toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Anaf, W.; Schalm, O. pdf  url
doi  openurl
  Title Climatic quality evaluation by peak analysis and segregation of low-, mid-, and high-frequency fluctuations, applied on a historic chapel Type A1 Journal article
  Year 2019 Publication Building and environment Abbreviated Journal  
  Volume 148 Issue Pages 286-293  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Heritage-related guidelines and standards recommend stable climatic conditions, since these contribute to the extension of heritage collections life. As a result, numerous museums and other heritage institutions implement (expensive) mitigation measures to achieve stable conditions. Nevertheless, temperature and relative humidity fluctuations are often still observed. This contribution demonstrates that the analysis of temperature and humidity peaks and drops helps to identify hazards which cause fluctuations in different frequency ranges. This hazard identification provides information on the type of mitigation actions that are required in the near future and in which order they need to be implemented. The approach is illustrated with a case study. A 22 month monitoring campaign was performed in a chapel in the center of Antwerp (Belgium) where the climatic conditions are controlled with a heating, ventilation and air conditioning (HVAC) system. Low-, mid- and high-frequency fluctuations were separated and discussed for their hazards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457116500024 Publication Date 2018-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157569 Serial 7672  
Permanent link to this record
 

 
Author De Valck, J.; Beames, A.; Liekens, I.; Bettens, M.; Seuntjens, P.; Broekx, S. pdf  doi
openurl 
  Title Valuing urban ecosystem services in sustainable brownfield redevelopment Type A1 Journal article
  Year 2019 Publication Ecosystem services Abbreviated Journal  
  Volume 35 Issue Pages 139-149  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urban environments provide opportunities for greater resource efficiency and the fostering of urban ecosystems. Brownfield areas are a typical example of underused land resources. Brownfield redevelopment projects that include green infrastructure allow for further ecosystems to be accommodated in urban environments. Green infrastructure also deliver important urban ecosystem services (UES) to local residents, which can greatly contribute to improving quality of life in cities. In this case study, we quantify and assess the economic value of five UES for a brownfield redevelopment project in Antwerp, Belgium. The assessment is carried out using the “Nature Value Explorer” modelling tool. The case includes three types of green infrastructure (green corridor, infiltration gullies and green roofs) primarily intended to connect nature reserves on the urban periphery and to avoid surface runoff. The green infrastructure also provides air filtration, climate regulation, carbon sequestration and recreation ecosystem services. The value of recreation far exceeds other values, including the value of avoided runoff. The case study raises crucial questions as to whether existing UES valuation approaches adequately account for the range of UES provided and whether such approaches can be improved to achieve more accurate and reliable value estimates in future analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457119300016 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157539 Serial 8733  
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title Design of electroporation process in irregularly shaped multicellular systems Type A1 Journal article
  Year 2019 Publication Electronics (Basel) Abbreviated Journal  
  Volume 8 Issue 1 Pages 37  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a spacetime (x,y,t) multiphysics model based on quasi-static Maxwells equations and nonlinear Smoluchowskis equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457142800037 Publication Date 2019-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-9292 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157203 Serial 7765  
Permanent link to this record
 

 
Author Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. pdf  doi
openurl 
  Title Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region Type A1 Journal article
  Year 2019 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ  
  Volume 660 Issue 660 Pages 1513-1521  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Wastewater reuse provides valuable solutions to solve the societal challenges of decreasing availability and limiting access to secure water resources. The present study quantifies the environmental performance of nectarine orchards irrigation using treated municipal wastewater (TMW) and surface water using a unique dataset based on field experimental data. Climate change, toxicity (for human and freshwater), eutrophication (marine and freshwater) and acidification impacts were analysed using the impact assessment method suggested by the International Reference Life Cycle Data System (ILCD). The water footprint associated to the life cycles of each system has been estimated using the Available WAter REmaining (AWARE) method. Monte Carlo simulation was used to assess data uncertainty. The irrigation of nectarine orchards using TMW performs better than the irrigation using surface water for eutrophication impact categories. Compared with surface water resources, the potential impacts of TMW reuse in agriculture on climate change and toxicity are affected by the wastewater treatment phase (WWT). Only eutrophication and acidification burdens are generated by in-field substitution of surface water with TMW. Considering human and ecosystem water demand, the irrigation with TMW increases water consumption of 19.12 m3 per kg of nectarine produced. Whereas, it shows a positive contribution to water stress (−0.19 m3) if only human water demand is considered. This study provides important results that allow for a better understanding of the potential environmental consequences of TMW reuse in agriculture. It suggests that embracing the type of WWTs, the replacement of fertilizers, the effects on water scarcity and ecosystem quality might be useful to redefine water reuse regulations and increase public acceptance for the reuse of TMW in agriculture. Moreover, this study reveals the need for developing consensus and standardized guidance for life cycle analysis of water reuse applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457725700145 Publication Date 2019-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited 4 Open Access  
  Notes ; The authors would like to thank the EU, MIUR and FNRS for funding, in the frame of the collaborative international Consortium DESERT financed under the ERA-NET WaterWorks2014 Cofunded Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the “Water Challenges for a Changing World Joint Programme Initiative (Water JPI)”. G.A. Vivaldi would like to thank also the Regione Puglia for the support from the “Fondo di Sviluppo e Coesione” 2007-2013 – APQ Ricerca Regione Puglia “Programma regionale a sostegno della specializzazione intelligente e della sostenibilita sociale ed ambientale – FutureInResearch”. ; Approved Most recent IF: 4.9  
  Call Number UA @ admin @ c:irua:156931 Serial 6227  
Permanent link to this record
 

