|   | 
Details
   web
Records
Author Michel, K.H.; Costamagna; Peeters, F.M.
Title Theory of thermal expansion in 2D crystals Type A1 Journal article
Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 252 Issue 252 Pages 2433-2437
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos (up) 000364690400014 Publication Date 2015-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 21 Open Access
Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the Euro GRAPHENE project CONGRAN. ; Approved Most recent IF: 1.674; 2015 IF: 1.489
Call Number UA @ lucian @ c:irua:130281 Serial 4264
Permanent link to this record
 

 
Author Danthurebandara, M.; Van Passel, S.; Vanderreydt, I.; Van Acker, K.
Title Assessment of environmental and economic feasibility of Enhanced Landfill Mining Type A1 Journal article
Year 2015 Publication Waste Management Abbreviated Journal Waste Manage
Volume 45 Issue Pages 434-447
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract This paper addresses the environmental and economic performance of Enhanced Landfill Mining (ELFM). Based on life cycle assessment and life cycle costing, a detailed model is developed and is applied to a case study, i.e. the first ELFM project in Belgium. The environmental and economic analysis is performed in order to study the valorisation of different waste types in the landfill, such as municipal solid waste, industrial waste and total waste. We found that ELFM is promising for the case study landfill as greater environmental benefits are foreseen in several impact categories compared to the landfills current situation (the Do-nothing scenario). Among the considered processes, the thermal treatment process dominates both the environmental and economic performances of ELFM. Improvements in the electrical efficiency of thermal treatment process, the calorific value of refuse derived fuel and recovery efficiencies of different waste fractions lead the performance of ELFM towards an environmentally sustainable and economically feasible direction. Although the environmental and economic profiles of ELFM will differ from case to case, the results of this analysis can be used as a benchmark for future ELFM projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000364796800048 Publication Date 2015-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 30 Open Access
Notes ; The authors would like to acknowledge the funding of this study by the IWT-O&O ELFM project 'Closing the Circle & Enhanced Landfill Mining as part of the Transition to Sustainable Materials Management' and the valuable discussions with Group Machiels (Belgium). ; Approved Most recent IF: 4.03; 2015 IF: 3.220
Call Number UA @ admin @ c:irua:129878 Serial 6156
Permanent link to this record
 

 
Author Danthurebandara, M.; Van Passel, S.; Vanderreydt, I.; Van Acker, K.
Title Environmental and economic performance of plasma gasification in Enhanced Landfill Mining Type A1 Journal article
Year 2015 Publication Waste Management Abbreviated Journal Waste Manage
Volume 45 Issue Pages 458-467
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
Abstract This paper describes an environmental and economic assessment of plasma gasification, one of the viable candidates for the valorisation of refuse derived fuel from Enhanced Landfill Mining. The study is based on life cycle assessment and life cycle costing. Plasma gasification is benchmarked against conventional incineration, and the study indicates that the process could have significant impact on climate change, human toxicity, particulate matter formation, metal depletion and fossil depletion. Flue gas emission, oxygen usage and disposal of residues (plasmastone) are the major environmental burdens, while electricity production and metal recovery represent the major benefits. Reductions in burdens and improvements in benefits are found when the plasmastone is valorised in building materials instead of landfilling. The study indicates that the overall environmental performance of plasma gasification is better than incineration. The study confirms a trade-off between the environmental and economic performance of the discussed scenarios. Net electrical efficiency and investment cost of the plasma gasification process and the selling price of the products are the major economic drivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000364796800050 Publication Date 2015-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 12 Open Access
Notes ; The authors would like to acknowledge the funding of this study by the IWT-O&O ELFM project 'Closing the Circle & Enhanced Landfill Mining as part of the Transition to Sustainable Materials Management' and the valuable discussions with Group Machiels and VITO (Belgium). ; Approved Most recent IF: 4.03; 2015 IF: 3.220
Call Number UA @ admin @ c:irua:129875 Serial 6197
Permanent link to this record
 

 
Author Muguerra, H.; Pescheux, A.-C.; Meledin, A.; Van Tendeloo, G.; Soubeyroux, J.-L.
Title A La2−xGdxZr2O7layer deposited by chemical solution: a promising seed layer for the fabrication of high Jcand low cost coated conductors Type A1 Journal article
Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 3 Issue 3 Pages 11766-11772
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We deposited La2-xGdxZr2O7 seed layers by a chemical solution method on a Ni-5%W substrate to study the influence of these layers on the growth process of a 60 nm-thick La2Zr2O7 layer. We measured the performances of these new buffer layers integrated in a coated conductor with a 300 nm-thick Y0.5Gd0.5Ba2Cu3O7-x layer. For the seed layers{,} we considered two different gadolinium contents (x = 0.2 and x = 0.8) and three different thicknesses for these compositions (20 nm{,} 40 nm{,} and 60 nm). The most promising buffer layer stacks are those with 20 nm of the La1.8Gd0.2Zr2O7 layer or La1.2Gd0.8Zr2O7. Indeed the La2-xGdxZr2O7/La2Zr2O7 films are highly textured{,} similar to a 100 nm-thick La2Zr2O7 layer{,} but their roughness is four times lower. Moreover they contain less and smaller pores in the seed layer than a pure La2Zr2O7 layer. The surface of La2Zr2O7 is also homogenous and crystalline with an orientation deviation from the ideal ?011? (100) direction below 10[degree]. With the 20 nm La2-xGdxZr2O7 seed layers we obtain in the coated conductors an efficiently textured transfer with no gradual degradation from the substrate throughout the superconducting layer. The highest Tc and Jc values are achieved with the La1.8Gd0.2Zr2O7 layer and are{,} respectively{,} 91 K and 1.4 MA cm-2. This trend seems to be due to an improvement of the surface quality of the Ni5%W substrate by the addition of a thin seed layer. Our results offer the potential of the La2-xGdxZr2O7 seed layers as promising alternatives for the classic Ni-5%W/LZO/CeO2/YBCO architectures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000364826000024 Publication Date 2015-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 4 Open Access
Notes This work was performed within the framework of the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280438), funded by the European Union. The authors also thank L. Porcar and P. Chometon for superconducting transition temperature and critical current density measurements and P. Odier for fruitful discussion. Approved Most recent IF: 5.256; 2015 IF: 4.696
Call Number c:irua:130181 Serial 3968
Permanent link to this record
 

 
Author Trentelman, K.; Janssens, K.; van der Snickt, G.; Szafran, Y.; Woollett, A.T.; Dik, J.
Title Rembrandt's An Old Man in Military Costume: the underlying image re-examined Type A1 Journal article
Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume 121 Issue 3 Pages 801-811
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The painting An Old Man in Military Costume in the J. Paul Getty Museum, by Rembrandt Harmensz van Rijn, was studied using two complementary, element-specific imaging techniques-neutron activation autoradiography (NAAR) and macro-X-ray fluorescence (MA-XRF) mapping-to reveal the second, hidden painting. NAAR provided a strong image of the face and cloak of the underlying figure, along with an indication of the chemical composition. The single-element distribution maps produced by MA-XRF mapping provided additional details into the shape of the underlying image and the composition of the pigments used. The underlying figure's face is richer in mercury, indicative of the pigment vermilion, than the face of the figure on the surface. Likewise, the cloak of the underlying figure is richer in copper than the surface figure though the identity of the copper-containing pigment cannot be determined from these data. The use of iron earth pigments, specifically Si-rich umbers, is indicated through the complementary information provided by the NAAR and MA-XRF maps. These data are used to create a false color digital reconstruction, yielding the most detailed representation of the underlying painting to date.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000364914100003 Publication Date 2015-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 22 Open Access
Notes ; The authors gratefully acknowledge the assistance of all those who aided in the examination of this painting over the decades, that has culminated in the work presented here. Particular thanks go to Mark Leonard (former head of Paintings Conservation at the J. Paul Getty Museum) and Henry Prask (NIST) for carrying out the NAAR analysis; John Twilley (former GCI Scientist) for early investigations; Andrea Sartorius (former JPGM Paintings intern) for creating a mock-up painting used in earlier phases of this work; Peter Reishig (former GCI intern) for compiling the NAAR data; Catherine Patterson, Lynn Lee, and David Carson (GCI Science) and Gene Karraker (JPGM Paintings Conservation) for helping with the setup and operation of the M6 Jetstream; and Giacomo Chiari (former head of GCI Science) for performing the XRD analysis. Koen Janssens and Geert van der Snickt acknowledge the Fund Inbev-Baillet Latour for financial support. Joris Dik acknowledges the help of the Netherlands Organization for Scientific Research (NWO) in the form of a VIDI grant in the Innovational Research Incentive Scheme. ; Approved Most recent IF: 1.455; 2015 IF: 1.704
Call Number UA @ admin @ c:irua:130289 Serial 5812
Permanent link to this record
 

 
Author Pouyet, E.; Cotte, M.; Fayard, B.; Salome, M.; Meirer, F.; Mehta, A.; Uffelman, E.S.; Hull, A.; Vanmeert, F.; Kieffer, J.; Burghammer, M.; Janssens, K.; Sette, F.; Mass, J.
Title 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse Type A1 Journal article
Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal
Volume 121 Issue 3 Pages 967-980
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse's The Joy of Life (1905-1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse's paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration-the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse's Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a role previously suggested in other altered yellow paints.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000364914100017 Publication Date 2015-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396; 1432-0630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130290 Serial 7382
Permanent link to this record
 

 
Author Kang, J.; Horzum, S.; Peeters, F.M.
Title Heterostructures of graphene and nitrogenated holey graphene: Moire pattern and Dirac ring Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 195419
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nitrogenated holey graphene (NHG) is a recently synthesized two-dimensional material. In this paper the structural and electronic properties of heterostructures of graphene and NHG are investigated using first-principles and tight-binding calculations. Due to the lattice mismatch between NHG and graphene, the formation of a moire pattern is preferred in the graphene/NHG heterostructure, instead of a lattice-coherent structure. In moire-patterned graphene/NHG, the band gap opening at the K point is negligible, and the linear band dispersion of graphene survives. Applying an electric field modifies the coupling strength between the two atomic layers. The Fermi velocity upsilon(F) is reduced as compared to the one of pristine graphene, and its magnitude depends on the twist angle theta between graphene and NHG: For theta = 0 degrees, upsilon(F) is 30% of that of graphene, and it increases rapidly to a value of 80% with increasing theta. The heterostructure exhibits electron-hole asymmetry in upsilon(F), which is large for small theta. In NHG encapsulated between two graphene layers, a “Dirac ring” appears around the K point. Its presence is robust with respect to the relative stacking of the two graphene layers. These findings can be useful for future applications of graphene/NHG heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos (up) 000364998000006 Publication Date 2015-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 33 Open Access
Notes Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:130266 Serial 4189
Permanent link to this record
 

 
Author Missault, N.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M.; Van Duppen, B.
Title Spin- and valley-dependent transport through arrays of ferromagnetic silicene junctions Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 195423
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study ballistic transport of Dirac fermions in silicene through arrays of barriers, of width d, in the presence of an exchange field M and a tunable potential of height U or depth-U. The spin-and valley-resolved conductances as functions of U or M, exhibit resonances away from the Dirac point (DP) and close to it a pronounced dip that becomes a gap when a critical electric field E-z is applied. This gap widens by increasing the number of barriers and can be used to realize electric field-controlled switching of the current. The spin p(s) and valley p(v) polarizations of the current near the DP increase with Ez or M and can reach 100% for certain of their values. These field ranges widen significantly by increasing the number of barriers. Also, ps and pv oscillate nearly periodically with the separation between barriers or wells and can be inverted by reversing M.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos (up) 000364998100006 Publication Date 2015-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 54 Open Access
Notes ; This work was supported by the Canadian NSERC Grant No. OGP0121756 (P.V.) and by the Flemish Science Foundation (FWO-Vl) with a Ph.D. research grant (B.V.D.). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:130264 Serial 4247
Permanent link to this record
 

 
Author Lybaert, J.; Maes, B.U.W.; Tehrani, K.A.; De Wael, K.
Title The electrochemistry of tetrapropylammonium perruthenate, its role in the oxidation of primary alcohols and its potential for electrochemical recycling Type A1 Journal article
Year 2015 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 182 Issue Pages 693-698
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)
Abstract The search for strategies aiming at more sustainable (oxidation) reactions has led to the application of electrochemistry for recycling the spent catalyst. In this work, an electrochemical study of the tetrapropylammonium perruthenate catalyst (TPAP) and its activity towards a primary alcohol, n-butanol, has been carried out as well as a control study with tert-butanol. The redox chemistry of TPAP and the transition between the perruthenate anion and ruthenium tetroxide in a non-aqueous solvent have been, for the first time, investigated in depth. The oxidation reaction of n-butanol in the presence of TPAP has been electrochemically elucidated by performing potentiostatic experiments and registration of the corresponding oxidation current. Furthermore, it was shown that, by applying a specific potential, the reoxidized TPAP is able to oxidize/convert the primary alcohol, paving the way for practical applications using TPAP in electrochemical synthesis. The conversion of n-butanol into n-butanal was proven by the use of GC-MS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000365075800084 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 4.798; 2015 IF: 4.504
Call Number UA @ admin @ c:irua:127676 Serial 5599
Permanent link to this record
 

 
Author Ercolani, G.; Gorle, C.; Garcia Sánchez, C.; Corbari, C.; Mancini, M.
Title RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer Type A1 Journal article
Year 2015 Publication Computers and fluids Abbreviated Journal Comput Fluids
Volume 123 Issue 123 Pages 54-71
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Large-eddy simulations (LESS) are frequently used to model the planetary boundary layer, and the choice of the grid cell size, numerical schemes and sub grid model can significantly influence the simulation results. In the present paper the impact of grid spacing on LES of an idealized atmospheric convective boundary layer (CBL), for which the statistics and flow structures are well understood, is assessed for two mesoscale models: the Regional Atmospheric Modeling System (RAMS) and the Weather Research and Forecasting model (WRF). Nine simulations are performed on a fixed computational domain (6 x 6 x 2 km), combining three different horizontal (120, 60, 30 m) and vertical (20, 10, 5 m) spacings. The impact of the cell size on the CBL is investigated by comparing turbulence statistics and velocity spectra. The results demonstrate that both WRF and RAMS can perform LES of the CBL under consideration without requiring extremely high computational loads, but they also indicate the importance of adopting a computational grid that is adequate for the numerical schemes and subgrid models used. In both RAMS and WRF a horizontal cell size of 30 m is required to obtain a suitable turbulence reproduction throughout the CBL height. Considering the vertical grid spacing, WRF produced similar results for all the three tested values, while in RAMS it should be ensured that the aspect ratio of the cells does not exceed a value of 3. The two models were found to behave differently in function of the grid resolution, and they have different shortcomings in their prediction of CBL turbulence. WRF exhibits enhanced damping at the smallest scales, while RAMS is prone to the appearance of spurious fluctuations in the flow when the grid aspect ratio is too high. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos (up) 000365367500006 Publication Date 2015-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-7930 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.313 Times cited 3 Open Access
Notes Approved Most recent IF: 2.313; 2015 IF: 1.619
Call Number UA @ lucian @ c:irua:130200 Serial 4236
Permanent link to this record
 

 
Author Charkin, D.O.; Akinfiev, V.S.; Alekseeva, A.M.; Batuk, M.; Abakumov, A.M.; Kazakov, S.M.
Title Synthesis and cation distribution in the new bismuth oxyhalides with the Sillen-Aurivillius intergrowth structures Type A1 Journal article
Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 44 Issue 44 Pages 20568-20576
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract About 20 new compounds with the Sillen-Aurivillius intergrowth structure, (MeMeBi3Nb2O11X)-Me-1-Bi-2 (Me-1 = Pb, Sr, Ba; Me-2 = Ca, Sr, Ba; X = Cl, Br, I), have been prepared. They are composed of stacking of [ANb(2)O(7)] perovskite blocks, fluorite-type [M2O2] blocks and halogen sheets. The cation distribution between the fluorite and perovskite layers has been studied for Ba2Bi3Nb2O11I, Ca1.25Sr0.75Bi3Nb2O11Cl, BaCaBi3Nb2O11Br and Sr2Bi3Nb2O11Cl. The smaller Me cations tend to reside in the perovskite block while the larger ones are situated in the fluorite-type block. The distribution of the elements was confirmed for BaCaBi3Nb2O11Br using energy dispersive X-ray analysis combined with scanning transmission electron microscopy (STEM-EDX). An electron diffraction study of this compound reveals a local symmetry lowering caused by weakly correlated rotation of NbO6 octahedra. Based on our findings, we suggest a new stability criterion for mixed-layer structures, which is that net charges of any two consecutive layers do not compensate for each other and only the whole layer sequence is electroneutral.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos (up) 000365411500036 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.029 Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:130330 Serial 4256
Permanent link to this record
 

 
Author van der Stam, W.; Bladt, E.; Rabouw, F.T.; Bals, S.; de Mello Donega, C.
Title Near-Infrared Emitting CuInSe/CuInS Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange Type A1 Journal article
Year 2015 Publication ACS nano Abbreviated Journal Acs Nano
Volume 9 Issue 9 Pages 11430-11438
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu+ extraction rate is coupled to the In3+ incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent. In this way, Cu+ ions can be extracted by trioctylphosphine ligands only when the In-P bond is broken. This results in readily available In3+ ions at the same surface site from which the Cu+ is extracted, making the process a direct place exchange reaction and shifting the overall energy balance in favor of the CE. Consequently, controlled cation exchange can occur even in large and anisotropic heterostructured nanocrystals with preservation of the size, shape, and heterostructuring of the template NCs into the product NCs. The cation exchange is self-limited, stopping when the ternary core/shell CuInSe2/CuInS2 composition is reached. The method is very versatile, successfully yielding a variety of luminescent CuInX2 (X = S, Se, and Te) quantum dots, nanorods, and HNCs, by using Cd-chalcogenide NCs and HNCs as templates. The approach reported here thus opens up routes toward materials with unprecedented properties, which would otherwise remain inaccessible.
Address Debye Institute for Nanomaterials Science, Utrecht University , P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos (up) 000365464800094 Publication Date 2015-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 88 Open Access OpenAccess
Notes The authors thank Gang Wang for XRD measurements and Eline Hutter for providing CdSe/CdS NRs. W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. This work was supported by the European Research Council (ERC Starting Grant #335078 Colouratom). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881
Call Number c:irua:129184 Serial 3948
Permanent link to this record
 

 
Author Zhang, Y.-R.; Gao, F.; Li, X.-C.; Bogaerts, A.; Wang, Y.-N.
Title Fluid simulation of the bias effect in inductive/capacitive discharges Type A1 Journal article
Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 33 Issue 33 Pages 061303
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitive discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0300V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120V at 2MHz and 90V at 27.12 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000365503800020 Publication Date 2015-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 9 Open Access
Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
Call Number c:irua:126824 Serial 1229
Permanent link to this record
 

 
Author Cagno, S.; Cosyns, P.; Ceglia, A.; Nys, K.; Janssens, K.
Title The use of vitrum obsianum in the Roman Empire: some new insights and future prospects Type A1 Journal article
Year 2015 Publication Periodico di mineralogia Abbreviated Journal Period Mineral
Volume 84 Issue 3a Pages 465-482
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The research on the use of obsidian in the Mediterranean is extensive but concerns almost exclusively volcanic glass from prehistoric and Bronze Age contexts. The consumption of obsidian during the Roman imperial period, however, has only occasionally received attention. Never a comprehensive account on what the Romans made in vitrum obsianum has been set up, nor have the sources exploited by them been examined. This paper provides a concise overview of the current knowledge on obsidian during the Roman imperial period and offers an introductory outline on potential research. The ancient writers inform us about the use of volcanic glass to create exclusive vessels, gemstones, mirrors and sculpture, but also about the creation of black appearing man-made glass initiated as a cheap and easier workable substitute of obsidian. The archaeological data on the other hand propose a more complex story with the occurrence of obsidian chunks in early Roman secondary glass workshops, and the bulky use of obsidian in late Antiquity to produce tesserae for the creation of wall and vault mosaics. Because it is extremely difficult to visually distinguish natural obsidian from man-made glass imitations we present in this paper data collected by means of non-destructive chemico-physical analyses SEM-EDX, portable X-ray fluorescence (p-XRF) and Raman spectroscopy to easily distinguish man-made glass from natural obsidian. In particular the use of portable instruments makes possible in situ analysis of objects in archaeological depots or museum collections to help defining distribution networks to better understand the shifting consumption patterns in Antiquity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000365632500007 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0369-8963 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.883 Times cited 2 Open Access
Notes ; Our sincere gratitude goes to Cecile Evers and Natacha Masar to have granted permission for studying and analysing various obsidian artefacts within the collections of the Royal Museums of Art and History, Brussels (Belgium). We are also very grateful to Roald Doctor, Daniele Foy and Laudine Robin, respectively for having provided the material from Carthage, for the Sidi Jdidi tessera and Lyon. Our appreciation also goes to Ian Freestone and Andrew Meek respectively for having worked out and provided the internal report on the horse foreleg in the British Museum. Finally we wish to thank Jennifer Price, Maria Grazia Diani respectively for the information on the Stanwick fragment and the piece in the Pogliaghi-Varesse collection. This research was supported by the Hercules Foundation (Brussels) with the grant AUHA09004 and FWO (Brussels, Belgium) projects no. G.0C12.13 and G.01769.09 and partly by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223268/ F50. ; Approved Most recent IF: 0.883; 2015 IF: 0.464
Call Number UA @ admin @ c:irua:130244 Serial 5876
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.
Title Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 595 Issue 595 Pages 25-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos (up) 000365812400005 Publication Date 2015-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 18 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number UA @ lucian @ c:irua:130254 Serial 4219
Permanent link to this record
 

 
Author de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P.
Title Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor : structure, tail states and strain effects Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 435104
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced variation in the effective mass is found to be negligible (less than 1%).
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos (up) 000365876300012 Publication Date 2015-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 23 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number UA @ lucian @ c:irua:130277 Serial 4153
Permanent link to this record
 

 
Author Bogaerts, A.; Kozak, T.; van Laer, K.; Snoeckx, R.
Title Plasma-based conversion of CO2: current status and future challenges Type A1 Journal article
Year 2015 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume 183 Issue 183 Pages 217-232
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This paper discusses our recent results on plasma-based CO2 conversion, obtained by a combination of experiments and modeling, for a dielectric barrier discharge (DBD), a microwave plasma and a packed bed DBD reactor. The results illustrate that plasma technology is quite promising for CO2 conversion, but more research is needed to better understand the underlying mechanisms and to further improve the capabilities.
Address Research Group PLASMANT, University of Antwerp, Department of Chemistry, Universiteitsplein 1, Antwerp, Belgium. annemie.bogaerts@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos (up) 000365914900013 Publication Date 2015-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.588 Times cited 89 Open Access
Notes We thank R. Aerts and W. van Gaens for setting up the experimental systems and for the interesting results obtained during their PhD study in our group. We also acknowledge nancial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Fund for Scientic Research Flanders (FWO) and the EU-FP7-ITN network “RAPID”. Approved Most recent IF: 3.588; 2015 IF: 4.606
Call Number c:irua:130318 Serial 3983
Permanent link to this record
 

 
Author Tirez, K.; Vanhoof, C.; Bronders, J.; Seuntjens, P.; Bleux, N.; Berghmans, P.; De Brucker, N.; Vanhaecke, F.
Title Do ICP-MS based methods fulfill the EU monitoring requirements for the determination of elements in our environment? Type A1 Journal article
Year 2015 Publication Environmental science : processes & impacts Abbreviated Journal
Volume 17 Issue 12 Pages 2034-2050
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Undoubtedly, the most important advance in the environmental regulatory monitoring of elements of the last decade is the widespread introduction of ICP-mass spectrometry (ICP-MS) due to standards developed by the European Committee for Standardization. The versatility of ICP-MS units as a tool for the determination of major, minor and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, Ti, V and Zn) in surface water, groundwater, river sediment, topsoil, subsoil, fine particulates and atmospheric deposition is illustrated in this paper. Ranges of background concentrations for major, minor and trace elements obtained from a regional case study (Flanders, Belgium) are summarized for all of these environmental compartments and discussed in the context of a harmonized implementation of European regulatory monitoring requirements. The results were derived from monitoring programs in support of EU environmental quality directives and were based on a selection of (non-polluted) background locations. Because of the availability of ICP-MS instruments nowadays, it can be argued that the main hindrance for meeting the European environmental monitoring requirements is no longer the technical feasibility of analysis at these concentration levels, but rather (i) potential contamination during sampling and analysis, (ii) too limited implementation of quality control programs, validating the routinely applied methods (including sampling and low level verification) and (iii) lack of harmonization in reporting of the chemical environmental status between the individual member states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000365915600005 Publication Date 2015-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7887; 2050-7895 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130316 Serial 7821
Permanent link to this record
 

 
Author Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B.
Title BaHfO3artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 114002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7−x (REBCO;RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, Jc, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm−2 with Jc values of up to 5.0 MA cm−2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field Jc measurements demonstrate high pinning force maxima of around 4 GN m−3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent Jc measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000366193000003 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 36 Open Access
Notes Experimental work was mainly done at IFW Dresden. We thank Juliane Scheiter and Dr Jens Ingolf Mönch of IFW Dresden for technical assistance. The research leading to these results received funding from EUROTAPES, a collaborative project funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP-LA-2012-280 432. L Molina-Luna and G Van Tendeloo acknowledge funding from the European Research Council (ERC grant nr. 24 691-COUNTATOMS). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129200 Serial 3941
Permanent link to this record
 

