toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Akbali, B.; Yagmurcukardes, M.; Peeters, F.M.; Lin, H.-Y.; Lin, T.-Y.; Chen, W.-H.; Maher, S.; Chen, T.-Y.; Huang, C.-H. pdf  doi
openurl 
  Title Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations Type A1 Journal article
  Year (up) 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 29 Pages 16289-16295  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report here the efficacy of surface-enhanced Raman spectroscopy (SERS) measurements as a probe for molecular orientation. 4-Aminobenzoic acid (PABA) on a surface consisting of silver (Ag) nanoparticles (NPs) is investigated. We find that the orientation of the PABA molecule on the SERS substrate is estimated based on the relative change in the magnitude of the C-H stretching bands on the SERS substrate, and it is found that the molecule assumes a horizontal orientation on the Ag-NP surface. The strong molecule-metal interaction is determined by an abnormal enhanced SERS band appearing at 980 cm(-1), and the peak is assigned to an out-of-plane amine vibrational mode, which is supported by our ab initio calculations. DFT-based Raman activity calculations corroborate the SERS results, revealing that (i) the PABA molecule attaches to the surface of Ag-NPs with its alpha dimers rather than single-molecule binding and (ii) the molecule preserves its alpha dimers in an aqueous environment. Our results demonstrate that SERS can be used to gain deeper insights into the molecular orientation on metal nanoparticle surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000680445800055 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:180455 Serial 6978  
Permanent link to this record
 

 
Author Wang, Q.; Lin, S.; Liu, X.; Xu, W.; Xiao, Y.; Liang, C.; Ding, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Photoluminescence and electronic transition behaviors of single-stranded DNA Type A1 Journal article
  Year (up) 2021 Publication Physical Review E Abbreviated Journal Phys Rev E  
  Volume 104 Issue 3 Pages 034412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Due to the potential application of DNA for biophysics and optoelectronics, the electronic energy states and transitions of this genetic material have attracted a great deal of attention recently. However, the fluorescence and corresponding physical process of DNA under optical excitation with photon energies below ultraviolet are still not fully clear. In this work, we experimentally investigate the photoluminescence (PL) properties of single-stranded DNA (ssDNA) samples under near-ultraviolet (NUV) and visible excitations (270 similar to 440 nm). Based on the dependence of the PL peak wavelength (lem) upon the excitation wavelength (lex), the PL behaviors of ssDNA can be approximately classified into two categories. In the relatively short excitation wavelength regime, lem is nearly constant due to exciton-like transitions associated with delocalized excitonic states and excimer states. In the relatively long excitation wavelength range, a linear relation of lem = Alex + B with A 0 or A < 0 can be observed, which comes from electronic transitions related to coupled vibrational-electronic levels. Moreover, the transition channels in different excitation wavelength regimes and the effects of strand length and base type can be analyzed on the basis of these results. These important findings not only can give a general description of the electronic energy states and transitional behaviors of ssDNA samples under NUV and visible excitations, but also can be the basis for the application of DNA in nanoelectronics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703562300002 Publication Date 2021-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.366 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.366  
  Call Number UA @ admin @ c:irua:182517 Serial 7009  
Permanent link to this record
 

 
Author Weiβ, R.; Gritsch, S.; Brader, G.; Nikolic, B.; Spiller, M.; Santolin, J.; Weber, H.K.; Schwaiger, N.; Pluchon, S.; Dietel, K.; Guebitz, G.; Nyanhongo, G. url  doi
openurl 
  Title A biobased, bioactive, low CO₂ impact coating for soil improvers Type A1 Journal article
  Year (up) 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 17 Pages 6501-6514  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 degrees C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 x 10(-3) Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg(-1) product, making it a viable alternative to fossil-based coatings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000683056500001 Publication Date 2021-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.125  
  Call Number UA @ admin @ c:irua:180511 Serial 7558  
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Strkalj, N.; Huang, S.; Halisdemir, U.; Nguyen, M.D.; Jannis, D.; Sarott, M.F.; Eltes, F.; Abel, S.; Spreitzer, M.; Fiebig, M.; Trassin, M.; Fompeyrine, J.; Verbeeck, J.; Huijben, M.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon Type A1 Journal article
  Year (up) 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 265  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO<sub>3</sub>/BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize<italic>c</italic>-axis oriented BaTiO<sub>3</sub>layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy. Optical second harmonic generation measurements signify a predominant out-of-plane polarized state with strongly enhanced net polarization in the tricolor superlattices, as compared to the BaTiO<sub>3</sub>single film and conventional BaTiO<sub>3</sub>/SrTiO<sub>3</sub>superlattice grown on silicon. Meanwhile, this coherent strain in turn suppresses the magnetism of LaMnO<sub>3</sub>as the thickness of BaTiO<sub>3</sub>increases. Our study raises the prospect of designing artificial oxide superlattices on silicon with tailored functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741852200073 Publication Date 2022-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 11 Open Access OpenAccess  
  Notes This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717—ESTEEM3. B.C. is sponsored by Shanghai Sailing Program 21YF1410700. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.T., N.S., M.F.S. and M.F. acknowledge the financial support by the EU European Research Council (Advanced Grant 694955—INSEETO). M.T. acknowledges the Swiss National Science Foundation under Project No. 200021-188414. N.S. acknowledges support under the Swiss National Science Foundation under Project No. P2EZP2-199913. M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-2510, N2-0149 and P2-0091). B.C. acknowledges Prof. C.D.; Prof. F.Y.; Prof. B.T. and Dr. K.J. for valuable discussions.; esteem3reported; esteem3TA Approved Most recent IF: 16.6  
  Call Number EMAT @ emat @c:irua:185179 Serial 6902  
Permanent link to this record
 