 
Author Yorulmaz, B.; Ozden, A.; Sar, H.; Ay, F.; Sevik, C.; Perkgoz, N.K. doi  openurl
  Title CVD growth of monolayer WS2 through controlled seed formation and vapor density Type A1 Journal article
  Year 2019 Publication Materials science in semiconductor processing Abbreviated Journal  
  Volume 93 Issue Pages 158-163  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large area, single layer WS2 has a high potential for use in optoelectrical devices with its high photo-luminescence intensity and low response time. In this work, we demonstrate a systematic study of controlled tungsten disulfide (WS2) monolayer growth using chemical vapor deposition (CVD) technique. With a detailed investigation of process parameters such as H-2 gas inclusion into the main carrier gas, growth temperature and duration, we have gained insight into two-dimensional (2D) WS2 synthesis through controlling the seed formations and the radical vapor density associated with WO3. We confirm that H-2 gas, when included to the carrier gas, is directly involved in WO3 reduction due to its reductive reagent nature, which provides a more effective sulfurization and monolayer formation process. Additionally, by changing the CVD growth configuration, hence, increasing the tungsten related vapor density and confining the reactant radicals, we succeed in realizing larger WS(2 )monolayers, which is still a technological challenge in order to utilize these structures for practical applications. Further optimization of the growth procedure is demonstrated by tuning the growth duration to prevent the excess seed formations and additional layers which will possibly limit the device performance of the monolayer flakes or films when applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457727300018 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1369-8001 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193782 Serial 7748  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 2 Pages 025011  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the non-equilibrium Green's function formalism, we study carrier transport through imperfect two-dimensional (2D) topological insulator (TI) ribbons. In particular, we investigate the effect of vacancy defects on the carrier transport in 2D TI ribbons with hexagonal lattice structure. To account for the random distribution of the vacancy defects, we present a statistical study of varying defect densities by stochastically sampling different defect configurations. We demonstrate that the topological edge states of TI ribbons are fairly robust against a high concentration (up to 2%) of defects. At very high defect densities, we observe an increased inter-edge interaction, mediated by the localisation of the edge states within the bulk region. This effect causes significant back-scattering of the, otherwise protected, edge-states at very high defect concentrations (>2%), resulting in a loss of conduction through the TI ribbon. We discuss how this coherent vacancy scattering can be used to our advantage for the development of TI-based transistors. We find that there is an optimal concentration of vacancies yielding an ON-OFF current ratio of up to two orders of magnitude. Finally, we investigate the importance of spin-orbit coupling on the robustness of the edge states in the TI ribbon and show that increased spin-orbit coupling could further increase the ON-OFF ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457856400002 Publication Date 2019-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 3 Open Access  
  Notes ; This material is based in part upon work supported by the National Science Foundation under Grant Number 1710066. The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:157464 Serial 5198  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C. pdf  doi
openurl 
  Title Effects of silicon doping on strengthening adhesion at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2019 Publication Computational materials science Abbreviated Journal Comp Mater Sci  
  Volume 159 Issue 159 Pages 228-234  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we employ first-principles calculations to investigate the effect of substitutional Si doping in the amorphous calcium-phosphate (a-HAP) structure on the work of adhesion, integral charge transfer, charge density difference and theoretical tensile strengths between an a-HAP coating and amorphous titanium dioxide (a-TiO2) substrate systemically. Our calculations demonstrate that substitution of a P atom by a Si atom in a-HAP (a-Si-HAP) with the creation of OH-vacancies as charge compensation results in a significant increase of the bonding strength of the coating to the substrate. The work of adhesion of the optimized Si-doped interfaces reaches a value of up to -2.52 J m(-2), which is significantly higher than for the stoichiometric a-HAP/a-TiO2. Charge density difference analysis indicates that the dominant interactions at the interface have significant covalent character, and in particular two Ti-O and three Ca-O bonds are formed for a-Si-HAP/a-TiO2 and one Ti-O and three Ca-O bonds for a-HAP/a-TiO2. From the stress-strain curve, the Young's modulus of a-Si-HAP/a-TiO2 is calculated to be about 25% higher than that of the a-HAP/a-TiO2, and the yielding stress is about 2 times greater than that of the undoped model. Our calculations therefore demonstrate that the presence of Si in the a-HAP structure strongly alters not only the bioactivity and resorption rates, but also the mechanical properties of the a-HAP/a-TiO2 interface. The results presented here provide an important theoretical insight into the nature of the chemical bonding at the a-HAP/a-TiO2 interface, and are particularly significant for the practical medical applications of HAP-based biomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457856900023 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.292 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.292  
  Call Number UA @ admin @ c:irua:157480 Serial 5272  
Permanent link to this record
 

