|
Record |
Links |
|
Author |
de de Meux, A.J.; Pourtois, G.; Genoe, J.; Heremans, P. |
|
|
Title |
Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor : structure, tail states and strain effects |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Journal of physics: D: applied physics |
Abbreviated Journal |
J Phys D Appl Phys |
|
|
Volume |
48 |
Issue |
48 |
Pages |
435104 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
We study the evolution of the structural and electronic properties of crystalline indium gallium zinc oxide (IGZO) upon amorphization by first-principles calculation. The bottom of the conduction band (BCB) is found to be constituted of a pseudo-band of molecular orbitals that resonate at the same energy on different atomic sites. They display a bonding character between the s orbitals of the metal sites and an anti-bonding character arising from the interaction between the oxygen and metal s orbitals. The energy level of the BCB shifts upon breaking of the crystal symmetry during the amorphization process, which may be attributed to the reduction of the coordination of the cationic centers. The top of the valence band (TVB) is constructed from anti-bonding oxygen p orbitals. In the amorphous state, they have random orientation, in contrast to the crystalline state. This results in the appearance of localized tail states in the forbidden gap above the TVB. Zinc is found to play a predominant role in the generation of these tail states, while gallium hinders their formation. Last, we study the dependence of the fundamental gap and effective mass of IGZO on mechanical strain. The variation of the gap under strain arises from the enhancement of the anti-bonding interaction in the BCB due to the modification of the length of the oxygen-metal bonds and/or to a variation of the cation coordination. This effect is less pronounced for the amorphous material compared to the crystalline material, making amorphous IGZO a semiconductor of choice for flexible electronics. Finally, the effective mass is found to increase upon strain, in contrast to regular materials. This counterintuitive variation is due to the reduction of the electrostatic shielding of the cationic centers by oxygen, leading to an increase of the overlaps between the metal orbitals at the origin of the delocalization of the BCB. For the range of strain typically met in flexible electronics, the induced variation in the effective mass is found to be negligible (less than 1%). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
London |
Editor |
|
|
|
Language |
|
Wos |
000365876300012 |
Publication Date |
2015-09-30 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-3727 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.588 |
Times cited |
23 |
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 2.588; 2015 IF: 2.721 |
|
|
Call Number |
UA @ lucian @ c:irua:130277 |
Serial |
4153 |
|
Permanent link to this record |