|   | 
Details
   web
Records
Author Liu, Y.; Brelet, Y.; He, Z.; Yu, L.; Mitryukovskiy, S.; Houard, A.; Forestier, B.; Couairon, A.; Mysyrowicz, A.
Title Ciliary white light generated during femtosecond laser ablation on transparent dielectrics Type P1 Proceeding
Year 2013 Publication 2013 Conference On And International Quantum Electronics Conference Lasers And Electro-optics Europe (cleo Europe/iqec) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4799-0594-2 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:134446 Serial 4494
Permanent link to this record
 

 
Author Leemans, A.; Sijbers, J.; van den Broek, W.; Yang, Z.
Title An interactive curvature based rigid-body image registartion technique: an application of EFTEM Type P3 Proceeding
Year 2004 Publication Abbreviated Journal
Volume Issue Pages
Keywords P3 Proceeding; Vision lab; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor (up) Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48300 Serial 4503
Permanent link to this record
 

 
Author De Backer, A.; van den Bos, K.H.W.; Van den Broek, W.; Sijbers, J.; Van Aert, S.
Title StatSTEM: An efficient program for accurate and precise model-based quantification of atomic resolution electron microscopy images Type P1 Proceeding
Year 2017 Publication Journal of physics : conference series T2 – Electron Microscopy and Analysis Group Conference 2017 (EMAG2017), 3-6 July 2017, Manchester, UK Abbreviated Journal J. Phys.: Conf. Ser.
Volume 902 Issue Pages 012013
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab
Abstract An efficient model-based estimation algorithm is introduced in order to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for the overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, is investigated. The highest attainable precision is reached even for low dose images. Furthermore, advantages of the model- based approach taking into account overlap between neighbouring columns are highlighted. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416370700013 Publication Date 2017-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 1 Open Access OpenAccess
Notes The authors acknowledge nancial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0374.13N, G.0368.15N, G.0369.15N, WO.010.16N) and a PhD research grant to K H W van den Bos, and a postdoctoral research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). A Rosenauer is acknowledged for providing the STEMsim program. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:147188 Serial 4764
Permanent link to this record
 

 
Author Sentosun, K.; Lobato, I.; Bladt, E.; Zhang, Y.; Palenstijn, W.J.; Batenburg, K.J.; Van Dyck, D.; Bals, S.
Title Artifact Reduction Based on Sinogram Interpolation for the 3D Reconstruction of Nanoparticles Using Electron Tomography Type A1 Journal article
Year 2017 Publication Particle and particle systems characterization Abbreviated Journal Part. Part. Syst. Charact.
Volume 34 Issue 34 Pages 1700287
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab
Abstract Electron tomography is a well-known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418416100005 Publication Date 2017-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1521-4117 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 2 Open Access OpenAccess
Notes K.S. and S.B. acknowledge support from the Fund for Scientific ResearchFlanders (FWO) (G019014N and G021814N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). Y.Z. acknowledges financial support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]2 Marie Skłodowska-Curie fellowship (12U4917N). The authors would like to thank Prof. Luis Liz-Marzán for provision of the samples. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:147857UA @ admin @ c:irua:147857 Serial 4798
Permanent link to this record
 

 
Author Schattschneider, P.; Schachinger, T.; Verbeeck, J.
Title Ein Whirlpool aus Elektronen: Transmissions-Elektronenmikroskopie mit Elektronenwirbeln Type A1 Journal article
Year 2018 Publication Physik in unserer Zeit Abbreviated Journal Phys. Unserer Zeit
Volume 49 Issue 1 Pages 22-28
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Elektronen bewegen sich im feldfreien Raum immer gleichförmig geradlinig, so steht es in den Lehrbüchern. Falsch, sagen wir. Elektronen lassen sich zu Tornados formen, die theoretisch Nanopartikel zerreißen können. In der Elektronenmikroskopie eingesetzt, versprechen sie neue Erkenntnisse in der Festkörperphysik.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9252 ISBN Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @c:irua:148159 Serial 4806
Permanent link to this record
 

 
Author van der Torren, A.J.H.; Liao, Z.; Xu, C.; Gauquelin, N.; Yin, C.; Aarts, J.; van der Molen, S.J.
Title Formation of a conducting LaAlO3/SrTiO3 interface studied by low-energy electron reflection during growth Type A1 Journal Article
Year 2017 Publication Physical Review Materials Abbreviated Journal Phys. Rev. Materials
Volume 1 Issue 7 Pages 075001
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The two-dimensional electron gas occurring between the band insulators SrTiO 3 and LaAlO 3 continues to attract considerable interest, due to the possibility of dynamic control over the carrier density, and the ensuing phenomena such as magnetism and superconductivity. The formation of this conducting interface is sensitive to the growth conditions, but despite numerous investigations, there are still questions about the details of the physics involved. In particular, not much is known about the electronic structure of the growing LaAlO 3 layer at the growth temperature (around 800 ◦ C) in oxygen (pressure around 5 × 10 −5 mbar), since analysis techniques at these conditions are not readily available. We developed a pulsed laser deposition system inside a low-energy electron microscope in order to study this issue. The setup allows for layer-by-layer growth control and in-situ measurements of the angle-dependent electron reflection intensity, which can be used as a fingerprint of the electronic structure of the surface layers during growth. By using different substrate terminations and growth conditions we observe two families of reflectivity maps, which we can connect either to samples with an AlO 2 -rich surface and a conducting interface; or to samples with a LaO-rich surface and an insulating interface. Our observations emphasize that substrate termination and stoichiometry determine the electronic structure of the growing layer, and thereby the conductance of the interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418770200003 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links
Impact Factor (up) Times cited 2 Open Access Not_Open_Access
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; European Cooperation in Science and Technology, MP 1308 ; We want to acknowledge Ruud Tromp, Daniel Gee- len, Johannes Jobst, Regina Dittmann, Gert Jan Koster, Guus Rijnders and Jo Verbeek for discussions and ad- vice and Ruud van Egmond and Marcel Hesselberth for technical assistance. This work was supported by the Netherlands Organization for Scientific Research (NWO) by means of an ”NWO Groot” grant and by the Leiden- Delft Consortium NanoFront. The work is part of the re- search programmes NWOnano and DESCO, which are fi- nanced by NWO. N.G. acknowledges funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge order- ing). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. We would also like to acknowledge networking support by the COST Action MP 1308 (COST TO-BE). Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 4903
Permanent link to this record
 

 
Author Bogaerts, A.; Neyts, E.C.
Title Plasma Technology: An Emerging Technology for Energy Storage Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume 3 Issue 4 Pages 1013-1027
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma technology is gaining increasing interest for gas conversion applications, such as CO2 conversion into value-added chemicals or renewable fuels, and N2 fixation from the air, to be used for the production of small building blocks for, e.g., mineral fertilizers. Plasma is generated by electric power and can easily be switched on/off, making it, in principle, suitable for using intermittent renewable electricity. In this Perspective article, we explain why plasma might be promising for this application. We briefly present the most common types of plasma reactors with their characteristic features, illustrating why some plasma types exhibit better energy efficiency than others. We also highlight current research in the fields of CO2 conversion (including the combined conversion of CO2 with CH4, H2O, or H2) as well as N2 fixation (for NH3 or NOx synthesis). Finally, we discuss the major limitations and steps to be taken for further improvement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430369600035 Publication Date 2018-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 56 Open Access OpenAccess
Notes Universiteit Antwerpen, TOP research project 32249 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N G.0254.14N G.0383.16N ; Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:150358 Serial 4919
Permanent link to this record
 

 
Author Perez, A.J.; Jacquet, Q.; Batuk, D.; Iadecola, A.; Saubanere, M.; Rousse, G.; Larcher, D.; Vezin, H.; Doublet, M.-L.; Tarascon, J.-M.
Title Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4 Type A1 Journal article
Year 2017 Publication Nature energy Abbreviated Journal Nat Energy
Volume 2 Issue 12 Pages 954-962
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Li-rich rocksalt oxides Li2MO3 (M = 3d/4d/5d transition metal) are promising positive-electrode materials for Li-ion batteries, displaying capacities exceeding 300 mAh g(-1) thanks to the participation of the oxygen non-bonding O(2p) orbitals in the redox process. Understanding the oxygen redox limitations and the role of the O/M ratio is therefore crucial for the rational design of materials with improved electrochemical performances. Here we push oxygen redox to its limits with the discovery of a Li3IrO4 compound (O/M = 4) that can reversibly take up and release 3.5 electrons per Ir and possesses the highest capacity ever reported for any positive insertion electrode. By quantitatively monitoring the oxidation process, we demonstrate the material's instability against O-2 release on removal of all Li. Our results show that the O/M parameter delineates the boundary between the material's maximum capacity and its stability, hence providing valuable insights for further development of high-capacity materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430218300001 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 55 Open Access Not_Open_Access
Notes ; We thank P. Pearce for providing the beta-Li<INF>2</INF>IrO<INF>3</INF> and L. Lemarquis for helping in the DEMS experiment. We are particularly grateful to S. Belin, V. Briois and L. Stievano for helpful discussions on XAS analysis and synchrotron SOLEIL (France) for providing beamtime at the ROCK beamline (financed by the French National Research Agency (ANR) as part of the 'Investissements d'Avenir' programme, reference: ANR-10-EQPX-45). A.J.P and A. I. acknowledge the GdR C(RS) 2 for the workshop organized on a chemometric approach for XAS data analysis. V. Nassif is acknowledged for her help during neutron diffraction experiments performed at Institut Laue Langevin on D1B. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is gratefully acknowledged. This work has been performed with the support of the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116 ARPEMA. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150926 Serial 4962
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A.
Title Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale Simulations Type A1 Journal article
Year 2018 Publication Plasma Abbreviated Journal
Volume 1 Issue 1 Pages
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) has shown its potential in biomedical applications, such as wound healing, cancer treatment and bacterial disinfection. Recent experiments have provided evidence that CAP can also enhance the intracellular uptake of glucose molecules which is important in diabetes therapy. In this respect, it is essential to understand the underlying mechanisms of intracellular glucose uptake induced by CAP, which is still unclear. Hence, in this study we try to elucidate the possible mechanism of glucose uptake by cells by performing computer simulations. Specifically, we study the transport of glucose molecules through native and oxidized membranes. Our simulation results show that the free energy barrier for the permeation of glucose molecules across the membrane decreases upon increasing the degree of oxidized lipids in the membrane. This indicates that the glucose permeation rate into cells increases when the CAP oxidation level in the cell membrane is increased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2571-6182 ISBN Additional Links UA library record
Impact Factor (up) Times cited Open Access OpenAccess
Notes The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ plasma1010011c:irua:152176 Serial 4990
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Altantzis, T.; De Backer, A.; Van Aert, S.; Bals, S.
Title Recent breakthroughs in scanning transmission electron microscopy of small species Type A1 Journal article
Year 2018 Publication Advances in Physics: X Abbreviated Journal Advances in Physics: X
Volume 3 Issue 3 Pages 1480420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Over the last decade, scanning transmission electron microscopy has become one of the most powerful tools to characterise nanomaterials at the atomic scale. Often, the ultimate goal is to retrieve the three-dimensional structure, which is very challenging since small species are typically sensitive to electron irradiation. Nevertheless, measuring individual atomic positions is crucial to understand the relation between the structure and physicochemical properties of these (nano)materials. In this review, we highlight the latest approaches that are available to reveal the 3D atomic structure of small species. Finally, we will provide an outlook and will describe future challenges where the limits of electron microscopy will be pushed even further.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441619500001 Publication Date 2018-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2374-6149 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 8 Open Access OpenAccess
Notes This work was supported by the Research Foundation Flanders (FWO, Belgium) under Grant G.0368.15N, G.0369.15N, and G.0267.18N, by personal FWO Grants to K. H. W. van den Bos, T. Altantzis, and A. De Backer, and the European Research Council under Grant 335078 COLOURATOM to S. Bals. The authors would like to thank the colleagues who have contributed to this work over the years, including A. M. Abakumov, K. J. Batenburg, E. Countiño-Gonzalez, C. de Mello Donega, R. Erni, J. J. Geuchies, B. Goris, J. Hofkens, L. Jones, P. Lievens, L. M. Liz-Marzán, I. Lobato, G. T. Martinez, P. D. Nellist, B. Partoens, M. B. J. Roeffaers, M.D. Rossell, B. Schoeters, M. J. Van Bael, W. van der Stam, M. van Huis, G. Van Tendeloo, D. Vanmaekelbergh, and N. Winckelmans. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:152820UA @ admin @ c:irua:152820 Serial 5007
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Trenchev, G.; Wang, W.
Title Modeling for a Better Understanding of Plasma-Based CO2 Conversion Type H1 Book Chapter
Year 2018 Publication Plasma Chemistry and Gas Conversion Abbreviated Journal
Volume Issue Pages
Keywords H1 Book Chapter; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This chapter discusses modeling efforts for plasma-based CO2 conversion, which are needed to obtain better insight in the underlying mechanisms, in order to improve this application. We will discuss two types of (complementary) modeling efforts that are most relevant, that is, (i) modeling of the detailed plasma chemistry by zero-dimensional (0D) chemical kinetic models and (ii) modeling of reactor design, by 2D or 3D fluid dynamics models. By showing some characteristic calculation results of both models, for CO2 splitting and in combination with a H-source, and for packed bed DBD and gliding arc plasma, we can illustrate the type of information they can provide.
Address
Corporate Author Thesis
Publisher IntechOpen Place of Publication Rijeka Editor Britun, N.; Silva, T.
Language Wos Publication Date 2018-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @ Bogaerts18c:irua:155915 Serial 5142
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Gorbanev, Y.; Dewilde, S.; Smits, E.; Bogaerts, A.
Title Reduction of Human Glioblastoma Spheroids Using Cold Atmospheric Plasma: The Combined Effect of Short- and Long-Lived Reactive Species Type A1 Journal article
Year 2018 Publication Cancers Abbreviated Journal Cancers
Volume 10 Issue 11 Pages 394
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a promising technology against multiple types of cancer. However, the current findings on the effect of CAP on two-dimensional glioblastoma cultures do not consider the role of the tumour microenvironment. The aim of this study was to determine the ability of CAP to reduce and control glioblastoma spheroid tumours in vitro . Three-dimensional glioblastoma spheroid tumours (U87-Red, U251-Red) were consecutively treated directly and indirectly with a CAP using dry He, He + 5% H 2 O or He + 20% H 2 O. The cytotoxicity and spheroid shrinkage were monitored using live imaging. The reactive oxygen and nitrogen species produced in phosphate buffered saline (PBS) were measured by electron paramagnetic resonance (EPR) and colourimetry. Cell migration was also assessed. Our results demonstrate that consecutive CAP treatments (He + 20% H 2 O) substantially shrank U87-Red spheroids and to a lesser degree, U251-Red spheroids. The cytotoxic effect was due to the short- and long-lived species delivered by CAP: they inhibited spheroid growth, reduced cell migration and decreased proliferation in CAP-treated spheroids. Direct treatments were more effective than indirect treatments, suggesting the importance of CAP-generated, short-lived species for the growth inhibition and cell cytotoxicity of solid glioblastoma tumours. We concluded that CAP treatment can effectively reduce glioblastoma tumour size and restrict cell migration, thus demonstrating the potential of CAP therapies for glioblastoma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451307700001 Publication Date 2018-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited Open Access OpenAccess
Notes The authors thank Paul Cos (Department of Pharmaceutical Sciences, University of Antwerp) for providing EPR equipment and Christophe Hermans for his help with the immunohistochemical experiments. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:154871 Serial 5065
Permanent link to this record
 

 
Author Yang, C.; Batuk, M.; Jacquet, Q.; Rousse, G.; Yin, W.; Zhang, L.; Hadermann, J.; Abakumov, A.M.; Cibin, G.; Chadwick, A.; Tarascon, J.-M.; Grimaud, A.
Title Revealing pH-Dependent Activities and Surface Instabilities for Ni-Based Electrocatalysts during the Oxygen Evolution Reaction Type A1 Journal article
Year 2018 Publication ACS energy letters Abbreviated Journal Acs Energy Lett
Volume Issue Pages 2884-2890
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multiple electrochemical processes are involved at the catalyst/ electrolyte interface during the oxygen evolution reaction (OER). With the purpose of elucidating the complexity of surface dynamics upon OER, we systematically studied two Ni-based crystalline oxides (LaNiO3−δ and La2Li0.5Ni0.5O4) and compared them with the state-of-the-art Ni−Fe (oxy)- hydroxide amorphous catalyst. Electrochemical measurements such as rotating ring disk electrode (RRDE) and electrochemical quartz microbalance microscopy (EQCM) coupled with a series of physical characterizations including transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) were conducted to unravel the exact pH effect on both the OER activity and the catalyst stability. We demonstrate that for Ni-based crystalline catalysts the rate for surface degradation depends on the pH and is greater than the rate for surface reconstruction. This behavior is unlike that for the amorphous Ni oxyhydroxide catalyst, which is found to be more stable and pH-independent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453805100005 Publication Date 2018-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2380-8195 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited Open Access Not_Open_Access: Available from 06.11.2019
Notes C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC GrantProject 670116-ARPEMA. A.G. acknowledges financial support from the ANR MIDWAY (Project ID ANR-17-CE05- 0008). We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:155046 Serial 5067
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L.
Title Electron microscopy study of twinning in the Ni5Al3 bainitic phase Type A3 Journal Article
Year 1994 Publication TMS Abbreviated Journal
Volume Issue Pages
Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract This contribution describes conventional and high resolution electron microscopy results on the different twinning arrangements in NisAl3 precipitates grown inside the B2 austenite phase. Short annealings introduce self-accommodating three-pointed star shaped precipitates consisting of twin related parts of different variants of the NisAl3 structure. Longer annealings result in plates growing separately from these wings and developing microtwinning in order to accommodate stress built-up at the interfaces with the surrounding matrix.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor (up) Times cited Open Access
Notes Approved no
Call Number EMAT @ emat @ Serial 5055
Permanent link to this record
 

 
Author Schryvers, D.; Van Landuyt, J.
Title Electron microscopy study of twin sequences and branching in NissAl34 3R martensite Type A3 Journal Article
Year 1992 Publication ICOMAT Abbreviated Journal
Volume Issue Pages
Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Microtwin sequences in Ni66Al34 martensite plates of different size were investigated by electron microscopy. Although mostly irregular sequences were observed an average twin width w can be determined which increases with twin length L following the expected relation w ~ sqrt(L). High resolution electron microscopy was used to study the twin branching close to the plate boundaries and an atomic model for the branching of a microtwin and the changes in twin thickness is suggested
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor (up) Times cited Open Access
Notes Approved no
Call Number EMAT @ emat @ Serial 5054
Permanent link to this record
 

 
Author Tanner, L.E.; Shapiro, S.M.; Krumhansl, J.A; Schryvers, D.; Noda, Y.; Yamada, Y.; Barsch, G.R.; Gooding, R.; Moss, S.C.
Title Firsto order phase transformation in the Ni-Al system Type A3 Journal Article
Year 1992 Publication Metallurgy and Ceramics Abbreviated Journal
Volume Issue Pages
Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract First-order displacive phase transformations in alloys and compounds are of high technological importance. We have studied this class of phase transformation in the high-temperature-stable Ni-Al f32(B2) phase as a function of composition, temperature, and stress using transmission electron microscopy and neutron scattering. The results show in detail the direct relationship between the unusually low energies of the transformation-related phonon modes and the development of pre-transformation microstructures (strain-embryos, etc.) via anharmonic coupling processes that ultimately lead to the nucleation and growth of the low-temperature martensitic phases. With these results, it is now possible to develop effective models for nonclassical heterogeneous nucleation of martensite transformations in bulk materials. This tills a critical gap and sets the stage for us to proceed in developing a more global understanding of condensed matter transformations including the coupling of displacive with replacive mechanisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links
Impact Factor (up) Times cited Open Access
Notes Approved no
Call Number EMAT @ emat @ Serial 5053
Permanent link to this record
 

 
Author Shah, J.; Wang, W.; Bogaerts, A.; Carreon, M.L.
Title Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms Type A1 Journal article
Year 2018 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
Volume 1 Issue 9 Pages 4824-4839
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nonthermal plasma is a promising alternative for ammonia synthesis at gentle conditions. Metal meshes of Fe, Cu, Pd, Ag, and Au were employed as catalysts in radio frequency plasma for ammonia synthesis. The energy yield for all these transition metal catalysts ranged between 0.12 and 0.19 g-NH3/kWh at 300 W and, thus, needs further improvement. In addition, a semimetal, pure gallium, was used for the first time as catalyst for ammonia synthesis, with energy yield of 0.22 g-NH3/kWh and with a maximum yield of ∼10% at 150 W. The emission spectra, as well as computer simulations, revealed hydrogen recombination as a primary governing parameter, which depends on the concentration or flux of H atoms in the plasma and on the catalyst surface. The simulations helped to elucidate the underlying mechanism, implicating the dominance of surface reactions and surface adsorbed species. The rate limiting step appears to be NH2 formation on the surface of the reactor wall and on the catalyst surface, which is different from classical catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458706500048 Publication Date 2018-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes M.L.C. acknowledges financial support from The University of Tulsa Faculty Startup Funds and The University of Tulsa Faculty Development Summer Fellowship Grant (FDSF). A.B. acknowledges financial support from the Excellence of Science program of the Fund for Scientific Research (FWO-FNRS; Grant no. G0F91618N; EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:153804 Serial 5051
Permanent link to this record
 

 
Author Razzokov, J.; Naderi, S.; van der Schoot, P.
Title Nanoscale insight into silk-like protein self-assembly: effect of design and number of repeat units Type A1 Journal article
Year 2018 Publication Physical biology Abbreviated Journal Phys. Biol.
Volume 15 Issue 6 Pages 066010
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract By means of replica exchange molecular dynamics simulations we investigate how the length of a silk-like, alternating diblock oligopeptide influences its secondary and quaternary structure. We carry out simulations for two protein sizes consisting of three and five blocks, and study the stability of a single protein, a dimer, a trimer and a tetramer. Initial configurations of our simulations are β-roll and β-sheet structures. We find that for the triblock the secondary and quaternary structures upto and including the tetramer are unstable: the proteins melt into random coil structures and the aggregates disassemble either completely or partially. We attribute this to the competition between conformational entropy of the proteins and the formation of hydrogen bonds and hydrophobic interactions between proteins. This is confirmed by our simulations on the pentablock proteins, where we find that, as the number of monomers in the aggregate increases, individual monomers form more hydrogen bonds whereas their solvent accessible surface area decreases. For the pentablock β-sheet protein, the monomer and the dimer melt as well, although for the β-roll protein only the monomer melts. For both trimers and tetramers remain stable. Apparently, for these the entropy loss of forming β-rolls and β-sheets is compensated for in the free-energy gain due to the hydrogen-bonding and hydrophobic interactions. We also find that the middle monomers in the trimers and tetramers are conformationally much more stable than the ones on the top and the bottom. Interestingly, the latter are more stable on the tetramer than on the trimer, suggesting that as the number of monomers increases protein-protein interactions cooperatively stabilize the assembly.

According to our simulations, the β-roll and β-sheet aggregates must be approximately equally

stable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444467000001 Publication Date 2018-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1478-3975 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 1 Open Access OpenAccess
Notes The work of J Razzokov is supported by Jepa-Limmat Foundation. We thank Sarah Harris (University of Leeds) and Alexey Lyulin (Eindhoven University of Technology), for useful discussions and advice on the simulations. Eindhoven University of Technology is thanked by J Razzokov for their hospitality. We are grateful for computer time provided by the Dutch National Computing Facilities at the LISA facility at SURFsara. The work of S Naderi forms part of the research program of the Dutch Polymer Institute (DPI, Project No. 698). This work was supported by NWO Exacte Wetenschappen (Physical Sciences) for the use of supercomputer facilities, with financial support (Netherlands Organization for Scientific Research, NWO). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:153803c:irua:153596 Serial 5050
Permanent link to this record
 

 
Author Schryvers, D.; Tanner, L.E.
Title On the phase-like nature of the 7M structure in Ni-Al Type A3 Journal Article
Year 1994 Publication Ecomaterials Abbreviated Journal
Volume Issue Pages 849-852
Keywords A3 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The existence of the (52) stacking of the 7M martensite structure in Ni-Al is discussed in view of different experimental observations relating this structure to the premartensitic anomalies. It is concluded that the extreme fineness of the twinning is inherited from the wavelength of the premartensitic anomalies, while, given this dimension, the actual stacking tries to comply with stress free habit plane conditions by choosing the specific (52) stacking.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Yamamoto, R.; Furubayashi, E.; Doi, Y.; Fang, R.; Liu, B.; Otsuka, K.; Liu, C.T.; Shimizu, K.; Suzuki, Y.; Van Humbeeck, J.; Fukai, Y.; Ono, S.; Suda, S.
Language Wos Publication Date 2013-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4832-8381-4 Additional Links
Impact Factor (up) Times cited Open Access
Notes Approved no
Call Number EMAT @ emat @ Serial 5052
Permanent link to this record
 

 
Author Charalampopoulou, E.; Delville, R.; Verwerft, M.; Lambrinou, K.; Schryvers, D.
Title Transmission electron microscopy study of complex oxide scales on DIN 1.4970 steel exposed to liquid Pb-Bi eutectic Type A1 Journal article
Year 2019 Publication Corrosion science Abbreviated Journal Corrosion Science
Volume 147 Issue Pages 22-31
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The deployment of Gen-IV lead-cooled fast reactors requires a good compatibility between the selected structural/cladding steels and the inherently corrosive heavy liquid metal coolant. An effective liquid metal corrosion mitigation strategy involves the in-situ steel passivation in contact with the oxygen-containing Pb-alloy coolant. Transmission electron microscopy was used in this work to study the multi-layered oxide scales forming on an austenitic stainless steel fuel cladding exposed to oxygen-containing (CO ≈ 10−6 mass%) static liquid leadbismuth eutectic (LBE) for 1000 h between 400 and 500 °C. The oxide scale constituents were analyzed, including the intertwined phases comprising the innermost biphasic layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456902100003 Publication Date 2018-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010938X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 5 Open Access OpenAccess
Notes The authors would like to thank J. Joris for the technical support during corrosion testing and J. Lim for the manufacturing and calibration of the oxygen sensors and oxygen pumps used in this work. E. Charalampopoulou personally thanks H. Heidari, S. Pourbabak, A. Orekhov (EMAT) and N. Cautaerts (EMAT, SCK•CEN), for their valuable help with the training of the FEI Tecnai Osiris S/TEM and Jeol 3000 S/ TEM, respectively, as well as S. Van den Broeck (EMAT), J. Pakarinen (SCK•CEN) and W. Van Renterghem (SCK•CEN) for FIB sample preparation. Moreover, the authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:157541 Serial 5164
Permanent link to this record
 

 
Author Khalilov, U.; Vets, C.; Neyts, E.C.
Title Molecular evidence for feedstock-dependent nucleation mechanisms of CNTs Type A1 Journal article
Year 2019 Publication Nanoscale Horizons Abbreviated Journal Nanoscale Horiz.
Volume 4 Issue 3 Pages 674-682
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomic scale simulations have been shown to be a powerful tool for elucidating the growth mechanisms of carbon nanotubes. The growth picture is however not entirely clear yet due to the gap between current simulations and real experiments. We here simulate for the first time the nucleation and subsequent growth of single-wall carbon nanotubes (SWNTs) from oxygen-containing hydrocarbon feedstocks using the hybrid Molecular Dynamics/Monte Carlo technique. The underlying nucleation mechanisms of Ni-catalysed SWNT growth are discussed in detail. Specifically, we find that as a function of the feedstock, different carbon fractions may emerge as the main growth species, due to a competition between the feedstock decomposition, its rehydroxylation and its contribution to etching of the growing SWNT. This study provides a further understanding of the feedstock effects in SWNT growth in comparison with available experimental evidence as well as with<italic>ab initio</italic>and other simulation data, thereby reducing the simulation–experiment gap.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471816500011 Publication Date 2019-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2055-6756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 1 Open Access Not_Open_Access: Available from 03.01.2020
Notes Fonds Wetenschappelijk Onderzoek, 12M1318N 1S22516N ; The authors gratefully acknowledge financial support from the Research Foundation Flanders (FWO), Belgium (Grant numbers 12M1318N and 1S22516N). The work was carried out in part using the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by FWO and the Flemish Government (Department EWI). We thank Prof. A. C. T. van Duin for sharing the reax-code and forcefield parameters. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159658 Serial 5169
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Samaee, V.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D.
Title In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires Type A1 Journal article
Year 2019 Publication Shape memory and superelasticity Abbreviated Journal Shap. Mem. Superelasticity
Volume 5 Issue 2 Pages 154-162
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In-situ transmission electron microscopy tensile straining is used to study the stress induced martensitic transformation in Ni50.8Ti49.2. Two microwire samples with different heat treatment are investigated from which one single crystal and three polycrystalline TEM specimens, the latter with micro- and nano-size grains, have been produced. The measured Young’s modulus for all TEM specimens is around 70 GPa, considerably higher than the averaged 55 GPa of the original microwire sample. The height of the superelastic stress plateau shows an inverse relationship with the specimen thickness for the polycrystalline specimens. Martensite starts nucleating within the elastic region of the stress–strain curve and on the edges of the specimens while also grain boundaries act as nucleation sites in the polycrystalline specimens. When a martensite plate reaches a grain boundary in the polycrystalline specimen, it initiates the transformation in the neighboring grain at the other side of the grain boundary. In later stages martensite plates coalesce at higher loads in the stress plateau. In highly strained specimens, residual martensite remains after release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472940200002 Publication Date 2019-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes Saeid Pourbabak likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. This work was also made possible through the AUHA13009 Grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:159989 Serial 5177
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D.
Title First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.
Volume 4 Issue 14 Pages 813-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466846700004 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020
Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W.
Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.
Volume 2 Issue 2 Pages 4067-4074
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477917700006 Publication Date 2019-05-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 32 Open Access OpenAccess
Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184
Permanent link to this record
 

 
Author Gasparotto, A.; Maccato, C.; Sada, C.; Carraro, G.; Kondarides, D.I.; Bebelis, S.; Petala, A.; La Porta, A.; Altantzis, T.; Barreca, D.
Title Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO2for Photoelectrochemical Water Splitting Type A1 Journal Article
Year 2019 Publication Advanced Sustainable Systems Abbreviated Journal Adv. Sustainable Syst.
Volume Issue Pages 1900046
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract The utilization of solar radiation to trigger photoelectrochemical (PEC) water splitting has gained interest for sustainable energy production. In this study, attention is focused on the development of ZnO–TiO2 nanocomposite photoanodes. The target systems are obtained by growing porous arrays of highly crystalline, elongated ZnO nanostructures on indium tin oxide (ITO) by chemical vapor deposition. Subsequently, the obtained nanodeposits are functionalized with TiO2 via radio frequency-sputtering for different process durations, and subjected to final annealing in air. Characterization results demonstrate the successful formation of high purity composite systems in which the surface of ZnO nanostructures is decorated by ultra-small amounts of amorphous titania, whose content can be conveniently tailored as a function of deposition time. Photocurrent density measurements in sunlight triggered water splitting highlight a remarkable performance enhancement with respect to single-phase zinc and titanium oxides, with up to a threefold photocurrent increase compared to bare ZnO. These results, mainly traced back to the formation of ZnO/TiO2 heterojunctions yielding an improved photocarrier separation, show that the target nanocomposites are attractive photoanodes for efficient PEC water splitting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-7486 ISBN Additional Links
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes This work was financially supported by Padova University DOR 2016–2019, P-DiSC #03BIRD2016-UNIPD, and #03BIRD2018-UNIPD projects and ACTION post-doc fellowship. A.G. acknowledges AMGAFoundation and INSTM Consortium. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). Thanks are also due to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: NA
Call Number EMAT @ emat @ Serial 5186
Permanent link to this record
 

 
Author Snoeckx, R.; Van Wesenbeeck, K.; Lenaerts, S.; Cha, M.S.; Bogaerts, A.
Title Suppressing the formation of NOxand N2O in CO2/N2dielectric barrier discharge plasma by adding CH4: scavenger chemistry at work Type A1 Journal article
Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal Sustainable Energy Fuels
Volume 3 Issue 6 Pages 1388-1395
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract The need for carbon negative technologies led to the development of a wide array of novel CO<sub>2</sub>conversion techniques. Most of them either rely on high temperatures or generate highly reactive O species, which can lead to the undesirable formation of NO<sub>x</sub>and N<sub>2</sub>O when the CO<sub>2</sub>feeds contain N<sub>2</sub>. Here, we show that, for plasma-based CO<sub>2</sub>conversion, adding a hydrogen source, as a chemical oxygen scavenger, can suppress their formation,<italic>in situ</italic>. This allows the use of low-cost N<sub>2</sub>containing (industrial and direct air capture) feeds, rather than expensive purified CO<sub>2</sub>. To demonstrate this, we add CH<sub>4</sub>to a dielectric barrier discharge plasma used for converting impure CO<sub>2</sub>. We find that when adding a stoichiometric amount of CH<sub>4</sub>, 82% less NO<sub>2</sub>and 51% less NO are formed. An even higher reduction (96 and 63%) can be obtained when doubling this amount. However, in that case the excess radicals promote the formation of by-products, such as HCN, NH<sub>3</sub>and CH<sub>3</sub>OH. Thus, we believe that by using an appropriate amount of chemical scavengers, we can use impure CO<sub>2</sub>feeds, which would bring us closer to ‘real world’ conditions and implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469258600021 Publication Date 2019-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2398-4902 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G0F9618N ; Universiteit Antwerpen; King Abdullah University of Science and Technology, BAS/1/1384-01-01 ;The research reported in this publication was supported by funding from the “Excellence of Science Program” (Fund for Scientic Research Flanders (FWO): grant no. G0F9618N; EOS ID: 30505023). The authors R. S. and M. S. C. acknowledge nancial support from King Abdullah University of Science and Technology (KAUST), under award number BAS/1/1384-01-01. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160268 Serial 5188
Permanent link to this record
 

 
Author Mourdikoudis, S.; Montes-Garcia, V.; Rodal-Cedeira, S.; Winckelmans, N.; Perez-Juste, I.; Wu, H.; Bals, S.; Perez-Juste, J.; Pastoriza-Santos, I.
Title Highly porous palladium nanodendrites : wet-chemical synthesis, electron tomography and catalytic activity Type A1 Journal article
Year 2019 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal
Volume 48 Issue 48 Pages 3758-3767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A simple procedure to obtain highly porous hydrophilic palladium nanodendrites in one-step is described. The synthetic strategy is based on the thermal reduction of a Pd precursor in the presence of a positively charged polyelectrolyte such as polyethylenimine (PEI). Advanced electron microscopy techniques combined with X-ray diffraction (XRD), thermogravimetry and BET analysis demonstrate the polycrystalline nature of the nanodendrites as well as their high porosity and active surface area, facilitating a better understanding of their unique morphology. Besides, catalytic studies performed using Raman scattering and UV-Vis spectroscopies revealed that the nanodendrites exhibit a superior performance as recyclable catalysts towards hydrogenation reaction compared to other noble metal nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461088700027 Publication Date 2019-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 23 Open Access OpenAccess
Notes ; This work was supported by the Ministerio de Economia y Competitividad (MINECO, Spain) under the Grant MAT2016-77809-R, Xunta de Galicia (GRC ED431C 2016-048 and Centro Singular de Investigacion de Galicia (ED431G/02)) and Fundacion Ramon Areces (SERSforSafety). S. M. acknowledges funding from the General Secretariat for Research and Technology in Greece (Project PE4 (1546)). S. B. and N. W. acknowledge financial support by the European Research Council (ERC Starting Grant #335078-COLOURATOMS). We thank the EPSRC CNIE Research Facility (EPSRC Award, EP/K038656/1) at the University College London for the collection of the BET data. Authors thank J. Millos for the XRD measurements. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158530 Serial 5251
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Hammerschmid, D.; Privat-Maldonado, A.; Dewilde, S.; Bogaerts, A.
Title Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 8 Pages 1109
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Melittin (MEL), a small peptide component of bee venom, has been reported to exhibit anti-cancer effects in vitro and in vivo. However, its clinical applicability is disputed because of its non-specific cytotoxicity and haemolytic activity in high treatment doses. Plasma-treated phosphate buffered saline solution (PT-PBS), a solution rich in reactive oxygen and nitrogen species (RONS) can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. Thus, PT-PBS could be used in combination with MEL to facilitate its access into cancer cells and to reduce the required therapeutic dose. The aim of our study is to determine the reduction of the effective dose of MEL required to eliminate cancer cells by its combination with PT-PBS. For this purpose, we have optimised the MEL threshold concentration and tested the combined treatment of MEL and PT-PBS on A375 melanoma and MCF7 breast cancer cells, using in vitro, in ovo and in silico approaches. We investigated the cytotoxic effect of MEL and PT-PBS alone and in combination to reveal their synergistic cytological effects. To support the in vitro and in ovo experiments, we showed by computer simulations that plasma-induced oxidation of the phospholipid bilayer leads to a decrease of the free energy barrier for translocation of MEL in comparison with the non-oxidized bilayer, which also suggests a synergistic effect of MEL with plasma induced oxidation. Overall, our findings suggest that MEL in combination with PT-PBS can be a promising combinational therapy to circumvent the non-specific toxicity of MEL, which may help for clinical applicability in the future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000484438000069 Publication Date 2019-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 1 Open Access
Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO), grant number 12J5617N. We are thankful to Maksudbek Yusupov for his valuable discussions, and to the Center for Oncological Research (CORE), for providing the facilities for the experimental work. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the University Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:161630 Serial 5286
Permanent link to this record
 

 
Author Gorbanev, Y.; Golda, J.; Gathen, V.S.; Bogaerts, A
Title Applications of the COST Plasma Jet: More than a Reference Standard Type A1 Journal article
Year 2019 Publication Plasma Abbreviated Journal Plasma
Volume 2 Issue 3 Pages 316-327
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2571-6182 ISBN Additional Links UA library record
Impact Factor (up) Times cited Open Access
Notes We would like to thank Deborah O’Connell (York Plasma Institute, Department of Physics, University of York, United Kingdom) and Angela Privat-Maldonado (PLASMANT, University of Antwerp) for useful discussions. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:161628 Serial 5287
Permanent link to this record
 

 
Author Bekeschus, S.; Freund, E.; Spadola, C.; Privat-Maldonado, A.; Hackbarth, C.; Bogaerts, A.; Schmidt, A.; Wende, K.; Weltmann, K.-D.; von Woedtke, T.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.
Title Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis Type A1 Journal article
Year 2019 Publication Cancers Abbreviated Journal Cancers
Volume 11 Issue 9 Pages 1237
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000489719000022 Publication Date 2019-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 4 Open Access
Notes The authors acknowledge that this work was supported by grants funded by the German Federal Ministry of Education and Research (BMBF), grant number 03Z22DN11. We want to thank the Research Foundation – Flanders (FWO) for providing funding to APM under the “long stay abroad” scheme (grant code V415618N). APM and AB acknowledge financial support from the Methusalem project. Technical support by Felix Niessner and Antje Janetzko is gratefully acknowledged. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:162106 Serial 5357
Permanent link to this record