 
Author Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 362 Issue 362 Pages 830-841  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, “confined” configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457863500084 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 4 Open Access Not_Open_Access: Available from 15.10.2019  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:157459 Serial 5269  
Permanent link to this record
 

 
Author Annys, S.; Adgo, E.; Ghebreyohannes, T.; Van Passel, S.; Dessein, J.; Nyssen, J. pdf  doi
openurl 
  Title Impacts of the hydropower-controlled Tana-Beles interbasin water transfer on downstream rural livelihoods (northwest Ethiopia) Type A1 Journal article
  Year 2019 Publication Journal Of Hydrology Abbreviated Journal J Hydrol  
  Volume 569 Issue 569 Pages 436-448  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Despite public awareness of unintended impacts (1980s) and well-developed international standards (2000s), downstream impacts of large hydropower projects still very often are not properly assessed. Impacts of (hydropower-regulated) interbasin water transfers (IBWTs) are considered self-evidently positive, although they can have far-reaching consequences for hydrogeomorphological systems and consequently river-dependent communities. In this study, the downstream direct and indirect impacts of the Ethiopian hydropower-regulated Tana-Beles IBWT are evaluated in an interdisciplinary way. The components of the framework of rural livelihoods are considered and changing contexts, resources availabilities and livelihood strategies are analysed. Mixed methods are applied, combining hydrogeomorphological field observations, GIS analyses, scientific literature, policy documents, and semi-structured interviews with local people and local to federal authorities. Results show that the IBWT drastically increased the Beles rivers discharge (with an average release of +92 m3 s−1 at the outlet; *2 in rainy season and *12 in dry season 100 km downstream of the water release) and introduced dangerous situations for local communities (over 250 people drowned in the river). River bank erosion resulted in the uncompensated loss of farmland (163 ha) and the establishment of large-scale commercial farms increased the pressure on land and led to the impoverishment of displaced communities (4310 households). The project was implemented top-down, without any transparency, benefit sharing or compensation for external costs. This stresses the importance of downstream interdisciplinary impact assessments and highlights the need for decent in-depth ex post-analyses of hydropower projects. Environmental impact assessments should be taken seriously and cannot be considered a formality. In Ethiopia and in many developing countries, the hydropower industry is booming. Although dams and IBWTs can be the best solution for water-related problems in specific contexts, national development goals (such as the expansion of the electricity network) should not be at the expense of rural livelihoods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000457952900032 Publication Date 2018-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.483 Times cited 2 Open Access  
  Notes ; This study was funded by the Flemish Research Foundation (FWO, Belgium), through project No. G022217N and a specific travel grant for a long stay abroad (No. V445417N). We acknowledge the cooperation with the Bahir Dar University VLIR-UOS IUC programme. All support given by Bahir Dar University has been greatly appreciated and many thanks go to Yonnas Shawul and Deribew Fenetie, for assisting and translating in the field. Staff of various ranks in administrative offices are thanked for their cooperation and mostly openness during interviews. Special thanks go to the local farmers and other rural dwellers, for their cooperation and contribution to this research. We thank the two anonymous reviewers for their constructive comments. ; Approved Most recent IF: 3.483  
  Call Number UA @ admin @ c:irua:156935 Serial 6215  
Permanent link to this record
 

 
Author Moors, K.; Contino, A.; Van de Put, M.L.; Vandenberghe, W.G.; Fischetti, M., V; Magnus, W.; Sorée, B. url  doi
openurl 
  Title Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness Type A1 Journal article
  Year 2019 Publication Physical review materials Abbreviated Journal  
  Volume 3 Issue 2 Pages 024001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458161800001 Publication Date 2019-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes ; We acknowledge the Research Foundation – Flanders (FWO) for supporting K.M.'s research visit at the University of Texas at Dallas, as well as the support by the National Research Fund Luxembourg (FNR) with ATTRACT Grant No. 7556175. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:157499 Serial 5235  
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K. url  doi
openurl 
  Title Cephalosporin antibiotics : electrochemical fingerprints and core structure reactions investigated by LC-MSMS Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue 3 Pages 2035-2041  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Electrochemistry and exploiting electrochemical fingerprints is a potent approach to address newly emerging surveillance needs, for instance for antibiotics. However, a comprehensive insight in the electrochemical oxidation behaviour and mechanism is re-quired for this sensing strategy. To address the lack in knowledge of the voltammetric behaviour of the cephalosporins antibiotics, a selection of cephalosporin antibiotics and two main intermediates were subjected to an electrochemical study of their redox behaviour by means of pulsed voltammetric techniques and small-scale electrolysis combined with HPLC-MS/MS analyses. Sur-prisingly, the detected oxidation products did not fit the earlier suggested oxidation of the sulfur group to the corresponding sul-foxide. The influence of different side chains, both at the three and the seven position of the β-lactam core structure on the elec-trochemical fingerprint were investigated. Additional oxidation signals at lower potentials were elucidated and linked to different side chains. These signals were further exploited to allow simultaneous detection of different cephalosporins in one voltammetric sweep. These fundamental insights can become the building blocks for an new on-site screening method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458220300055 Publication Date 2019-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 6 Open Access  
  Notes ; The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:156046 Serial 5497  
Permanent link to this record
 