 
Author Park, D.-s.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; Verbeeck, J.; Gorfman, S.; Pryds, N.; Muralt, P.; Damjanovic, D. url  doi
openurl 
  Title Induced giant piezoelectricity in centrosymmetric oxides Type A1 Journal article
  Year (up) 2022 Publication Science Abbreviated Journal Science  
  Volume 375 Issue 6581 Pages 653-657  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Giant piezoelectricity can be induced in centrosymmetric oxides by controlling the long-range motion of oxygen vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753975300036 Publication Date 2022-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 51 Open Access OpenAccess  
  Notes D.-S.P., V.E., N.P., P.M., and D.D. acknowledge the European Commission for project Biowings H2020 Fetopen 2018-2022 (grant no. 80127). N.P. acknowledges funding from the Villum Fonden for the NEED project (grant no. 00027993) and the Danish Council for Independent Research Technology and Production Sciences for the DFF-Research Project 3 (grant no. 00069B). S.G. acknowledges funding from the Israel Science Foundation (research grant 1561/18 and equipment grant 2247/18). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 823717 – ESTEEM3. D.C. acknowledges TOP/BOF funding of the University of Antwerp. M.H. and P.M. acknowledge funding from the Swiss National Science Foundation (grant nos. 200020-162664/1 and 200021-143424/1); esteem3reported; esteem3TA Approved Most recent IF: 56.9  
  Call Number EMAT @ emat @c:irua:185876 Serial 6909  
Permanent link to this record
 

 
Author Lu, W.; Cui, W.; Zhao, W.; Lin, W.; Liu, C.; Van Tendeloo, G.; Sang, X.; Zhao, W.; Zhang, Q. pdf  doi
openurl 
  Title In situ atomistic insight into magnetic metal diffusion across Bi0.5Sb1.5Te3 quintuple layers Type A1 Journal article
  Year (up) 2022 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue Pages 2102161  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diffusion and occupancy of magnetic atoms in van der Waals (VDW) layered materials have significant impact on applications such as energy storage, thermoelectrics, catalysis, and topological phenomena. However, due to the weak VDW bonding, most research focus on in-plane diffusion within the VDW gap, while out-of-plane diffusion has rarely been reported. Here, to investigate out-of-plane diffusion in VDW-layered Bi2Te3-based alloys, a Ni/Bi0.5Sb1.5Te3 heterointerface is synthesized by depositing magnetic Ni metal on a mechanically exfoliated Bi0.5Sb1.5Te3 (0001) substrate. Diffusion of Ni atoms across the Bi0.5Sb1.5Te3 quintuple layers is directly observed at elevated temperatures using spherical-aberration-corrected scanning transmission electron microscopy (STEM). Density functional theory calculations demonstrate that the diffusion energy barrier of Ni atoms is only 0.31-0.45 eV when they diffuse through Te-3(Bi, Sb)(3) octahedron chains. Atomic-resolution in situ STEM reveals that the distortion of the Te-3(Bi, Sb)(3) octahedron, induced by the Ni occupancy, drives the formation of coherent NiM (M = Bi, Sb, Te) at the heterointerfaces. This work can lead to new strategies to design novel thermoelectric and topological materials by introducing magnetic dopants to VDW-layered materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000751742300001 Publication Date 2022-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.4  
  Call Number UA @ admin @ c:irua:186421 Serial 6960  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Verloy, R.; Cardenas Delahoz, E.; Lin, A.; Vanlanduit, S.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Cold Atmospheric Plasma Does Not Affect Stellate Cells Phenotype in Pancreatic Cancer Tissue in Ovo Type A1 Journal article
  Year (up) 2022 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 23 Issue 4 Pages 1954  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is a challenging neoplastic disease, mainly due to the development of resistance to radio- and chemotherapy. Cold atmospheric plasma (CAP) is an alternative technology that can eliminate cancer cells through oxidative damage, as shown in vitro, in ovo, and in vivo. However, how CAP affects the pancreatic stellate cells (PSCs), key players in the invasion and metastasis of PDAC, is poorly understood. This study aims to determine the effect of an anti-PDAC CAP treatment on PSCs tissue developed in ovo using mono- and co-cultures of RLT-PSC (PSCs) and Mia PaCa-2 cells (PDAC). We measured tissue reduction upon CAP treatment and mRNA expression of PSC activation markers and extracellular matrix (ECM) remodelling factors via qRT-PCR. Protein expression of selected markers was confirmed via immunohistochemistry. CAP inhibited growth in Mia PaCa-2 and co-cultured tissue, but its effectiveness was reduced in the latter, which correlates with reduced ki67 levels. CAP did not alter the mRNA expression of PSC activation and ECM remodelling markers. No changes in MMP2 and MMP9 expression were observed in RLT-PSCs, but small changes were observed in Mia PaCa-2 cells. Our findings support the ability of CAP to eliminate PDAC cells, without altering the PSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000763630900001 Publication Date 2022-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Hanne Verswyvel for her support with sample collection from the in ovo model and Peter Ponsaerts for providing the facilities for the microscopy studies. Approved Most recent IF: 5.6  
  Call Number PLASMANT @ plasmant @c:irua:187155 Serial 7049  
Permanent link to this record
 

 
Author Lin, A.; De Backer, J.; Quatannens, D.; Cuypers, B.; Verswyvel, H.; De La Hoz, E.C.; Ribbens, B.; Siozopoulou, V.; Van Audenaerde, J.; Marcq, E.; Lardon, F.; Laukens, K.; Vanlanduit, S.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title The effect of local non‐thermal plasma therapy on the<scp>cancer‐immunity</scp>cycle in a melanoma mouse model Type University Hospital Antwerp
  Year (up) 2022 Publication Bioengineering & Translational Medicine Abbreviated Journal Bioengineering & Transla Med  
  Volume Issue Pages  
  Keywords University Hospital Antwerp; A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option. In a melanoma mouse model, direct treatment of tumors with NTP results in reduced tumor burden and prolonged survival. Physical characterization of NTP treatment in situ reveals the deposited NTP energy and temperature associated with therapy response, and whole transcriptome analysis of the tumor identified several modulated pathways. NTP treatment also enhances the cancer-immunity cycle, as immune cells in both the tumor and tumor-draining lymph nodes appear more stimulated to perform their anti-cancer functions. Thus, our data suggest that local NTP therapy stimulates systemic, anti-cancer immunity. We discuss, in detail, how these fundamental insights will help direct the translation of NTP technology into the clinic and inform rational combination strategies to address the challenges in melanoma therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000784103500001 Publication Date 2022-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2380-6761 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Vlaamse regering, 1S67621N 1S76421N G044420N 12S9221N 12S9218N ; The authors would like to thank and acknowledge Christophe Hermans, Ho Wa Lau, and Hilde Lambrechts for their help with sectioning and preparing the IHC slides. The authors would also like to thank Dani Banner for designing the ergonomic NTP applicator handle and Hasan Baysal for 3D printing the pieces used in this experiment. We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Some of the resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) The data that support the findings of this study are available from the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9218N (Abraham Lin), 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaert, and Steve Vanlanduit), 1S76421N (Delphine Quatannens), and 1S67621N (Hanne Verswyvel). Figure 7 was created with BioRender.com. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:187909 Serial 7056  
Permanent link to this record
 

 
Author Monico, L.; Rosi, F.; Vivani, R.; Cartechini, L.; Janssens, K.; Gauquelin, N.; Chezganov, D.; Verbeeck, J.; Cotte, M.; D'Acapito, F.; Barni, L.; Grazia, C.; Buemi, L.P.; Andral, J.-L.; Miliani, C.; Romani, A. url  doi
openurl 
  Title Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1-xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales Type A1 Journal article
  Year (up) 2022 Publication The European Physical Journal Plus Abbreviated Journal Eur Phys J Plus  
  Volume 137 Issue 3 Pages 311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Cadmium red is the name used for denoting a class of twentieth century artists' pigments described by the general formula CdS1-xSex. For their vibrant hues and excellent covering power, a number of renowned modern and contemporary painters, including Jackson Pollock, often used cadmium reds. As direct band gap semiconductors, CdS1-xSex compounds undergo direct radiative recombination (with emissions from the green to orange region) and radiative deactivation from intragap trapping states due to crystal defects, which give rise to two peculiar red-NIR emissions, known as deep level emissions (DLEs). The positions of the DLEs mainly depend on the Se content of CdS1-xSex; thus, photoluminescence and diffuse reflectance vis-NIR spectroscopy have been profitably used for the non-invasive identification of different cadmium red varieties in artworks over the last decade. Systematic knowledge is however currently lacking on what are the parameters related to intrinsic crystal defects of CdS1-xSex and environmental factors influencing the spectral properties of DLEs as well as on the overall (photo)chemical reactivity of cadmium reds in paint matrixes. Here, we present the application of a novel multi-length scale and multi-method approach to deepen insights into the photoluminescence properties and (photo)chemical reactivity of cadmium reds in oil paintings by combining both well established and new non-invasive/non-destructive analytical techniques, including macro-scale vis-NIR and vibrational spectroscopies and micro-/nano-scale advanced electron microscopy mapping and X-ray methods employing synchrotron radiation and conventional sources. Macro-scale vis-NIR spectroscopy data obtained from the in situ non-invasive analysis of nine masterpieces by Gerardo Dottori, Jackson Pollock and Nicolas de Stael allowed classifying the CdS1-xSex-paints in three groups, according to the relative intensity of the two DLE bands. These outcomes, combined with results from micro-/nano-scale electron microscopy mapping and X-ray analysis of a set of CdS1-xSex powders and artificially aged paint mock-ups, indicated that the relative intensity of DLEs is not affected by the morphology, microstructure and local atomic environment of the pigment particles but it is influenced by the presence of moisture. Furthermore, the extensive study of artificially aged oil paint mock-ups permitted us to provide first evidence of the tendency of cadmium reds toward photo-degradation and to establish that the conversion of CdS1-xSex to CdSO4 and/or oxalates is triggered by the oil binding medium and moisture level and depends on the Se content. Based on these findings, we could interpret the localized presence of CdSO4 and cadmium oxalate as alteration products of the original cadmium red paints in two paintings by Pollock.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000765807600002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 3 Open Access OpenAccess  
  Notes g The research was financially supported by the EU FP7 and Horizon 2020 Projects CHARISMA (FP7-INFRASTRUCTURES, GA No. 228330), IPERION-CH (H2020-INFRAIA-2014-2015, GA No. 654028), IPERION-HS (H2020-INFRAIA-2019-1, GA No. 871034) and ESTEEM3 (Research and innovation programme, GA No. 823717) and the Italian project AMIS (Dipartimenti di Eccellenza 2018–2022, funded by MIUR and Perugia University). For the beamtime grants received, we thank ESRF-ID21 (Experiment No. HG156 and in-house beamtimes) and the CERIC-ERIC Research Infrastructure for the investigations at ESRF-BM08 (LISA) beamline (Proposal Id: 20207042). D.C. acknowledges TOP/BOF funding of the University of Antwerp.; esteem3reported; esteem3TA Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:187375 Serial 7060  
Permanent link to this record
 

 
Author Zillner, J.; Boyen, H.-G.; Schulz, P.; Hanisch, J.; Gauquelin, N.; Verbeeck, J.; Kueffner, J.; Desta, D.; Eisele, L.; Ahlswede, E.; Powalla, M. pdf  url
doi  openurl
  Title The role of SnF₂ additive on interface formation in all lead-free FASnI₃ perovskite solar cells Type A1 Journal article
  Year (up) 2022 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 2109649-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tin-based perovskites are promising alternative absorber materials for leadfree perovskite solar cells but need strategies to avoid fast tin (Sn) oxidation. Generally, this reaction can be slowed down by the addition of tin fluoride (SnF2) to the perovskite precursor solution, which also improves the perovskite layer morphology. Here, this work analyzes the spatial distribution of the additive within formamidinium tin triiodide (FASnI(3)) films deposited on top of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layers. Employing time-of-flight secondary ion mass spectrometry and a combination of hard and soft X-ray photoelectron spectroscopy, it is found that Sn F2 preferably accumulates at the PEDOT:PSS/perovskite interface, accompanied by the formation of an ultrathin SnS interlayer with an effective thickness of approximate to 1.2 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000779891000001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 22 Open Access OpenAccess  
  Notes J.Z. and H.-G.B. contributed equally to this work. This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 850937 (PERCISTAND). H.-G.B. and D.D. are very grateful to the Research Foundation Flanders (FWO) for funding the HAXPES-lab instrument within the HERCULES program for Large Research Infrastructure of the Flemish government. P.S. thanks the French Agence Nationale de la Recherche for funding under the contract number ANR-17-MPGA-0012. This work was supported by the Federal Ministry for Economic Affairs and Energy (BMWi) Germany under the contract number 03EE1038A (CAPITANO) and financed by the Ministry of Science, Research and the Arts of Baden-Württemberg as part of the sustainability financing of the projects of the Excellence Initiative II (KSOP). Approved Most recent IF: 19  
  Call Number UA @ admin @ c:irua:187969 Serial 7067  
Permanent link to this record
 

 
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R. url  doi
openurl 
  Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
  Year (up) 2022 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 22 Issue 15 Pages 6268-6275  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831832100001 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 8 Open Access OpenAccess  
  Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8  
  Call Number UA @ admin @ c:irua:189495 Serial 7077  
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. pdf  doi
openurl 
  Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
  Year (up) 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue 6 Pages 2718-2728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819431200001 Publication Date 2022-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189555 Serial 7081  
Permanent link to this record
 

 
Author Lebedev, N.; Huang, Y.; Rana, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J. url  doi
openurl 
  Title Resistance minimum in LaAlO3/Eu1-xLaxTiO3/SrTiO3 heterostructures Type A1 Journal article
  Year (up) 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 7 Pages 075003-75010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we study LaAlO3/Eu1-xLaxTiO3/SrTiO3 structures with nominally x = 0, 0.1 and different thicknesses of the Eu1-xLaxTiO3 layer. We observe that both systems have many properties similar to previously studied LaAlO3/EuTiO3/SrTiO3 and other oxide interfaces, such as the formation of a two-dimensional electron liquid for two unit cells of Eu1-xLaxTiO3; a metal-insulator transition driven by the increase in thickness of the Eu1-xLaxTiO3 layer; the presence of an anomalous Hall effect when driving the systems above the Lifshitz point with a back-gate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing negative gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of the SrTiO3 crystal and the inevitable effects of charge trapping when using back gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834035300001 Publication Date 2022-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes N.L. and J.A. gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme under grant agreement №823717 – ESTEEM3. The QuAnt-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. The authors want to thank M. Stehno, G. Koster, and F.J.G. Roesthuis for useful discussions.; esteem3reported; esteem3TA Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:189674 Serial 7094  
Permanent link to this record
 

 
Author De Backer, J.; Lin, A.; Berghe, W.V.; Bogaerts, A.; Hoogewijs, D. url  doi
openurl 
  Title Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response Type A1 Journal article
  Year (up) 2022 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 55 Issue Pages 102399  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Melanoma arises from pigment-producing cells called melanocytes located in the basal layers of the epidermis of the skin. Cytoglobin (CYGB) is a ubiquitously expressed hexacoordinated globin that is highly enriched in me­lanocytes and frequently downregulated during melanomagenesis. Previously, we showed that non-thermal plasma (NTP)-produced reactive oxygen and nitrogen species (RONS) lead to the formation of an intra­ molecular disulfide bridge that would allow CYGB to function as a redox-sensitive protein. Here, we investigate the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels, and we explore the role of CYGB in determining treatment outcome. Our findings are consistent with previous studies supporting that NTP cytotoxicity is mediated through the production of RONS and leads to apoptotic cell death in melanoma cells. Furthermore, we show that NTP-treated solutions elicit an antioxidant response through the activation of nuclear factor erythroid 2–related factor 2 (NRF2). The knock­ down and overexpression of CYGB respectively sensitizes and protects melanoma cells from RONS-induced apoptotic cell death. The presence of CYGB enhances heme-oxygenase 1 (HO-1) and NRF2 protein expression levels, whereas the absence impairs their expression. Moreover, analysis of the CYGB-dependent transcriptome demonstrates the tumor suppressor long non-coding RNA maternally expressed 3 (MEG3) as a hitherto unde­ scribed link between CYGB and NRF2. Thus, the presence of CYGB, at least in melanoma cells, seems to play a central role in determining the therapeutic outcome of RONS-inducing anticancer therapies, like NTP-treated solutions, possessing both tumor-suppressive and oncogenic features. Hence, CYGB expression could be of in­ terest either as a biomarker or as a candidate for future targeted therapies in melanoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000844595100002 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221 N (Abraham Lin) and G044420 N (Abraham Lin and Annemie Bogaerts). Joey De Backer acknowledges a visiting fellowship from the University of Fribourg. David Hoogewijs acknowledges support by the Swiss National Science Foundation (grants 31003A173000 and 310030207460). Approved Most recent IF: 11.4  
  Call Number PLASMANT @ plasmant @c:irua:190635 Serial 7101  
Permanent link to this record
 

 
Author Oliveira, M.C.; Verswyvel, H.; Smits, E.; Cordeiro, R.M.; Bogaerts, A.; Lin, A. url  doi
openurl 
  Title The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies Type A1 Journal article
  Year (up) 2022 Publication Redox Biology Abbreviated Journal Redox Biol  
  Volume 57 Issue Pages 102503  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physi­ological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current under­ standing of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000871090800004 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes We thank Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted, and the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Founda­tion, the Flemish Government (department EWI) and the University of Antwerp, for providing the computational resources needed for running the simulations. This work was also funded in part by the funded by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work include: 12S9221N (Abraham Lin), G044420N (Abraham Lin and Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). Figs. 1, 4 and 5 were created in BioRender.com. Approved Most recent IF: 11.4  
  Call Number PLASMANT @ plasmant @c:irua:191362 Serial 7112  
Permanent link to this record
 

 
Author Zhang, H.; Pryds, N.; Park, D.-S.; Gauquelin, N.; Santucci, S.; Christensen, D., V.; Jannis, D.; Chezganov, D.; Rata, D.A.; Insinga, A.R.; Castelli, I.E.; Verbeeck, J.; Lubomirsky, I.; Muralt, P.; Damjanovic, D.; Esposito, V. pdf  url
doi  openurl
  Title Atomically engineered interfaces yield extraordinary electrostriction Type A1 Journal article
  Year (up) 2022 Publication Nature Abbreviated Journal  
  Volume 609 Issue 7928 Pages 695-700  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10(-19) m(2) V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties(1,2). Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized delta-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 x 10(-14) m(2) V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000859073900001 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access OpenAccess  
  Notes This research was supported by the BioWings project, funded by the European Union’s Horizon 2020, Future and Emerging Technologies programme (grant no. 801267), and by the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 2 (grant no. 48293). N.P. and D.V.C. acknowledge funding from Villum Fonden for the NEED project (no. 00027993) and from the Danish Council for Independent Research Technology and Production Sciences for the DFF—Research Project 3 (grant no. 00069 B). V.E. acknowledges funding from Villum Fonden for the IRIDE project (no. 00022862). N.G. and J.V. acknowledge funding from the GOA project ('Solarpaint') of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from the FWO Project (no. G093417N) from the Flemish Fund for Scientific Research. D.C. acknowledges TOP/BOF funding from the University of Antwerp. This project has received funding from the European Union’s Horizon 2020 Research Infrastructure—Integrating Activities for Advanced Communities—under grant agreement no. 823717-ESTEEM3. We thank T. D. Pomar and A. J. Bergne for English proofreading.; esteem3reported; esteem3TA Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190576 Serial 7129  
Permanent link to this record
 

 
Author Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P. url  doi
openurl 
  Title On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization Type A1 Journal article
  Year (up) 2022 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 239 Issue Pages 118247-118249  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861076600004 Publication Date 2022-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited 5 Open Access OpenAccess  
  Notes The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. Approved Most recent IF: 9.4  
  Call Number UA @ admin @ c:irua:191432 Serial 7186  
Permanent link to this record
 

 
Author Cunha, D.M.; Gauquelin, N.; Xia, R.; Verbeeck, J.; Huijben, M. url  doi
openurl 
  Title Self-assembled epitaxial cathode-electrolyte nanocomposites for 3D microbatteries Type A1 Journal article
  Year (up) 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 37 Pages 42208-42214  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The downscaling of electronic devices requires rechargeable microbatteries with enhanced energy and power densities. Here, we evaluate self-assembled vertically aligned nano-composite (VAN) thin films as a platform to create high-performance three-dimensional (3D) microelectrodes. This study focuses on controlling the VAN formation to enable interface engineering between the LiMn2O4 cathode and the (Li,La)TiO3 solid electrolyte. Electrochemical analysis in a half cell against lithium metal showed the absence of sharp redox peaks due to the confinement in the electrode pillars at the nanoscale. The (100)-oriented VAN thin films showed better rate capability and stability during extensive cycling due to the better alignment to the Li-diffusion channels. However, an enhanced pseudocapacitive contribution was observed for the increased total surface area within the (110)-oriented VAN thin films. These results demonstrate for the first time the electrochemical behavior of cathode-electrolyte VANs for lithium-ion 3D microbatteries while pointing out the importance of control over the vertical interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000852647100001 Publication Date 2022-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 4 Open Access OpenAccess  
  Notes This research was carried out with the support from the Netherlands Organization for Scientific Research (NWO) under VIDI grant no. 13456. Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:190619 Serial 7206  
Permanent link to this record
 

 
Author Lin, A.; Biscop, E.; Gorbanev, Y.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Toward defining plasma treatment dose : the role of plasma treatment energy of pulsed‐dielectric barrier discharge in dictating in vitro biological responses Type A1 Journal article
  Year (up) 2022 Publication Plasma Processes And Polymers Abbreviated Journal Plasma Process Polym  
  Volume 19 Issue 3 Pages e2100151  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The energy dependence of a pulsed-dielectric barrier discharge (DBD) plasma treatment on chemical species production and biological responses was investigated. We hypothesized that the total plasma energy delivered during treatment encompasses the influence of major application parameters. A microsecond-pulsed DBD system was used to treat three different cancer cell lines and cell viability was analyzed. The energy per pulse was measured and the total plasma treatment energy was controlled by adjusting the pulse frequency, treatment time, and application distance. Our data suggest that the delivered plasma energy plays a predominant role in stimulating a biological response in vitro. This study aids in developing steps toward defining a plasma treatment unit and treatment dose for biomedical and clinical research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711907800001 Publication Date 2021-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.5  
  Call Number UA @ admin @ c:irua:182916 Serial 7219  
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Smits, E.; Lardon, F.; Roeyen, G.; Vanlanduit, S.; Prenen, H.; Peeters, M.; Lin, A.; Deben, C. url  doi
openurl 
  Title Multiparametric tumor organoid drug screening using widefield live-cell imaging for bulk and single-organoid analysis Type A1 Journal article
  Year (up) 2022 Publication Jove-Journal Of Visualized Experiments Abbreviated Journal Jove-J Vis Exp  
  Volume Issue 190 Pages 1-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Patient-derived tumor organoids (PDTOs) hold great promise for preclinical and translational research and predicting the patient therapy response from ex vivo drug screenings. However, current adenosine triphosphate (ATP)-based drug screening assays do not capture the complexity of a drug response (cytostatic or cytotoxic) and intratumor heterogeneity that has been shown to be retained in PDTOs due to a bulk readout. Live-cell imaging is a powerful tool to overcome this issue and visualize drug responses more in-depth. However, image analysis software is often not adapted to the three-dimensionality of PDTOs, requires fluorescent viability dyes, or is not compatible with a 384-well microplate format. This paper describes a semi-automated methodology to seed, treat, and image PDTOs in a high-throughput, 384-well format using conventional, widefield, live-cell imaging systems. In addition, we developed viability marker-free image analysis software to quantify growth rate-based drug response metrics that improve reproducibility and correct growth rate variations between different PDTO lines. Using the normalized drug response metric, which scores drug response based on the growth rate normalized to a positive and negative control condition, and a fluorescent cell death dye, cytotoxic and cytostatic drug responses can be easily distinguished, profoundly improving the classification of responders and non-responders. In addition, drug-response heterogeneity can by quantified from single-organoid drug response analysis to identify potential, resistant clones. Ultimately, this method aims to improve the prediction of clinical therapy response by capturing a multiparametric drug response signature, which includes kinetic growth arrest and cell death quantification. ,  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000928020400010 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1940-087x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.2  
  Call Number UA @ admin @ c:irua:193168 Serial 7271  
Permanent link to this record
 

 
Author Deben, C.; Cardenas De La Hoz, E.; Le Compte, M.; Van Schil, P.; Hendriks, J.M.H.; Lauwers, P.; Yogeswaran, S.K.; Lardon, F.; Pauwels, P.; van Laere, S.; Bogaerts, A.; Smits, E.; Vanlanduit, S.; Lin, A. url  doi
openurl 
  Title OrBITS : label-free and time-lapse monitoring of patient derived organoids for advanced drug screening Type A1 Journal article
  Year (up) 2022 Publication Cellular Oncology (2211-3428) Abbreviated Journal Cell Oncol  
  Volume Issue Pages 1-16  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Background Patient-derived organoids are invaluable for fundamental and translational cancer research and holds great promise for personalized medicine. However, the shortage of available analysis methods, which are often single-time point, severely impede the potential and routine use of organoids for basic research, clinical practise, and pharmaceutical and industrial applications. Methods Here, we developed a high-throughput compatible and automated live-cell image analysis software that allows for kinetic monitoring of organoids, named Organoid Brightfield Identification-based Therapy Screening (OrBITS), by combining computer vision with a convolutional network machine learning approach. The OrBITS deep learning analysis approach was validated against current standard assays for kinetic imaging and automated analysis of organoids. A drug screen of standard-of-care lung and pancreatic cancer treatments was also performed with the OrBITS platform and compared to the gold standard, CellTiter-Glo 3D assay. Finally, the optimal parameters and drug response metrics were identified to improve patient stratification. Results OrBITS allowed for the detection and tracking of organoids in routine extracellular matrix domes, advanced Gri3D (R)-96 well plates, and high-throughput 384-well microplates, solely based on brightfield imaging. The obtained organoid Count, Mean Area, and Total Area had a strong correlation with the nuclear staining, Hoechst, following pairwise comparison over a broad range of sizes. By incorporating a fluorescent cell death marker, infra-well normalization for organoid death could be achieved, which was tested with a 10-point titration of cisplatin and validated against the current gold standard ATP-assay, CellTiter-Glo 3D. Using this approach with OrBITS, screening of chemotherapeutics and targeted therapies revealed further insight into the mechanistic action of the drugs, a feature not achievable with the CellTiter-Glo 3D assay. Finally, we advise the use of the growth rate-based normalised drug response metric to improve accuracy and consistency of organoid drug response quantification. Conclusion Our findings validate that OrBITS, as a scalable, automated live-cell image analysis software, would facilitate the use of patient-derived organoids for drug development and therapy screening. The developed wet-lab workflow and software also has broad application potential, from providing a launching point for further brightfield-based assay development to be used for fundamental research, to guiding clinical decisions for personalized medicine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000898426100001 Publication Date 2022-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3428; 2211-3436 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.6  
  Call Number UA @ admin @ c:irua:192698 Serial 7272  
Permanent link to this record
 

 
Author Birkholzer, Y.A.; Sotthewes, K.; Gauquelin, N.; Riekehr, L.; Jannis, D.; van der Minne, E.; Bu, Y.; Verbeeck, J.; Zandvliet, H.J.W.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title High-strain-induced local modification of the electronic properties of VO₂ thin films Type A1 Journal article
  Year (up) 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue 12 Pages 6020-6028  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000890974900001 Publication Date 2022-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes This work received financial support from the project Green ICT (grant number 400.17.607) of the research program NWA, which is financed by the Dutch Research Council (NWO), Research Foundation Flanders (FWO grant number G0F1320N), and the European Union’s Horizon 2020 research and innovation program within a contract for Integrating Activities for Advanced Communities (grant number 823717 − ESTEEM3). The K2 camera was funded through the Research Foundation Flanders (FWO-Hercules grant number G0H4316N – “Direct electron detector for soft matter TEM”).; esteem3reported; esteem3jra Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192712 Serial 7309  
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal article
  Year (up) 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001129424500001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124  
  Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979  
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Current State of Cold Atmospheric Plasma and Cancer‐Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels Type A1 Journal article
  Year (up) 2023 Publication Advanced Science Abbreviated Journal Adv Sci  
  Volume Issue Pages 2205803  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention

as a well-tolerated cancer treatment that can enhance anti-tumor immune

responses, which are important for durable therapeutic effects. This review

offers a comprehensive and critical summary on the current understanding of

mechanisms in which CAP can assist anti-tumor immunity: induction of

immunogenic cell death, oxidative post-translational modifications of the

tumor and its microenvironment, epigenetic regulation of aberrant gene

expression, and enhancement of immune cell functions. This should provide

a rationale for the effective and meaningful clinical implementation of CAP. As

discussed here, despite its potential, CAP faces different clinical limitations

associated with the current CAP treatment modalities: direct exposure of

cancerous cells to plasma, and indirect treatment through injection of

plasma-treated liquids in the tumor. To this end, a novel modality is proposed:

plasma-treated hydrogels (PTHs) that can not only help overcome some of the

clinical limitations but also offer a convenient platform for combining CAP

with existing drugs to improve therapeutic responses and contribute to the

clinical translation of CAP. Finally, by integrating expertise in biomaterials and

plasma medicine, practical considerations and prospective for the

development of PTHs are offered.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918224200001 Publication Date 2023-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes European Research Council, 714793 ; Fonds Wetenschappelijk Onderzoek, 12S9221N G044420N ; Ministerio de Economía y Competitividad, PID2019‐103892RB‐I00/AEI/10.13039/501100011033 ; Approved Most recent IF: 15.1; 2023 IF: 9.034  
  Call Number PLASMANT @ plasmant @c:irua:193166 Serial 7238  
Permanent link to this record
 

 
Author Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
  Year (up) 2023 Publication Drug resistance updates Abbreviated Journal  
  Volume 67 Issue Pages 100914  
  Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925156500001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 24.3 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved Most recent IF: 24.3; 2023 IF: 10.906  
  Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240  
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
  Year (up) 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000964269500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number UA @ admin @ c:irua:194897 Serial 7269  
Permanent link to this record
 

 
Author Benedet, M.; Andrea Rizzi, G.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Maccato, C.; Barreca, D. pdf  url
doi  openurl
  Title Functionalization of graphitic carbon nitride systems by cobalt and cobalt-iron oxides boosts solar water oxidation performances Type A1 Journal article
  Year (up) 2023 Publication Applied surface science Abbreviated Journal  
  Volume 618 Issue Pages 156652  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The ever-increasing energy demand from the world population has made the intensive use of fossil fuels an overarching threat to global environment and human health. An appealing alternative is offered by sunlight-assisted photoelectrochemical water splitting to yield carbon-free hydrogen fuel, but kinetic limitations associated to the oxygen evolution reaction (OER) render the development of cost-effective, eco-friendly and stable electrocatalysts an imperative issue. In the present work, OER catalysts based on graphitic carbon nitride (g-C3N4) were deposited on conducting glass substrates by a simple decantation procedure, followed by functionalization with low amounts of nanostructured CoO and CoFe2O4 by radio frequency (RF)-sputtering, and final annealing under inert atmosphere. A combination of advanced characterization tools was used to investigate the interplay between material features and electrochemical performances. The obtained results highlighted the formation of a p-n junction for the g-C3N4-CoO system, whereas a Z-scheme junction accounted for the remarkable performance enhancement yielded by g-C3N4-CoFe2O4. The intimate contact between the system components also afforded an improved electrocatalyst stability in comparison to various bare and functionalized g-C3N4-based systems. These findings emphasize the importance of tailoring g-C3N4 chemico-physical properties through the dispersion of complementary catalysts to fully exploit its applicative potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950654300001 Publication Date 2023-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 11 Open Access OpenAccess  
  Notes The authors gratefully acknowledge financial support from CNR (Progetti di Ricerca @CNR – avviso 2020 – ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO – NANOMAT, INSTM21PDBARMAC – ATENA) and the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. The FWO-Hercules fund G0H4316N 'Direct electron detector for soft matter TEM' is also acknowledged. Many thanks are due to Prof. Luca Gavioli (Università Cattolica del Sacro Cuore, Brescia, Italy) and Dr. Riccardo Lorenzin (Department of Chemical Sciences, Padova University, Italy) for their invaluable technical support.; esteem3reported; esteem3TA Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number EMAT @ emat @c:irua:196150 Serial 7376  
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G. url  doi
openurl 
  Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
  Year (up) 2023 Publication APL materials Abbreviated Journal  
  Volume 11 Issue 3 Pages 031109  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953363800004 Publication Date 2023-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access OpenAccess  
  Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335  
  Call Number EMAT @ emat @c:irua:196135 Serial 7377  
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C. url  doi
openurl 
  Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
  Year (up) 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 13 Issue 6 Pages 1035  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000960297000001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553  
  Call Number EMAT @ emat @c:irua:196115 Serial 7378  
Permanent link to this record
 

 
Author Kante, M.V.; Weber, M.L.; Ni, S.; van den Bosch, I.C.G.; van der Minne, E.; Heymann, L.; Falling, L.J.; Gauquelin, N.; Tsvetanova, M.; Cunha, D.M.; Koster, G.; Gunkel, F.; Nemsak, S.; Hahn, H.; Estrada, L.V.; Baeumer, C. url  doi
openurl 
  Title A high-entropy oxide as high-activity electrocatalyst for water oxidation Type A1 Journal article
  Year (up) 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 6 Pages 5329-5339  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-delta with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono-or bimetallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953440900001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196097 Serial 7390  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: