figure 7 are found in many real systems. For example, clusters
are found in such systems as colloids [4, 6, 19, 20] and 2D electrons [16—18]. The obtained
stripe patters are very similar to those in Langmuir monolayers [3].
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Figure 9. Patterns for N = 1500 particles in a unit cell L x L with L =120,
b =4 and for varying r.: r. = 1.15 (a), 1.3 (b), 1.45 (c), 1.6 (d), 1.75 (e) and
1.9 (f).

Furthermore, several of the calculated morphologies were found in superconductors, e.g.
the stripe phase in the mixed state of type-I superconductors, clusters of the Meissner phase or
vortex clusters in the intermediate state in low-« type-II superconductors [27, 28], the labyrinth
phase (i.e. vortex lattice with voids) or vortex clusters in type-1.5 superconductors [29]. In spite
of the variety of physical systems and length scales ranging from nano- and micro-objects to
cosmic objects, the common feature of all these systems is a competing attractive—repulsive
inter-particle interaction, which allows analyzing them within the same approach.

3.4. Hard-core interaction

Let us now analyze the influence of the b parameter on the pattern formation. As mentioned
above (see figure 1), an increase in parameter b changes the potential from soft-core to hard-
core. Hardening the repulsive core in the interaction potential generally leads to a decreasing
compressibility of the inner parts of the patterns where particles are closely packed. Clearly, in
this case the patterns change as compared to the soft-core regime.

As shown in figure 9, for b =4 and low density (N = 1500 per simulation region), all
the patterns are clusters of different shapes. Thus for r. = 1.15 and r. = 1.3, the clusters are
of a circular shape similar to that found in the soft-core regime, although for r. = 1.3 some
clusters, composed of a small number of particles, have a polygonal shape. With increasing r.,
polygonal-shaped clusters become more favorable, which allows us to identify them as ‘short
stripes’. For even larger r., the clusters become much larger. They represent separate islands of
the hexagonal lattice.
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Figure 10. Patterns for N = 6500 particles in a unit cell L x L with L =
120, b = 4 and for varying r.: r. = 1.15 (a), 1.3 (b), 1.45 (c), 1.6 (d), 1.75 (e)
and 1.9 (f).

For higher density (N = 6500), the variety of patterns is much richer. Although for
r. = 1.15 circular-shaped clusters are still observed (see figure 10(a)), which grow in size for
ro = 1.3 and slightly deviate in shape from circular (figure 10(b)), for larger r. = 1.45, the
deviations of the cluster shape from circular become more pronounced (see figure 10(c)). With
further increasing r., i.e. r. = 1.6, stripes start to form (see figure 10(d)) followed by lattices
with voids for r. = 1.75 and r. = 1.9. In the hard-core regime, deformations of lattices occur
via the appearance of voids instead of varying local density (as happens in the soft-core regime).

The obtained patterns presented in figures 9 and 10 resemble the nanoscale domain patterns
formed by Cu and Pb atoms on a surface of Cu [34, 35]. In particular, the lattice islands
(figures 9(d)—(f)), the stripes (figure 10(d)) and void-rich configurations (figure 10(e)) are
similar to the patterns evolving from islands to stripes and ‘inverted’ islands formed by Cu
and Pb atoms arranged in a single atomic layer on a Cu(111) surface [34, 35], with increasing
atomic coverage.

4. Analysis of the patterns

4.1. Radial distribution function

Although the different patterns and morphologies studied above are qualitatively well
distinguished, it is highly desirable to build a set of solid criteria that would allow us to identify
them in a quantitative manner. For this purpose, we analyze here different morphologies by
means of the RDF. The RDF, g(r), describes the variation of the atomic (particle) density
as a function of the distance from one particular atom (particle). If we define an average

New Journal of Physics 14 (2012) 063032 (http://www.njp.org/)


http://www.njp.org/

15 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
|
¢ l T T T T T T

IO—II
O L L

0 2 4 6 8 10 1z 11 16 18 2

Clusters (a)_

v : ' ' ' ' ' Stripes  (b)

g
(@) ol

0 2 4 6 8 10 12 14 16 18 20

LaByrintfls (c)

o 2 4 6 8 10 12 14 16 18 20

Figure 11. The average RDF of the patterns formed at low density (N = 1500).
Panels (a), (b) and (c) correspond to the patterns shown in figures 2(b), (d) and (f),
respectively. The peaks marked by dark arrows show the short-range periodicity.
The gray arrows show the minimum of the RDF.

density as n = N/V (where V is the volume or surface area in the 2D case), then the local
density at distance r is ng(r). The knowledge of RDF is important since one can measure g(r)
experimentally using digital video microscopy [36]. Moreover, macroscopic thermodynamic
quantities can be calculated using g(r) in thermodynamics [37].

In our calculations, we define the RDF g;(r) as follows:

AN/AF
2nr

gi(r) = ©)
Here, the lower index indicates that the RDF centers at the position of the ith particle; AN is
the number of particles whose distance to the ith particles is between r and r + Ar. The average
g(r) is given by

1 N
g0 =~ ;gm. (10)

In figure 11(a), we plot the function g(r) calculated for the low-density cluster
configuration shown in figure 2(b). The function g(r) has two well-pronounced peaks. The first
peak corresponds to the average distance to the first coordination sphere (nearest neighbors),
while the second one is located at a distance approximately twice the distance to the first peak,
which shows short-range periodicity. For r larger than the size of the cluster and smaller than
the inter-cluster distance, g(r) < 1, since only a few particles are located inside this range.
The decreasing tail in the RDF shows strong aggregation of the particles forming clusters.
The minimum of g(r) is very close to zero, indicating that most of the clusters have circular
symmetry and are well separated. The position of the minimum of g(r) (marked by the gray
arrow in figure 11(a)) gives an estimate of the average diameter of the clusters.

For stripes (see figure 11(b) for the pattern shown in figure 2(d)), there are also two peaks
indicating the short-range periodicity, similar to clusters. However, unlike the case of clusters,
the minimum of g(r) is non-zero since the stripes are generally continuous. For labyrinths
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Figure 12. The average RDF of the patterns formed at high density (N = 5500).
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(see figure 11(c) for the pattern shown in figure 2(f)), only short-range periodic ordering exists,
and g(r) becomes uniform for larger r.

In figure 12, we plot g(r) for the patterns formed at high density (N = 5500). For clusters,
increase in the density leads to an increasing variation of the cluster size. Note, however, that
the sizes of individual clusters are rather insensitive to moderate variations of the number
of particles in the clusters, due to the strong compressibility of the core. As a result, the
function g(r) for the high-density clusters misses the short-range periodicity and the second
peak disappears (see figure 12(a)). Strikingly, this peak still exists for the void-rich patterns
(see figure 12(b)). The decrease of the tail of g(r) becomes very slow, which shows a minor
aggregation of the particles.

For lattices (see figure 12(b)), the position of the first peak is ry ~ a =/2/ («/gn), where a
is the distance between two neighboring particles in the ideal hexagonal lattice with the density
n. The positions of the second and third peaks are at r, & V3a and at ry X 2a, respectively,
corresponding to those in a hexagonal lattice. The fourth, fifth and even sixth peaks appear,
which show that this structure is much more ordered. However, due to the variation of the local
density, these peaks are inhomogeneously broadened: they are actually a combination of many
neighboring peaks. These peaks become more pronounced for larger r. or n, which implies that
the lattices become more regular.

It is interesting to compare the results for the function g(r) for hard-core interaction with
those for soft-core interaction. Although the clusters shown in figures 10(a) and (b) have shapes
very similar to those of the clusters shown in figures 3(a) and (b), the analysis using the RDF
shows that most of the clusters shown in figure 10(b) have hexagonal ordered cores. The peaks
in g(r) appear to be much better separated than, e.g., for the deformed hexagonal lattice formed
in the soft-core case (see figure 12(c)). For the stripe and void-rich patterns, the RDF shows a
much clearer hexagonal lattice ordering.

Therefore, the analysis using the RDF allowed us to establish quantitative criteria for the
different patterns and reveal the differences in the structure of the patterns (which look similar,
e.g. clusters) in the case of soft- and hard-core inter-particle interactions (figure 13).
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Figure 13. The average RDF of the patterns formed in the hard-core case. Panels
(a), (b), (c), (d) and (e) correspond to patterns (a), (b), (c), (d) and (e) in figure 10,
respectively.

4.2. Local density

Using the RDF, let us define another useful quantity, the ‘order parameter’, to characterize
various types of patterns. By definition, the local density is

3
I, = / 2mrng;(r)dr = Ng — 1. (11
0

Here, N: ~ w&%n is the average number of particles within the circle centered at the ith
particle with radius R = £. In an ideal hexagonal lattice, one particle has six nearest neighbors,
therefore Ny =7 and § = \/ N¢/mn = /7/mn. Thus, for any configuration characterized by
a small local density fluctuation, the average local density I = (/;) = 6. From the definition
given by equation (11), we can see that the presence of a large fraction of empty regions can
result in a considerable increase of I since only a ‘shell’ of those regions of thickness & is
considered. In figure 14(a), we plot the function / for different r. and N for the soft-core
interaction with b = 1.1. We see that the function / can be used to characterize the different
types of patterns. Thus we found that, for clusters, I is always large (I > 20) since aggregation
is strong. For stripes, aggregation is weaker, and thus 7 is smaller (10 < I < 17). For labyrinths,
the regions free of particles are relatively small. Therefore, I ranges between 6 and 9. Finally,
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Figure 14. The average local density / versus the particle density n for
b=1.1 (soft-core) (a). Curves A, B, C, D, E and F correspond to r. =
1.9,2.1,2.3,2.5,2.7 and 2.9, respectively. For clusters, I > 20, for stripes,
10 < I < 20, for labyrinths, 6 < I < 10; I = 6 for lattice and deformed lattice
configurations. The local density / versus the particle density n for b = 4 (hard-
core) (b). Curves A, B, C,D, E and F correspond tor, = 1.15, 1.3, 1.45, 1.6, 1.75
and 1.9, respectively.

for a hexagonal lattice, / is always 6. Therefore, the function / serves as a measure of the
aggregation of particles and allows us to effectively distinguish the different types of patterns.

The function / also provides a tool for analyzing the stability of patterns with increasing
density. This is demonstrated in figure 14(b), where we plot I for the hard-core case when b = 4.
For r. = 1.15, I > 20 for all the values of the density, and thus the clusters are stable. However,
the situation changes for r, = 1.3: while clusters are formed for low densities up to N ~ 7500,
for larger density / decreases below the value I = 20, which means that clusters elongate and
interconnect, giving rise to the onset of stripe formation. For r. = 1.45, the particles start to
form stripes at even lower density (N = 3500). For higher density, the additional particles fill
in the empty regions and finally they form a regular lattice. For r. > 1.6, the island-like clusters
formed at low densities are very unstable with respect to an increase in density. The additional
particles rapidly occupy the empty regions, and the patterns change from clusters to stripes and
from stripes to lattice with increasing density.

Therefore, the phenomenological description of pattern evolution with increasing density
we revealed above in section 3.1 has been verified in a quantitative manner using the solid basis
of the local density function approach.

4.3. Occupation factor

We demonstrated that the (average) RDF g(r) (equation (10)) and the local density function /
(equation (11)) allowed us to unambiguously characterize various types of patterns. At the same
time, it is still hard to distinguish, using the above tools, between labyrinths (or a lattice with
voids) and lattices, especially in the soft-core regime when the corresponding RDF do not
differ much from each other, and both types of patterns are characterized by small values of /.
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Figure 15. The occupation factor A = (r;/a)* for b=1.1 (soft-core) (a).
Curves A, B, C, D, E and F correspond to r. =1.9,2.1,2.3,2.5,2.7 and 2.9,
respectively. The occupation factor A for b = 4 (hard-core) (b). Curves A, B, C,
D, E and F correspond to r. = 1.15, 1.3, 1.45, 1.6, 1.75 and 1.9, respectively.

However, these can be easily distinguished by employing another additional criterion, namely,
the occupation factor which characterizes the fraction of the space occupied by particles to the
total space.

Let us assume that all the patterns are formed by islands of hexagonal lattice with the
average distance between two nearest-neighbor particles r = r;, where r; is the position of
the first peak of the RDF. Then the ratio of the area occupied by the particles and the whole
simulation area is A = (r;/a)?. As shown in figure 15(a), this ratio can be used to distinguish
between labyrinths and lattices, since for lattices A ~ 1.

We also found that circular clusters in the case of soft-core interaction are stable with
respect to an increase in the density. In this case, the additional particles cannot efficiently
increase the occupation factor due to the increase in the local density of the core. However,
for stripes and labyrinths, the occupation factor A increases with the density (see figure 15(a)).
These patterns are not stable for high density. Thus the large jump in A(N) at N = 6500 in
curve C in figure 15(a) shows the transition from stripes to lattice.

As one can expect, in the case of hard-core interaction, the occupation factor increases
nearly linearly versus the density (see figure 15(b)). Therefore, the polygon shaped and island-
like clusters are not stable: with increasing density, they evolve to the lattice configuration (the
plateau in A(N) in figure 15(b)).

In addition, let us introduce another useful quantity which characterizes the degree of
‘perfection’ of a lattice. Let us define the particles with inter-particle distance shorter than &
as neighboring particles. Then

1 fos 2rrg(rn(r —a)Xdr 1 f(f rg(r)(r —a)2dr (12)
E=— = — .
a foé 2rg(ryndr a fog rg(r)dr

is the average displacement of the inter-distance between two neighbor particles (measured in
units of a), which is independent of the density. The function ¢ is non-zero for a deformed
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Table 1. The set of criteria used to quantitatively identify various morphologies
in terms of the RDF g(r), the local density function 7, the occupation factor A
and the parameter ¢ (for details, see the text).

Patterns g(r) 1 A &
Clusters Peak at r((rp), >20

g(r)min =0
Stripes Peak at r{(rp), 1020

8(r)min > 0
Labyrinths Peak at r((r;), 6-10 <1

g(r)~const,r >r,

Lattice Several peaks: ry, 1, . .. ~6 ~1 0
Deformed  Several peaks: ry, r,... ~6 ~l >0
lattice

hexagonal lattice and zero for the ideal hexagonal lattice. Thus, & quantitatively measures the
degree of perfection of a lattice. Note that ¢ is only used for lattices as an auxiliary tool to
distinguish ordered lattices from less ordered ones (see table 1).

5. Conclusions

Using MD simulations, we analyzed the pattern formation and identified different morphologies
in a system of particles interacting via a non-monotonic competing range potential, with a
repulsive short-range part and an attractive long-range part. The form of the interacting potential
is rather general: it describes, depending on the specific parameters, the inter-particle interaction
in a variety of physical systems ranging from, e.g., atoms and molecules (Lennard-Jones
potential) to colloids and vortices in superconductors. In particular, it can be used as a model of
inter-vortex interaction in low « type-II superconductors and in the recently discovered so-called
‘type-1.5" superconductors.

Since the non-monotonic range potential involves interaction frustration, the obtained
patterns are in general long-living metastable states rather than equilibrium configurations. We
demonstrated that thermodynamically stable patterns can be obtained if we either use a modified
potential with an additional repulsive tail or introduce weak pinning.

The obtained morphologies were summarized in a ‘morphology diagram’ in the plane
‘critical radius r.—density n’ (r. is the critical radius where the interaction force changes its sign).
We also analyzed the influence of the hardness of the ‘core’, i.e. the strength of the repulsive
core part of the interaction potential, on the pattern formation.

We developed a set of criteria in order to unambiguously identify the obtained types of
patterns using the following approaches: (i) the RDF g(r), (i1) the local density function / and
(i11) the occupation factor A. In addition, we introduced a parameter which characterizes the
degree of perfection of a lattice . Employing these approaches, we elaborated a set of criteria
for the identification of the different morphologies summarized in table 1.
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