 
Author Alloul, A.; Wuyts, S.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Volatile fatty acids impacting phototrophic growth kinetics of purple bacteria : paving the way for protein production on fermented wastewater Type A1 Journal article
  Year 2019 Publication Water research Abbreviated Journal  
  Volume 152 Issue Pages 138-147  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nutrient losses in our food chain severely surpass our planetary boundaries. Resource recovery can contribute to mitigation, for instance through converting wastewater resources to microbial protein for animal feed. Wastewater typically holds a complex mixture of organics, posing a challenge to selectively produce heterotrophic biomass. Ensuring the product's quality could be achieved by anaerobic generation of volatile fatty acids (VFAs) followed by photoheterotrophic production of purple non-sulfur bacteria (PNSB) with infrared light. This study aimed to determine the most suitable PNSB culture for VFA conversion and map the effect of acetate, propionate, butyrate and a VFA mixture on growth and biomass yield. Six cultures were screened in batch: (i) Rhodopseudomonas palustris, (ii) Rhodobacter sphaeroides, (iii) Rhodospirillum rubrum, (iv) a 3-species synthetic community (i+ii+iii), (v) a community enriched on VFA holding Rb. capsulatus, and (vi) Rb. capsulatus (isolate v). The VFA mixture elevated growth rates with a factor 1.32.5 compared to individual VFA. Rb. capsulatus showed the highest growth rates: 1.82.2 d−1 (enriched) and 2.33.8 d−1 (isolated). In a photobioreactor (PBR) inoculated with the Rb. capsulatus enrichment, decreasing sludge retention time (SRT) yielded lower biomass concentrations, yet increased productivities, reaching 1.7 g dry weight (DW) L−1 d−1, the highest phototrophic rate reported thus far, and a growth rate of up to 5 d−1. PNSB represented 2657% of the community and the diversity index was low (37), with a dominance of Rhodopseudomonas at long SRT and Rhodobacter at short SRT. The biomass yield for all cultures, in batch and reactor cultivation, approached 1 g CODBiomass g−1 CODRemoved. An economic estimation for a two-stage approach on brewery wastewater (load 2427 kg COD d−1) showed that 0.5 d SRT allowed for the lowest production cost ( 10 kg−1 DW; equal shares for capex and opex). The findings strengthen the potential for a novel two-stage approach for resource recovery from industrial wastewater, enabling high-rate PNSB production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458223900013 Publication Date 2018-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156462 Serial 8739  
Permanent link to this record
 

 
Author Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K. pdf  url
doi  openurl
  Title Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting) Type A1 Journal article
  Year 2019 Publication Materials & design Abbreviated Journal Mater Design  
  Volume 165 Issue Pages 107598  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to increase the production rate during selective laser melting (SLM), a high power laser with a large beam diameter is used to build fully dense Hastelloy X parts. Compared to SLM with a low power and small diameter beam, the productivity was increased from 6 mm3/s to 16 mm3/s, i.e. 2.6 times faster. Besides the productivity benefit, the influence of the use of a high power laser on the rapid solidification microstructure and concomitant material properties is highlighted. The current paper compares the microstructure and tensile properties of Hastelloy X built with low and high power lasers. The use of a high power laser results in wider and shallower melt pools inducing an enhanced morphological and crystallographic texture along the building direction (BD). In addition, the increased heat input results in coarser sub-grains or high density dislocation walls for samples processed with a high power laser. Additionally, the influence of hot isostatic pressing (HIP) as a post-processing technique was evaluated. After HIP, the tensile fracture strain increased as compared to the strain in the as-built state and helped in obtaining competitive mechanical properties as compared to conventionally processed Hastelloy X parts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458259300020 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited 15 Open Access OpenAccess  
  Notes This research was supported by the ENGIE Research and Technology Division. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine. S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. Approved Most recent IF: 4.364  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157469 Serial 5176  
Permanent link to this record
 

 
Author Bercx, M.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Quantitative modeling of secondary electron emission from slow-ion bombardment on semiconductors Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 8 Pages 085413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract When slow ions incident on a surface are neutralized, the excess potential energy is passed on to an electron inside the surface, leading to emission of secondary electrons. The microscopic description of this process, as

well as the calculation of the secondary electron yield, is a challenging problem due to its complexity as well

as its sensitivity to surface properties. One of the first quantitative descriptions was articulated in the 1950s by