 
Author Molina-Luna, L.; Duerrschnabel, M.; Turner, S.; Erbe, M.; Martinez, G.T.; Van Aert, S.; Holzapfel, B.; Van Tendeloo, G.
Title Atomic and electronic structures of BaHfO3-doped TFA-MOD-derived YBa2Cu3O7−δthin films Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 115009
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Tailoring the properties of oxide-based nanocomposites is of great importance for a wide range of materials relevant for energy technology. YBa2Cu3O7−δ (YBCO) superconducting thin films containing nanosized BaHfO3 (BHO) particles yield a significant improvement of the magnetic flux pinning properties and a reduced anisotropy of the critical current density. These films were prepared by chemical solution deposition (CSD) on (100) SrTiO3 (STO) substrates yielding critical current densities up to 3.6 MA cm−2 at 77 K and self-field. Transport in-field J c measurements demonstrated a high pinning force maximum of around 6 GN/m3 for a sample annealed at T = 760 °C that has a doping of 12 mol% of BHO. This sample was investigated by scanning transmission electron microscopy (STEM) in combination with electron energy-loss spectroscopy (EELS) yielding strain and spectral maps. Spherical BHO nanoparticles of 15 nm in size were found in the matrix, whereas the particles at the interface were flat. A 2 nm diffusion layer containing Ti was found at the YBCO (BHO)/STO interface. Local lattice deformation mapping at the atomic scale revealed crystal defects induced by the presence of both sorts of BHO nanoparticles, which can act as pinning centers for magnetic flux lines. Two types of local lattice defects were identified and imaged: (i) misfit edge dislocations and (ii) Ba-Cu-Cu-Ba stacking faults (Y-248 intergrowths). The local electronic structure and charge transfer were probed by high energy resolution monochromated electron energy-loss spectroscopy. This technique made it possible to distinguish superconducting from non-superconducting areas in nanocomposite samples with atomic resolution in real space, allowing the identification of local pinning sites on the order of the coherence length of YBCO (~1.5 nm) and the determination of 0.25 nm dislocation cores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000366193000018 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 4 Open Access
Notes The authors thank financial support from the European Union under the Framework 6 program as a contract for an Integrated Infrastructure Initiative (References No. 026019 ESTEEM) and by the EUFP6 Research Project “NanoEngineered Superconductors for Power Applications” NESPA no. MRTN-CT-2006-035619. This work was supported by funding from the European Research Council under the Seventh Framework Programme (FP7). L.M.L, S.T. and G.V.T acknowledge ERC grant N°246791 – COUNTATOMS and funding under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2, as well as the EC project EUROTAPES. G.T.M. and S.V.A acknowledge financial support from the Fund for Scientific Research-Flanders (Reference G.0064.10N and G.0393.11N). M.D. acknowledges financial support from the LOEWE research cluster RESPONSE (Hessen, Germany). M.E. has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n° NMP-LA-2012-280432.; esteem2jra2; esteem2jra3 Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129199 c:irua:129199 Serial 3942
Permanent link to this record
 

 
Author Martinez, G.T.; Jones, L.; de Backer, A.; Béché, A.; Verbeeck, J.; Van Aert, S.; Nellist, P.D.
Title Quantitative STEM normalisation : the importance of the electron flux Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 159 Issue 159 Pages 46-58
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Annular dark-field (ADF) scanning transmission electron microscopy (STEM) has become widely used in quantitative studies based on the opportunity to directly compare experimental and simulated images. This comparison merely requires the experimental data to be normalised and expressed in units of fractional beam-current. However, inhomogeneities in the response of electron detectors can complicate this normalisation. The quantification procedure becomes both experiment and instrument specific, requiring new simulations for the particular response of each instrument's detector, and for every camera-length used. This not only impedes the comparison between different instruments and research groups, but can also be computationally very time consuming. Furthermore, not all image simulation methods allow for the inclusion of an inhomogeneous detector response. In this work, we propose an alternative method for normalising experimental data in order to compare these with simulations that consider a homogeneous detector response. To achieve this, we determine the electron flux distribution reaching the detector by means of a camera-length series or a so-called atomic column cross-section averaged convergent beam electron diffraction (XSACBED) pattern. The result is then used to determine the relative weighting of the detector response. Here we show that the results obtained by this new electron flux weighted (EFW) method are comparable to the currently used method, while considerably simplifying the needed simulation libraries. The proposed method also allows one to obtain a metric that describes the quality of the detector response in comparison with the ideal detector response.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos (up) 000366220000006 Publication Date 2015-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 27 Open Access
Notes 246791 Countatoms; 278510 Vortex; 312483 Esteem2; Fwo G036815; G036915; G037413; G004413; esteem2ta ECASJO; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:127293 c:irua:127293UA @ admin @ c:irua:127293 Serial 2762
Permanent link to this record
 

 
Author Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L.M.
Title Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 8032-8040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution,

we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy (3D TEM) revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer-Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities.

These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000366223200023 Publication Date 2015-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 18 Open Access OpenAccess
Notes The authors thank Bart Goris for his help with electron tomography. This work was funded by the European Commission (Grant #310445-2, SAVVY). The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 267867- PLASMAQUO, ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). Wang Y. and Su X. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support under the Grant JCO 14302FG096. M. C.-P. acknowledges an FPU scholarship from the Spanish Ministry of Education, Culture and Sports.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:129598 c:irua:129598 Serial 3972
Permanent link to this record
 

 
Author Cayado, P.; De Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; Coll, M.; Ricart, S.; Palau, A.; Gázquez, J.; Ros, J.; Van Tendeloo, G.; Van Driessche, I.; Puig, T.; Obradors, X.
Title Epitaxial YBa2Cu3O7−xnanocomposite thin films from colloidal solutions Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 124007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles ( ex situ nanocomposites) is reported. The trifluoroacetate (TFA) metal–organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa 2 Cu 3 O 7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO 2 and ZrO 2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents ( J c ∼ 3–4 MA cm −2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000366288100009 Publication Date 2015-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 32 Open Access
Notes All authors acknowledge the EU (EU-FP7 NMP-LA-2012-280432 EUROTAPES project). ICMAB acknowledges MINECO (MAT2014-51778-C2-1-R) and Generalitat de Catalunya (2014SGR 753 and Xarmae). UGhent acknowledges the Special Research Fund (BOF), the Research Foundation Flanders (FWO) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT). TEM microscopy work was conducted in the Catalan Institute of Nanoscience and Nanotechnology (ICN2). The authors acknowledge the ICN2 Electron Microscopy Division for offering access to their instruments and expertise. Part of the STEM microscopy work was conducted in 'Laboratorio de Microscopias Avanzadas' at the Instituto de Nanociencia de Aragon—Universidad de Zaragoza. The authors acknowledge the LMA-INA for offering access to their instruments and expertise. JG and MC also acknowledge the Ramon y Cajal program (RYC-2012-11709 and RYC-2013-12448 respectively). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129593 Serial 3966
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Gonzalez-Izquierdo, J.; Banares, L.; Tardajos, G.; Rivera, A.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Guerrero-Martinez, A.; Liz-Marzan, L.M.
Title Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods Type A1 Journal article
Year 2015 Publication Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 8282-8288
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Directed assembly of gold nanorods through the use of dithiolated molecular linkers is one of the most efficient methodologies for the morphologically controlled tip-to-tip assembly of this type of anisotropic nanocrystals. However, in a direct analogy to molecular polymerization synthesis, this process is characterized by difficulties in chain-growth control over nanoparticle oligomers. In particular, it is nearly impossible to favor the formation of one type of oligomer, making the methodology hard to use for actual applications in nanoplasmonics. We propose here a light-controlled synthetic procedure that allows obtaining selected plasmonic oligomers in high yield and with reaction times in the scale of minutes by irradiation with low fluence near-infrared (NIR) femtosecond laser pulses. Selective inhibition of the formation of gold nanorod n-mers (trimers) with a longitudinal localized surface plasmon in resonance with a 800 nm Ti:sapphire laser, allowed efficient trapping of the (n – 1)-mers (dimers) by hot spot mediated photothermal decomposition of the interparticle molecular linkers. Laser irradiation at higher energies produced near-field enhancement at the interparticle gaps, which is large enough to melt gold nanorod tips, offering a new pathway toward tip-to-tip welding of gold nanorod oligomers with a plasmonic response at the NIR. Thorough optical and electron microscopy characterization indicates that plasmonic oligomers can be selectively trapped and welded, which has been analyzed in terms of a model that predicts with reasonable accuracy the relative concentrations of the main plasmonic species.
Address Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos (up) 000366339600075 Publication Date 2015-11-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 101 Open Access OpenAccess
Notes This work has been funded by the Spanish MINECO (MAT2012-38541, MAT2013-46101-R, MAT2014-59678-R and CTQ2012-37404-C02-01). A.G.-M. and G.G.-R., respectively, acknowledge receipt of Ramón y Cajal and FPI Fellowships from the Spanish MINECO. O.P.-R. is grateful with Moncloa Campus of International Excellence (UCMUPM) for the PICATA postdoctoral fellowship. The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:129686 Serial 3976
Permanent link to this record
 

 
Author Dell'Anna, L.; Perali, A.; Covaci, L.; Neilson, D.
Title Using magnetic stripes to stabilize superfluidity in electron-hole double monolayer graphene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 220502
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Experiments have confirmed that double monolayer graphene does not generate finite-temperature electron-hole superfluidity, because of very strong screening of the pairing attraction. The linear dispersing energy bands in monolayer graphene block any attempt to reduce the strength of the screening. We propose a hybrid device with two sheets of monolayer graphene in a modulated periodic perpendicular magnetic field. The field preserves the isotropic Dirac cones of the original monolayers but reduces the slope of the cones, making the monolayer Fermi velocity v(F) smaller. We demonstrate that with current experimental techniques, the reduction in vF can weaken the screening sufficiently to allow electron-hole superfluidity at measurable temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000366500100004 Publication Date 2015-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; We thank M. Zarenia for useful discussions. L.D. acknowledges financial support from MIUR: FIRB 2012, Grant No. RBFR12NLNA_002, and PRIN, Grant No. 2010LLKJBX. A.P. and D.N. acknowledge financial support from University of Camerino FAR project CESEMN. L.C. acknowledges financial support from Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:130211 Serial 4069
Permanent link to this record
 

 
Author Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G.
Title Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
Volume 21 Issue 21 Pages 16792-16795
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.
Address Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000366501600011 Publication Date 2015-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.317 Times cited 5 Open Access
Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731
Call Number c:irua:129215 Serial 3964
Permanent link to this record
 

 
Author Van Aelst, J.; Verboekend, D.; Philippaerts, A.; Nuttens, N.; Kurttepeli, M.; Gobechiya, E.; Haouas, M.; Sree, S.P.; Denayer, J.F.M.; Martens, J.A.; Kirschhock, C.E.A.; Taulelle, F.; Bals, S.; Baron, G.V.; Jacobs, P.A.; Sels, B.F.
Title Catalyst design by NH4OH treatment of USY zeolite Type A1 Journal article
Year 2015 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 25 Issue 25 Pages 7130-7144
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hierarchical zeolites are a class of superior catalysts which couples the intrinsic zeolitic properties to enhanced accessibility and intracrystalline mass transport to and from the active sites. The design of hierarchical USY (Ultra-Stable Y) catalysts is achieved using a sustainable postsynthetic room temperature treatment with mildly alkaline NH4OH ( 0.02(M)) solutions. Starting from a commercial dealuminated USY zeolite (Si/Al = 47), a hierarchical material is obtained by selective and tuneable creation of interconnected and accessible small mesopores (2- 6 nm). In addition, the treatment immediately yields the NH4+ form without the need for additional ion exchange. After NH4OH modification, the crystal morphology is retained, whereas the microporosity and relative crystallinity are decreased. The gradual formation of dense amorphous phases throughout the crystal without significant framework atom leaching rationalizes the very high material yields (>90%). The superior catalytic performance of the developed hierarchical zeolites is demonstrated in the acid-catalyzed isomerization of alpha-pinene and the metal-catalyzed conjugation of safflower oil. Significant improvements in activity and selectivity are attained, as well as a lowered susceptibility to deactivation. The catalytic performance is intimately related to the introduced mesopores, hence enhanced mass transport capacity, and the retained intrinsic zeolitic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos (up) 000366503700003 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 64 Open Access OpenAccess
Notes ; The authors thank Dr. M. Thommes and Dr. K. Cychosz for numerous and helpful discussions on the correct evaluation of the Ar isotherms. I. Cuppens is acknowledged for ICP-AES analyses. Research was funded through a PhD grant to J.V.A. of the Agency for Innovation by Science and Technology in Flanders (IWT). D.V. and A.P. acknowledge F.W.O.-Vlaanderen (Research Foundation Flanders) for a postdoctoral fellowship. N.N. thanks the KU Leuven for financial support (FLOF). E.G., C.K., and J.M. acknowledge the long-term structural funding by the Flemish Government (Methusalem). S.B. acknowledges the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 335078-COLOURATOMS. The authors are grateful for financial support by the Belgian government through Interuniversity Attraction Poles (IAP-PAI). They also thank Oleon NV for supplying safflower oil. ; ecas_Sara Approved Most recent IF: 12.124; 2015 IF: 11.805
Call Number UA @ lucian @ c:irua:130214 Serial 4147
Permanent link to this record
 

 
Author McCalla, E.; Abakumov, A.M.; Saubanere, M.; Foix, D.; Berg, E.J.; Rousse, G.; Doublet, M.-L.; Gonbeau, D.; Novak, P.; Van Tendeloo, G.; Dominko, R.; Tarascon, J.-M.
Title Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries Type A1 Journal article
Year 2015 Publication Science Abbreviated Journal Science
Volume 350 Issue 350 Pages 1516-1521
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.
Address College de France, Chimie du Solide et de l'Energie, FRE 3677, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. ALISTORE-European Research Institute, FR CNRS 3104, 80039 Amiens, France. Reseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France. Sorbonne Universites-UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France. jean-marie.tarascon@college-de-france.fr
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos (up) 000366591100056 Publication Date 2015-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 37.205 Times cited 281 Open Access
Notes E.M. thanks the Fonds de Recherche du Québec–Nature et Technologies and ALISTORE–European Research Institute for funding this work, as well as the European community I3 networks for funding the neutron scattering research trip. This work was also funded by the Slovenian Research Agency research program P2-0148. This work is partially based on experiments performed at the Institut Laue Langevin. We thank J. Rodriguez-Carvajal for help with neutron scattering experiments and for fruitful discussions. We also thank M. T. Sougrati for performing the Sn-Mössbauer measurements. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02- 06CH11357. M.S. and M.-L.D. acknowledge high-performance computational resources from GENCI-CCRT/CINES (grant cmm6691). J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC Grant-Project670116-ARPEMA. Approved Most recent IF: 37.205; 2015 IF: 33.611
Call Number c:irua:130202 Serial 4005
Permanent link to this record
 

 
Author Sobrino Fernandez, M.M.; Neek-Amal, M.; Peeters, F.M.
Title AA-stacked bilayer square ice between graphene layers Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 245428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Water confined between two graphene layers with a separation of a few A forms a layered two-dimensional ice structure. Using large scale molecular dynamics simulations with the adoptable ReaxFF interatomic potential we found that flat monolayer ice with a rhombic-square structure nucleates between the graphene layers which is nonpolar and nonferroelectric. We provide different energetic considerations and H-bonding results that explain the interlayer and intralayer properties of two-dimensional ice. The controversial AA stacking found experimentally [Algara-Siller et al., Nature (London) 519, 443 (2015)] is consistent with our minimum-energy crystal structure of bilayer ice. Furthermore, we predict that an odd number of layers of ice has the same lattice structure as monolayer ice, while an even number of ice layers exhibits the square ice AA stacking of bilayer ice.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos (up) 000366731800004 Publication Date 2015-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:130203 Serial 4127
Permanent link to this record
 

 
Author Kim, E.; Spooren, J.; Broos, K.; Horckmans, L.; Quaghebeur, M.; Vrancken, K.C.
Title Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching Type A1 Journal article
Year 2015 Publication Hydrometallurgy Abbreviated Journal
Volume 158 Issue Pages 139-148
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Selective chromium (Cr) leaching from stainless steel slag (SS slag) by alkali roasting followed by water leaching was investigated. The efficiency of the alkali roasting process for Cr leaching was increased by optimizing the mass ratio of alkaline agents (NaOH, and NaOH-NaNO3) to the slag, roasting temperature and time. At the optimum condition (0.67 mass ratio of NaOH to SS slag, 400 degrees C, 2 h) of NaOH roasting, chromium leaching was around 83%, while the matrix material was dissolved only to a limited extent (Si 8.0%). Mechanical activation of the SS slag prior to roasting reduced the optimum NaOH to SS slag mass ratio to 0.4. The addition of NaNO3 as an oxidant to the NaOH salt increased Cr leaching to 89% after roasting at 400 degrees C for 2 h. The remaining Cr phases in the residue were almost exclusively FeCr alloys. Further chromium dissolution from these alloys is prevented by a passivation layer of Fe oxides as shown by SEM/EDS images. Based on these results, a SS slag recycling process is suggested in which roasting-water leaching followed by water washing to remove Cr yields a residue which has potential for application as a construction material. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos (up) 000366768000019 Publication Date 2015-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:130223 Serial 8504
Permanent link to this record