|
Record |
Links |
|
Author |
Khalilov, U.; Vets, C.; Neyts, E.C. |
|
|
Title |
Molecular evidence for feedstock-dependent nucleation mechanisms of CNTs |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Nanoscale Horizons |
Abbreviated Journal |
Nanoscale Horiz. |
|
|
Volume |
4 |
Issue |
3 |
Pages |
674-682 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Atomic scale simulations have been shown to be a powerful tool for elucidating the growth mechanisms of carbon nanotubes. The growth picture is however not entirely clear yet due to the gap between current simulations and real experiments. We here simulate for the first time the nucleation and subsequent growth of single-wall carbon nanotubes (SWNTs) from oxygen-containing hydrocarbon feedstocks using the hybrid Molecular Dynamics/Monte Carlo technique. The underlying nucleation mechanisms of Ni-catalysed SWNT growth are discussed in detail. Specifically, we find that as a function of the feedstock, different carbon fractions may emerge as the main growth species, due to a competition between the feedstock decomposition, its rehydroxylation and its contribution to etching of the growing SWNT. This study provides a further understanding of the feedstock effects in SWNT growth in comparison with available experimental evidence as well as with<italic>ab initio</italic>and other simulation data, thereby reducing the simulation–experiment gap. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000471816500011 |
Publication Date |
2019-01-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2055-6756 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
1 |
Open Access |
Not_Open_Access: Available from 03.01.2020
|
|
|
Notes |
Fonds Wetenschappelijk Onderzoek, 12M1318N 1S22516N ; The authors gratefully acknowledge financial support from the Research Foundation Flanders (FWO), Belgium (Grant numbers 12M1318N and 1S22516N). The work was carried out in part using the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by FWO and the Flemish Government (Department EWI). We thank Prof. A. C. T. van Duin for sharing the reax-code and forcefield parameters. |
Approved |
Most recent IF: NA |
|
|
Call Number |
PLASMANT @ plasmant @UA @ admin @ c:irua:159658 |
Serial |
5169 |
|
Permanent link to this record |