Hagstrum, who based his calculation on a parametrization of the density of states of the material. In this paper, we

present a model for calculating the secondary electron yield, derived from Hagstrum’s initial approach. We use

first-principles density functional theory calculations to acquire the necessary input and introduce the concept of

electron cascades to Hagstrum’s model in order to improve the calculated spectra, as well as remove its reliance

on fitting parameters. We apply our model to He+ and Ne+ ions incident on Ge(111) and Si(111) and obtain

yield spectra that match closely to the experimental results of Hagstrum.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458367800010 Publication Date 2019-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access OpenAccess  
  Notes We would like to thank Prof. D. Depla for the useful discussions on the secondary electron yield. Furthermore, we acknowledge financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWOVlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157174 Serial 5154  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Schryvers, D. pdf  doi
openurl 
  Title ALPHABETA: a dedicated open-source tool for calculating TEM stage tilt angles Type A1 Journal article
  Year 2019 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 273 Issue 3 Pages 189-198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458426100004 Publication Date 2018-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.692 Times cited 2 Open Access Not_Open_Access  
  Notes ENGIE Ph.D. sponsorship, 2015-AC-007 – BSUEZ6900 ; Approved Most recent IF: 1.692  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157474 Serial 5163  
Permanent link to this record
 

 
Author O'Donnell, D.; Hassan, S.; Du, Y.; Gauquelin, N.; Krishnan, D.; Verbeeck, J.; Fan, R.; Steadman, P.; Bencok, P.; Dobrynin, A.N. pdf  url
doi  openurl
  Title Etching induced formation of interfacial FeMn in IrMn/CoFe bilayers Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue 16 Pages 165002  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effect of ion etching on exchange bias in IrMn3/Co70Fe30 bilayers is investigated. In spite of the reduction of saturation magnetization caused by the embedding of Tr from the capping layer into the Co70Fe30 layer during the etching process, the exchange bias in samples with the same thickness of the Co70Fe30 layer is reducing in proportion to the etching power. X-ray magnetic circular dichroism measurements revealed the emergence of an uncompensated Mn magnetization after etching, which is antiferromagnetically coupled to the ferromagnetic layer. This suggests etching induced formation of small interfacial FeMn regions which leads to the decrease of effective exchange coupling between ferromagnetic and antiferromagnetic layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458524800001 Publication Date 2019-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes ; This work was supported by Seagate Technology (Ireland). Beamline I10, Diamond Light Source, is acknowledged for provided beamtime. ; Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:157458 Serial 5247  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Bodé, S.; De Mulder, C.; Vlaeminck, S.E.; Boon, N. url  doi
openurl 
  Title 13C incorporation as a tool to estimate biomass yields in thermophilic and mesophilic nitrifying communities Type A1 Journal article
  Year 2019 Publication Frontiers in microbiology Abbreviated Journal  
  Volume 10 Issue Pages 192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Current methods determining biomass yield require sophisticated sensors for in situ measurements or multiple steady-state reactor runs. Determining the yield of specific groups of organisms in mixed cultures in a fast and easy manner remains challenging. This study describes a fast method to estimate the maximum biomass yield (Ymax), based on 13C incorporation during activity measurements. It was applied to mixed cultures containing ammonia oxidizing bacteria (AOB) or archaea (AOA) and nitrite oxidizing bacteria (NOB), grown under mesophilic (1528∘C) and thermophilic (50∘C) conditions. Using this method, no distinction could be made between AOB and AOA co-existing in a community. A slight overestimation of the nitrifier biomass due to 13C redirection via SMP to heterotrophs could occur, meaning that this method determines the carbon fixation activity of the autotrophic microorganisms rather than the actual nitrifier biomass yield. Thermophilic AOA yields exceeded mesophilic AOB yields (0.22 vs. 0.060.11 g VSS g-1 N), possibly linked to a more efficient pathway for CO2 incorporation. NOB thermophilically produced less biomass (0.0250.028 vs. 0.0480.051 g VSS g-1 N), conceivably attributed to higher maintenance requirement, rendering less energy available for biomass synthesis. Interestingly, thermophilic nitrification yield was higher than its mesophilic counterpart, due to the dominance of AOA over AOB at higher temperatures. An instant temperature increase impacted the mesophilic AOB yield, corroborating the effect of maintenance requirement on production capacity. Model simulations of two realistic nitrification/denitrification plants were robust toward changing nitrifier yield in predicting effluent ammonium concentrations, whereas sludge composition was impacted. Summarized, a fast, precise and easily executable method was developed determining Ymax of ammonia and nitrite oxidizers in mixed communities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458681700001 Publication Date 2019-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157126 Serial 8648  
Permanent link to this record
 

 
Author Tan, X.; McCabe, E.E.; Orlandi, F.; Manuel, P.; Batuk, M.; Hadermann, J.; Deng, Z.; Jin, C.; Nowik, I.; Herber, R.; Segre, C.U.; Liu, S.; Croft, M.; Kang, C.-J.; Lapidus, S.; Frank, C.E.; Padmanabhan, H.; Gopalan, V.; Wu, M.; Li, M.-R.; Kotliar, G.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor Type A1 Journal article
  Year 2019 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 7 Issue 3 Pages 509-522  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458780300004 Publication Date 2018-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 1 Open Access Not_Open_Access  
  Notes ; M. G. thanks the NSF-DMR-1507252 grant of the United States. X. T. was supported by the “Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy'' under DOE Grant No. DE-FOA-0001276. G. K. and C. J. K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. EEM is grateful to the Leverhulme Trust (RPG-2017-362). M. R. Li and M. X. Wu are supported by the ”One Thousand Youth Talents'' Program of China. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research used the ISS, 8-ID and TES, 8-BM beamlines at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Without the valuable aid/support of the NSLS-II staff scientists Eli Stavitski, Klaus Attenkofer, and Paul Northrup this phase of the work could not have been performed. The work at IOPCAS was supported by NSF & MOST of China through research projects. H. R. and V. G. acknowledge NSF-MRSEC Center for Nanoscale Science at Penn State through the grant number DMR-1420620. The authors would like to thank Ms Jean Hanley at Lamont-Doherty Earth Observatory in Columbia University for making the high-pressure assemblies. The authors acknowledge the science and technology facility council (STFC) UK for the provision of neutron beam time. The authors would like to thank Daniel Nye for help on the Rigaku SmartLab X-ray diffractometer instrument in the Materials Characterization Laboratory at the ISIS Neutron and Muon Source. ; Approved Most recent IF: 5.256  
  Call Number UA @ admin @ c:irua:157564 Serial 5264  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G.T.; Béché, A.; Nellist, P.D. pdf  url
doi  openurl
  Title Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 122 Issue 6 Pages 066101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding nanostructures down to the atomic level is the key to optimizing the design of advancedmaterials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000458824200008 Publication Date 2019-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 3 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (WO.010.16N, G.0934.17N, G.0502.18N, G.0267.18N), and a grant to A. D. B. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 312483— ESTEEM2 (Integrated Infrastructure Initiative-I3) and the UK EPSRC (Grant No. EP/M010708/1). Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157175 Serial 5156  
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S. pdf  url
doi  openurl
  Title CFD-modelling of activated carbon fibers for indoor air purification Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal  
  Volume 365 Issue Pages 80-87  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Activated carbon fibers for indoor air purification were investigated by means of pressure drop and adsorption capacity. The Darcy-Forchheimer law combined with Computational Fluid Dynamics (CFD) modelling was deployed to simulate the pressure drop over an activated carbon fiber (ACF) filter with varying filter thickness. The CFD model was later combined with adsorption modelling to simulate breakthrough profiles of acetaldehyde adsorption on the ACF-filter. The adsorption model incorporates mass transfer resistance and adsorption equilibrium. It assumes local equilibrium between gas phase and solid phase. The latter was investigated for three different adsorption isotherms: linear, Langmuir and Freundlich adsorption. Successful agreement between model simulations and experimental data was obtained, using the Freundlich adsorption model. The numerical model could provide valuable insights and allows to continuously improve the design of filtration devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459009800009 Publication Date 2019-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156996 Serial 7590  
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J. url  doi
openurl 
  Title Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 6 Pages 064512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459322400005 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158621 Serial 5212  
Permanent link to this record
 

 
Author Schalm, O.; Cabal, A.; Anaf, W.; Leyva Pernia, D.; Callier, J.; Ortega, N. pdf  doi
openurl 
  Title A decision support system for preventive conservation : from measurements towards decision making Type A1 Journal article
  Year 2019 Publication The European Physical Journal Plus Abbreviated Journal  
  Volume 134 Issue 2 Pages 74-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Systems and software Modelling (AnSyMo); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract We present a decision-support system that guides heritage guardians in selecting mitigation actions to improve the indoor air quality and thus the preservation conditions of indoor collections in heritage buildings. This contribution shows that it is feasible to build a decision support system dedicated to preventive conservation when the following barriers are overcome: 1) simultaneous measurement of a wide range of environmental parameters in order to detect a larger number of undesired situations; 2) development of an algorithm to perform reproducible indoor air quality assessments; and 3) transformation of the air quality assessment into a graph that can be read intuitively without causing a wide variation of interpretations among stakeholders. An important aspect of the decision support system is that it reduces several sources of uncertainty that hamper reliable indoor air quality assessments. The possibilities of such a system are illustrated with a measurement campaign in a church where a heating system has been installed and used for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459506300002 Publication Date 2019-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157817 Serial 7756  
Permanent link to this record
 

 
Author Mefford, J.T.; Kurilovich, A.A.; Saunders, J.; Hardin, W.G.; Abakumov, A.M.; Forslund, R.P.; Bonnefont, A.; Dai, S.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1-xSrxCoO3-\delta perovskite composite electrodes Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 6 Pages 3327-3338  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Perovskite oxides are active room-temperature bifunctional oxygen electrocatalysts in alkaline media, capable of performing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with lower combined overpotentials relative to their precious metal counterparts. However, their semiconducting nature necessitates the use of activated carbons as conductive supports to generate applicably relevant current densities. In efforts to advance the performance and theory of oxide electrocatalysts, the chemical and physical properties of the oxide material often take precedence over contributions from the conductive additive. In this work, we find that carbon plays an important synergistic role in improving the performance of La1-xSrxCoO3- (0 x 1) electrocatalysts through the activation of O-2 and spillover of radical oxygen intermediates, HO2- and O-2(-), which is further reduced through chemical decomposition of HO2- on the perovskite surface. Through a combination of thin-film rotating disk electrochemical characterization of the hydrogen peroxide intermediate reactions (hydrogen peroxide reduction reaction (HPRR), hydrogen peroxide oxidation reaction (HPOR)) and oxygen reduction reaction (ORR), surface chemical analysis, HR-TEM, and microkinetic modeling on La1-xSrxCoO3- (0 x 1)/carbon (with nitrogen and non-nitrogen doped carbons) composite electrocatalysts, we deconvolute the mechanistic aspects and contributions to reactivity of the oxide and carbon support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459584900049 Publication Date 2019-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 5 Open Access OpenAccess  
  Notes ; Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S. D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:158625 Serial 5244  
Permanent link to this record
 

 
Author Peeters, B.; Daems, D.; Van der Donck, T.; Delport, F.; Lammertyn, J. doi  openurl
  Title Real-time FO-SPR monitoring of solid-phase DNAzyme cleavage activity for cutting-edge biosensing Type A1 Journal article
  Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 11 Issue 7 Pages 6759-6768  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10–23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme–inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459642200008 Publication Date 2019-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:160132 Serial 8457  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. url  doi
openurl 
  Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 1 Pages 51  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459732000051 Publication Date 2019-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.082  
  Call Number UA @ admin @ c:irua:158666 Serial 5268  
Permanent link to this record
 

 
Author Kahraman, Z.; Kandemir, A.; Yagmurcukardes, M.; Sahin, H. url  doi
openurl 
  Title Single-layer Janus-type platinum dichalcogenides and their heterostructures Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 7 Pages 4549-4557  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Ultrathin two-dimensional Janus-type platinum dichalcogenide crystals formed by two different atoms at opposite surfaces are investigated by performing state-of-the-art density functional theory calculations. First, it is shown that single-layer PtX2 structures (where X = S, Se, or Te) crystallize into the dynamically stable IT phase and are indirect band gap semiconductors. It is also found that the substitutional chalcogen doping in all PtX2 structures is favorable via replacement of surface atoms with a smaller chalcogen atom, and such a process leads to the formation of Janus-type platinum dichalcogenides (XPtY, where X and Y stand for S, Se, or Te) which are novel single-layer crystals. While all Janus structures are indirect band gap semiconductors as their binary analogues, their Raman spectra show distinctive features that stem from the broken out-of-plane symmetry. In addition, it is revealed that the construction of Janus crystals enhances the piezoelectric constants of PtX2 crystals significantly both in the in plane and in the out-of-plane directions. Moreover, it is shown that vertically stacked van der Waals heterostructures of binary and ternary (Janus) platinum dichalcogenides offer a wide range of electronic features by forming bilayer heterojunctions of type-I, type-II, and type-III, respectively. Our findings reveal that Janus-type ultrathin platinum dichalcogenide crystals are quite promising materials for optoelectronic device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459836900071 Publication Date 2019-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. and Z.K. acknowledge financial support from the TUBITAK under the project number 117F095. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.). H.S. acknowledges support from Turkiye Bilimler Akademisi-Turkish Academy of Sciences under the GEBIP program. ; Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:158617 Serial 5229  
Permanent link to this record
 

 
Author Kosov, A.D.; Dubrinina, T.V.; Borisova, N.E.; Ivanov, A.V.; Drozdov, K.A.; Trashin, S.A.; De Wael, K.; Kotova, M.S.; Tomilova, L.G. pdf  url
doi  openurl
  Title Novel phenyl-substituted pyrazinoporphyrazine complexes of rare-earth elements : optimized synthetic protocols and physicochemical properties Type A1 Journal article
  Year 2019 Publication New journal of chemistry Abbreviated Journal New J Chem  
  Volume 43 Issue 7 Pages 3153-3161  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Novel synthetic protocols based on both template and multi-step methods were developed for phenyl-substituted pyrazinoporphyrazine complexes of rare-earth elements (Y, Eu, Gd, Dy, Er and Lu). p-Hydroquinone was employed as a reaction medium and as a reducing agent in the process of porphyrazine macrocycle formation. Both thermal and microwave irradiation techniques were successfully applied for activation of the template macrocyclization process. An alternative multi-step approach involving the initial stage of free-base ligand formation was realized for the lutetium compound. The target complexes were identified by high-resolution mass spectrometry, infrared spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Electrochemical behavior in solution and UV-vis absorbance in solutions and films were studied as well. Shifts in the position of the Q band and oxidationreduction potentials in comparison with corresponding phthalocyanine analogues were noticed. Using the IR absorption spectra recorded in the temperature range of 170300 K, the position of the Fermi level of −4.7 ± 0.1 eV and a characteristic energy diagram were obtained for the erbium complex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459944500035 Publication Date 2019-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 1 Open Access  
  Notes ; We are grateful for main financial support from the Russian Foundation for Basic Research (Grant No. 16-33-60005 and 18-33-00519). Investigation of optical properties was supported by the Russian Science Foundation (Grant 17-13-01197). Electrochemical investigations were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No. 18-53-76006 ERA). We also thank the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grants MK-3115.2018.3) and partial support from the framework of the State Assignment of 2019 (Theme 45.5 Creation of compounds with given physicochemical properties). Investigation of electrophysical properties was supported by the RFBR (Grant 16-07-00961). K. A. Drozdov and M. S. Kotova thank Prof. L. I. Ryabova for productive discussion of the electrophysical data. ; Approved Most recent IF: 3.269  
  Call Number UA @ admin @ c:irua:156555 Serial 5750  
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C. doi  openurl
  Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 10 Issue 4 Pages 727-734  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459948800005 Publication Date 2019-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 67 Open Access  
  Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:158618 Serial 5194  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Cakir, D. doi  openurl
  Title Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules Type A1 Journal article
  Year 2019 Publication ACS applied energy materials Abbreviated Journal  
  Volume 2 Issue 2 Pages 1251-1258  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we demonstrated that high lithium storage capacity and fast kinetics are achieved for Ti3C2O2 by preintercalating organic molecules. As a proof-of-concept, two different quinone molecules, namely 1,4-benzoquinone (C6H4O2) and tetrafluoro-1,4-benzoquinone (C6F4O2) were selected as the molecular linkers to demonstrate the feasibility of this interlayer engineering strategy for energy storage. As compared to Ti3C2O2 bilayer without linker molecules, our pillared structures facilitate a much faster ion transport, promising a higher charge/discharge rate for Li. For example, while the diffusion barrier of a single Li ion within pristine Ti3C2O2 bilayer is at least 1.0 eV, it becomes 0.3 eV in pillared structures, which is comparable and even lower than that of commercial materials. At high Li concentrations, the calculated diffusion barriers are as low as 0.4 eV. Out-of-plane migration of Li ions is hindered due to large barrier energy with a value of around 1-1.35 eV. Concerning storage capacity, we can only intercalate one monolayer of Li within pristine Ti3C2O2 bilayer. In contrast, pillared structures offer significantly higher storage capacity. Our calculations showed that at least two layers of Li can be intercalated between Ti3C2O2 layers without forming bulk Li and losing the pillared structure upon Li loading/unloading. A small change in the in-plane lattice parameters (<0.5%) and volume (<1.0%) and ab initio molecular dynamics simulations prove the stability of the pillared structures against Li intercalation and thermal effects. Intercalated molecules avoid the large contraction/expansion of the whole structure, which is one of the key problems in electrochemical energy storage. Pillared structures allow us to realize electrodes with high capacity and fast kinetics. Our results open new research paths for improving the performance of not only MXenes but also other layered materials for supercapacitor and battery applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000459948900037 Publication Date 2019-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193759 Serial 7414  
Permanent link to this record
 

 
Author Milovanović, S.P.; Covaci, L.; Peeters, F.M. pdf  doi
openurl 
  Title Strain fields in graphene induced by nanopillar mesh Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 8 Pages 082534  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The mechanical and electronic properties of a graphene membrane placed on top of a triangular superlattice of nanopillars are investigated. We use molecular dynamics simulations to access the deformation fields and the tight-binding approaches to calculate the electronic properties. Ripples form in the graphene layer that span across the unit cell, connecting neighboring pillars, in agreement with recent experiments. We find that the resulting pseudo-magnetic field (PMF) varies strongly across the unit cell. We investigate the dependence of PMF on unit cell boundary conditions, height of the pillars, and the strength of the van der Waals interaction between graphene and the substrate. We find direct correspondence with typical experiments on pillars, showing intrinsic “slack” in the graphene membrane. PMF values are confirmed by the local density of states calculations performed at different positions of the unit cell showing pseudo-Landau levels with varying spacings. Our findings regarding the relaxed membrane configuration and the induced strains are transferable to other flexible 2D membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000460033800038 Publication Date 2019-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 5 Open Access  
  Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:158605 Serial 5231  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: