toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sentosun, K.; Sanz Ortiz, M.N.; Batenburg, K.J.; Liz-Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title Combination of HAADF-STEM and ADF-STEM Tomography for Core-Shell Hybrid Materials Type A1 Journal article
  Year 2015 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 32 Issue 32 Pages 1063-1067  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Characterization of core-shell type nanoparticles in 3D by transmission electron microscopy (TEM) can be very challenging. Especially when both heavy and light elements co-exist within the same nanostructure, artefacts in the 3D reconstruction are often present. A representative example would be a particle comprising an anisotropic metallic (Au) nanoparticle coated with a (mesoporous) silica shell. To obtain a reliable 3D characterization of such an object, we propose a dose-efficient strategy to simultaneously acquire high angle annular dark field scanning TEM and annular dark field tilt series for tomography. The 3D reconstruction is further improved by applying an advanced masking and interpolation approach to the acquired data. This new methodology enables us to obtain high quality reconstructions from which also quantitative information can be extracted. This approach is broadly applicable to investigate hybrid core-shell materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000368446800003 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 13 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant #335078-COLOURATOM). L.M. acknowledges funding from the EU, Grant# 310651-2 Self-Assembly in Confined Space (SACS). K.J.B acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207. The authors acknowledge the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 for financial support.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.474; 2015 IF: 3.081  
  Call Number c:irua:129590 c:irua:129590 Serial 3967  
Permanent link to this record
 

 
Author Cabral, L.R.E.; de Aquino, B.R.C.H.T.; de Souza Silva, C.C.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Two-shell vortex and antivortex dynamics in a Corbino superconducting disk Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014515  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly, while above a threshold current the shells decouple from each other and rotate at different angular velocities. Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical molecular dynamics simulations of the full many-vortex problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos (up) 000368481600003 Publication Date 2016-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Brazilian Science Agencies CAPES, CNPq, and FACEPE under Grants No. APQ-1381-1.05/12, No. APQ 2017-1.05/12, and No. APQ-0598/1.05-08 and by EU-COST Action No. MP1201 and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131541 Serial 4270  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 472-477  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000368562200057 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536  
  Call Number c:irua:130677 Serial 4002  
Permanent link to this record
 

 
Author van der Snickt, G.; Martins, A.; Delaney, J.; Janssens, K.; Zeibel, J.; Duffy, M.; McGlinchey, C.; Van Driel, B.; Dik, J. pdf  doi
openurl 
  Title Exploring a hidden painting below the surface of Rene Magritte's Le Portrait Type A1 Journal article
  Year 2016 Publication Applied spectroscopy Abbreviated Journal Appl Spectrosc  
  Volume 70 Issue 1 Pages 57-67  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Two state-of-the-art methods for non-invasive visualization of subsurface (or overpainted) pictorial layers present in painted works of art are employed to study Le portrait, painted by Belgian artist Rene Magritte in 1935. X-ray radiography, a commonly used method for the nondestructive inspection of paintings, had revealed the presence of an underlying figurative composition, part of an earlier Magritte painting entitled La pose enchantee (1927) which originally depicted two full length nude female figures with exaggerated facial features. On the one hand, macroscopic X-ray fluorescence analysis (MA-XRF), a method capable of providing information on the distribution of the key chemical elements present in many artists' pigments, was employed. The ability of the X-rays to penetrate the upper layer of paint enabled the imaging of the facial features of the female figure and provided information on Magritte's palette for both surface and hidden composition. On the other hand, visible and near infrared hyperspectral imaging spectroscopies in transmission mode were also used, especially in the area of the table cloth in order to look through the upper representation and reveal the pictorial layer(s) below. MA-XRF provided elemental information on the pigment distributions in both the final painting and the prior whereas the transmission mode provided information related to preparatory sketches as well as revealing differences between the paints used in both compositions. These results illustrate very well the manner in which the two imaging methods complement each other, both in the sense of providing different types of information on the nature and presence of paint components/pigments and in the sense of being optimally suited to easily penetrate through different types of overpaint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000368604500007 Publication Date 2016-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-7028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.529 Times cited 13 Open Access  
  Notes ; GvdS and KJ acknowledge the support of the Fund Inbev-Baillet Latour. JKD acknowledges support from the Andrew Mellon Foundation and the National Science Foundation. BvD and JD acknowledge support from The Netherlands Organisation for Scientific Research (NWO). ; Approved Most recent IF: 1.529  
  Call Number UA @ admin @ c:irua:131544 Serial 5620  
Permanent link to this record
 

 
Author Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L. pdf  doi
openurl 
  Title Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 141-148  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 degrees C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000368755500014 Publication Date 2015-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 31 Open Access Not_Open_Access  
  Notes ; Part of this work was supported by the COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:131589 Serial 4184  
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M. pdf  url
doi  openurl
  Title Strain engineering of the electronic properties of bilayer graphene quantum dots: Strain engineering of the electronic properties of bilayer graphene quantum dots Type A1 Journal article
  Year 2015 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 10 Issue 10 Pages 39-45  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effect of mechanical deformations on the elec- tronic properties of hexagonal flakes of bilayer graphene. The behavior of electrons induced by triaxial strain can be de- scribed by an effective pseudo-magnetic field which is homo- geneous in the center of the flake. We find that in-plane strain, applied to both layers equally, can break the layer symmetry leading to different behavior in the top and bottom layers of graphene. At low energy, just one of the layers feels

the pseudo-magnetic field: the zero-energy pseudo-Landau level is missing in the second layer, thus creating a gap be- tween the lowest non-zero levels. While the layer asymmetry is most significant at zero energy, interaction with the edges of the flake extends the effect to higher pseudo-Landau lev- els. The behavior of the top and bottom layers may be re- versed by rotating the triaxial strain by 60°.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000368814500005 Publication Date 2015-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 9 Open Access  
  Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. Approved Most recent IF: 3.032; 2015 IF: 2.142  
  Call Number c:irua:129592 Serial 3970  
Permanent link to this record
 

 
Author Turner, S.; Idrissi, H.; Sartori, A.F.; Korneychuck, S.; Lu, Y.-G.; Verbeeck, J.; Schreck, M.; Van Tendeloo, G. url  doi
openurl 
  Title Direct imaging of boron segregation at dislocations in B:diamond heteroepitaxial films Type A1 Journal article
  Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 8 Issue 8 Pages 2212-2218  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A thin film of heavily B-doped diamond has been grown epitaxially by microwave plasma chemical vapor deposition on an undoped diamond layer, on top of a Ir/YSZ/Si(001) substrate stack, to study the boron segregation and boron environment at the dislocations present in the film. The density and nature of the dislocations were investigated by conventional and weak-beam dark-field transmission electron microscopy techniques, revealing the presence of two types of dislocations: edge and mixed-type 45 degrees dislocations. The presence and distribution of B in the sample was studied using annular dark-field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy. Using these techniques, a segregation of B at the dislocations in the film is evidenced, which is shown to be intermittent along the dislocation. A single edge-type dislocation was selected to study the distribution of the boron surrounding the dislocation core. By imaging this defect at atomic resolution, the boron is revealed to segregate towards the tensile strain field surrounding the edge-type dislocations. An investigation of the fine structure of the B-K edge at the dislocation core shows that the boron is partially substitutionally incorporated into the diamond lattice and partially present in a lower coordination (sp(2)-like hybridization).  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. stuart.turner@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000368860900053 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 15 Open Access  
  Notes S. T. acknowledges the fund for scien tific research Flanders (FWO) for a post-doctoral scholarship and under contract number G.0044.13N Approved Most recent IF: 7.367  
  Call Number c:irua:131597UA @ admin @ c:irua:131597 Serial 4121  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Warwick, M.E.A.; Kaunisto, K.; Sada, C.; Turner, S.; Gönüllü, Y.; Ruoko, T.-P.; Borgese, L.; Bontempi, E.; Van Tendeloo, G.; Lemmetyinen, H.; Mathur, S. pdf  url
doi  openurl
  Title Fe2O3-TiO2Nano-heterostructure Photoanodes for Highly Efficient Solar Water Oxidation Type A1 Journal article
  Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 2 Issue 2 Pages 1500313  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000368914700011 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 56 Open Access  
  Notes The authors kindly acknowledge the fi nancial support under the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as Padova University ex-60% 2012–2014 projects, Grant No. CPDR132937/13 (SOLLEONE), and Regione Lombardia-INSTM ATLANTE projects. S.T. acknowledges the FWO Flanders for a postdoctoral scholarship. Approved Most recent IF: 4.279; 2015 IF: NA  
  Call Number c:irua:129201 Serial 3957  
Permanent link to this record
 

 
Author Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T. pdf  doi
openurl 
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year 2015 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 2 Issue 2 Pages 044002  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos (up) 000368936600005 Publication Date 2015-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 20 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:131602 Serial 4169  
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C. pdf  url
doi  openurl
  Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
  Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 49 Issue 49 Pages 054002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000368944100003 Publication Date 2015-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 11 Open Access  
  Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO) and the Francqui Foundation. The calculations were carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588  
  Call Number c:irua:131571 Serial 3985  
Permanent link to this record
 

 
Author Fedotov, S.S.; Khasanova, N.R.; Samarin, A.S.; Drozhzhin, O.A.; Batuk, D.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V. pdf  url
doi  openurl
  Title AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 411-415  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel potassium-based fluoride-phosphate, KVPO4F, with a KTiOPO4 (KTP) type structure is synthesized and characterized. About 85% of potassium has been electrochemically extracted on oxidation producing a cathode material with attractive performance for Li-ion batteries. The material operates at the electrode potential near 4V vs Li/Li+ exhibiting a sloping voltage profile, extremely low polarization, small volume change of about 2% and excellent rate capability, maintaining more than 75% of the initial capacity at 40C discharge rate without significant fading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000368949900002 Publication Date 2016-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 46 Open Access  
  Notes The authors kindly thank Dr. S. N. Putilin for XRD measurements, Dr. O. A. Shlyakhtin for the assistance in cryochemical synthesis, Ph.D. students A. A. Sadovnikov and E. A. Karpukhina for SEM imaging and FTIR spectra respectively. The work was partly supported by Russian Science Foundation (grant 16-19-00190), Skoltech Center for Electrochemical Energy Storage and Moscow State University Devel-opment Program up to 2020. J. Hadermann, O.M. Karakulina and A.M. Abakumov acknowledge support from FWO under grant G040116N. Approved Most recent IF: 9.466  
  Call Number c:irua:131583 Serial 4001  
Permanent link to this record
 

 
Author Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M. url  doi
openurl 
  Title Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000369021400002 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 104 Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:131599 Serial 4197  
Permanent link to this record
 

 
Author Mahdei, K.N.; Pouya, M.; Taheri, F.; Azadi, H.; Van Passel, S. url  doi
openurl 
  Title Sustainability indicators of irans developmental plans : application of the sustainability compass theory Type A1 Journal article
  Year 2015 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 7 Issue 11 Pages 14647-14660  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract The main purpose of this study was to analyze Irans developmental plans in order to examine and compare their direction and conformity with the sustainable development theory via the compass of sustainability. The approach involves a content analysis used in line with qualitative research methodologies. The results indicated that, in the first developmental plans, there was no direct reference to sustainable development. In the second to fifth plans, the main focus was on the social, environmental, and economic dimensions of development; which were common elements seen in the policies of all the plans. An analysis of the fourth plan revealed that expressions related to sustainable development appeared more frequently, indicating a stronger emphasis on sustainable development by decision-makers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000369088600013 Publication Date 2015-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.789 Times cited 3 Open Access  
  Notes ; The authors wish to thank Bethany Gardner from the Department of Linguistics, Binghamton University for her kind help in improving the English of this text. The corresponding author is a beneficiary of Fulbright scholarship at Binghamton University-State University of New York. ; Approved Most recent IF: 1.789; 2015 IF: 0.942  
  Call Number UA @ admin @ c:irua:129874 Serial 6256  
Permanent link to this record
 

 
Author Fernández Becerra, V.; Sardella, E.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Vortical versus skyrmionic states in mesoscopic p-wave superconductors Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p-wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000369217400004 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). E.S. acknowledges support from the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131581 Serial 4275  
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 1245-1257  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.  
  Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000369356800031 Publication Date 2016-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access  
  Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857  
  Call Number c:irua:132247 Serial 4073  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Optical properties of GaS-Ca(OH)2 bilayer heterostructure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Finding novel atomically thin heterostructures and understanding their characteristic properties are critical for developing better nanoscale optoelectronic devices. In this study, we investigate the electronic and optical properties of a GaS-Ca(OH)(2) heterostructure using first-principle calculations. The band gap of the GaS-Ca(OH)(2) heterostructure is significantly reduced when compared to those of the isolated constituent layers. Our calculations showthat the GaS-Ca(OH)(2) heterostructure is a type-II heterojunction which can be used to separate photoinduced charge carriers where electrons are localized in GaS and holes in the Ca(OH)(2) layer. This leads to spatially indirect excitons which are important for solar energy and optoelectronic applications due to their long lifetime. By solving the Bethe-Salpeter equation on top of a single shot GW calculation (G(0)W(0)), the dielectric function and optical oscillator strength of the constituent monolayers and the heterostructure are obtained. The oscillator strength of the optical transition for the GaS monolayer is an order of magnitude larger than the Ca(OH)(2) monolayer. We also found that the calculated optical spectra of different stacking types of the heterostructure show dissimilarities, although their electronic structures are rather similar. This prediction can be used to determine the stacking type of ultrathin heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000369401000001 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus long Marie Curie Fellowship. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131614 Serial 4220  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of energy levels in biased bilayer graphene quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 085401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we study the influence of a perpendicular magnetic field on the energy levels of hexagonal, triangular, and circular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We obtain the energy levels for AB (Bernal)-stacked BLG QDs in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). We find different regions in the spectrum of biased QDs with respect to the crossing point between the lowest-electron and -hole Landau levels of a biased BLG sheet. Those different regions correspond to electron states that are localized at the center, edge, or corner of the BLG QD. Quantum Hall corner states are found to be absent in circular BLG QDs. The spatial symmetry of the carrier density distribution is related to the symmetry of the confinement potential, the position of zigzag edges, and the presence or absence of interlayer inversion symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000369402400008 Publication Date 2016-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes ; This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the Process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836  
  Call Number c:irua:131623 Serial 4038  
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Snijkers, F.; Van Tendeloo, G.; Cool, P. pdf  url
doi  openurl
  Title Texturing of hydrothermally synthesized BaTiO3 in a strong magnetic field by slip casting Type A1 Journal article
  Year 2016 Publication Ceramics international Abbreviated Journal Ceram Int  
  Volume 42 Issue 42 Pages 5382-5390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Barium titanate powder was processed by slip casting in a rotating strong magnetic field of 9.4 T. The orientation factor of the sintered compact was analyzed by the X-ray diffraction technique and the microstructure (grain-size) was analyzed by scanning electron microscope. The hydrothermally prepared barium titanate was used as matrix material and the molten-salt synthesized barium titanate, with a larger particle-size, was used as template for the templated grain-growth process. Addition of large template particles was observed to increase the orientation factor of the sintered cast (5 vol% loading). Template particles acted as starting grains for the abnormal grain-growth process and the average grain-size was increased after sintering. Increasing the solid loading (15 vol%) resulted in a similar orientation factor with a decrease of the average grain size by more than half. However, addition of templates to the 15 vol% cast had a negative effect on the orientation factor. The impingement of growing particles was stated as the primary cause of particle misorientation resulting in a low orientation factor after sintering. Different heating conditions were tested and it was determined that a slow heating rate gave the highest orientation factor, the smallest average grain-size and the highest relative density. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos (up) 000369460500098 Publication Date 2015-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-8842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.986 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.986  
  Call Number UA @ lucian @ c:irua:132228 Serial 4260  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F.M.; Senger, R.T. url  doi
openurl 
  Title Nitrogenated, phosphorated and arsenicated monolayer holey graphenes Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 3144-3150  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by a recent experiment that reported the synthesis of a new 2D material nitrogenated holey graphene (C2N) [Mahmood et al., Nat. Commun., 2015, 6, 6486], the electronic, magnetic, and mechanical properties of nitrogenated (C2N), phosphorated (C2P) and arsenicated (C2As) monolayer holey graphene structures are investigated using first-principles calculations. Our total energy calculations indicate that, similar to the C2N monolayer, the formation of the other two holey structures are also energetically feasible. Calculated cohesive energies for each monolayer show a decreasing trend going from the C2N to C2As structure. Remarkably, all the holey monolayers considered are direct band gap semiconductors. Regarding the mechanical properties (in-plane stiffness and Poisson ratio), we find that C2N has the highest in-plane stiffness and the largest Poisson ratio among the three monolayers. In addition, our calculations reveal that for the C2N, C2P and C2As monolayers, creation of N and P defects changes the semiconducting behavior to a metallic ground state while the inclusion of double H impurities in all holey structures results in magnetic ground states. As an alternative to the experimentally synthesized C2N, C2P and C2As are mechanically stable and flexible semiconductors which are important for potential applications in optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000369506000095 Publication Date 2015-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 36 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:132313 Serial 4214  
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Galvita, V.V.; Poelman, H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Bell, A.T.; Marin, G.B. pdf  url
doi  openurl
  Title The role of hydrogen during Pt-Ga nanocatalyst formation Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 3234-3243  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms – such as hydrogen-spillover, surface migration – have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 degrees C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga3+ cations in the support. Only in the presence of Pt, partial reduction of Ga3+ into Gadelta+ is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga3+ is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Gadelta+Ox migrates towards Pt clusters, where Gadelta+ is only fully reduced to Ga0 on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.  
  Address Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, B-9052 Ghent, Belgium. hilde.poelman@ugent.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000369506000106 Publication Date 2016-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 10 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of beam time at the DUBBLE beam line of the ESRF and travel costs and a postdoctoral fellowship for S.T. The authors acknowledge the assistance from D. Banerjee (XAS campaign 26-01-979) at DUBBLE. E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to V. Bliznuk for acquisition of the TEM images. Approved Most recent IF: 4.123  
  Call Number c:irua:132315 Serial 4000  
Permanent link to this record
 

 
Author Suslu, A.; Wu, K.; Sahin, H.; Chen, B.; Yang, S.; Cai, H.; Aoki, T.; Horzum, S.; Kang, J.; Peeters, F.M.; Tongay, S.; url  doi
openurl 
  Title Unusual dimensionality effects and surface charge density in 2D Mg(OH)2 Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20525  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We present two-dimensional Mg(OH)(2) sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)(2) sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)(2) have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)(2) is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)(2) sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)(2) sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)(2), naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)(2), but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos (up) 000369510300001 Publication Date 2016-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 39 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of John M. Cowley Center for High Resolution Electron Microscopy at Arizona State University. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:131615 Serial 4272  
Permanent link to this record
 

 
Author Rezaei, M.; Seuntjens, P.; Joris, I.; Boenne, W.; Van Hoey, S.; Campling, P.; Cornelis, W.M. url  doi
openurl 
  Title Sensitivity of water stress in a two-layered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters Type A1 Journal article
  Year 2016 Publication Hydrology and earth system sciences Abbreviated Journal  
  Volume 20 Issue 1 Pages 487-503  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Monitoring and modelling tools may improve irrigation strategies in precision agriculture. We used non-invasive soil moisture monitoring, a crop growth and a soil hydrological model to predict soil water content fluctuations and crop yield in a heterogeneous sandy grassland soil under supplementary irrigation. The sensitivity of the soil hydrological model to hydraulic parameters, water stress, crop yield and lower boundary conditions was assessed after integrating models. Free drainage and incremental constant head conditions were implemented in a lower boundary sensitivity analysis. A time-dependent sensitivity analysis of the hydraulic parameters showed that changes in soil water content are mainly affected by the soil saturated hydraulic conductivity K-s and the Mualem-van Genuchten retention curve shape parameters n and alpha. Results further showed that different parameter optimization strategies (two-, three-, four- or six-parameter optimizations) did not affect the calculated water stress and water content as significantly as does the bottom boundary. In this case, a two-parameter scenario, where K-s was optimized for each layer under the condition of a constant groundwater depth at 135-140 cm, performed best. A larger yield reduction, and a larger number and longer duration of stress conditions occurred in the free drainage condition as compared to constant boundary conditions. Numerical results showed that optimal irrigation scheduling using the aforementioned water stress calculations can save up to 12-22 % irrigation water as compared to the current irrigation regime. This resulted in a yield increase of 4.5-6.5 %, simulated by the crop growth model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000369668400028 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1027-5606; 1607-7938 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:132259 Serial 8514  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Peeters, F.M. pdf  url
doi  openurl
  Title Characterization of the size and position of electron-hole puddles at a graphene p-n junction Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 105203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The effect of an electron-hole puddle on the electrical transport when governed by snake states in a bipolar graphene structure is investigated. Using numerical simulations we show that information on the size and position of the electron-hole puddle can be obtained using the dependence of the conductance on magnetic field and electron density of the gated region. The presence of the scatterer disrupts snake state transport which alters the conduction pattern. We obtain a simple analytical formula that connects the position of the electron-hole puddle with features observed in the conductance. The size of the electron-hole puddle is estimated from the magnetic field and gate potential that maximizes the effect of the puddle on the electrical transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos (up) 000369849200003 Publication Date 2016-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 3 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. We acknowledge interesting correspondence with Thiti Taychatanapat. Approved Most recent IF: 3.44  
  Call Number c:irua:131907 Serial 4025  
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L. pdf  doi
openurl 
  Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
  Year 2015 Publication Materials research express Abbreviated Journal Mater Res Express  
  Volume 2 Issue 2 Pages 015007  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos (up) 000369978500007 Publication Date 2014-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access  
  Notes ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:132275 Serial 4240  
Permanent link to this record
 

 
Author Altantzis, T.; Yang, Z.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title Thermal Stability of CoAu13Binary Nanoparticle Superlattices under the Electron Beam Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 716-719  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract One primary goal of self-assembly in nanoscale regime is to implement multifunctional binary nanoparticle superlattices into practical use. In the last decade, considerable effort has been put into the fabrication of binary nanoparticle superlattices with controllable structure and stoichiometry. However, limited effort has been made in order to improve the stability of these binary nanoparticle superlattices, which is a prerequisite for their potential application. In this work, we demonstrate that the carbon deposition from specimen contamination can play an auxiliary role during the heat treatment of binary nanoparticle superlattices. With the in-situ carbon matrix formation, the thermal stability of CoAu 13 binary nanoparticle superlattices is unambiguously enhanced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000370112200007 Publication Date 2016-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by theEuropean Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number c:irua:131908 Serial 4040  
Permanent link to this record
 

 
Author Agarwal, T.; Sorée, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W. doi  openurl
  Title Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 023506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Conventional junctionless (JL) multi/gate (MuG) field-effect transistors (FETs) require extremely scaled channels to deliver high on-state current with low short-channel effect related leakage. In this letter, using ultra-thin 2D materials (e.g., monolayer MoS2), we present comparison of short-channel effects in JL, and inversion-mode (IM) FETs. We show that JL FETs exhibit better sub-threshold slope (S.S.) and drain-induced-barrier-lowering (DIBL) in comparison to IM FETs due to reduced peak electric field at the junctions. But, threshold voltage (VT) roll-off with channel length downscaling is found to be significantly higher in JL FETs than IM FETs, due to higher source/drain controlled charges (dE/dx) in the channel. Further, we show that although VT roll-off in JL FETs improves by increasing the gate control, i.e., by scaling the oxide, or channel thickness, the sensitivity of threshold voltage on structural parameters is found out to be high. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000370258400056 Publication Date 2016-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:132318 Serial 4152  
Permanent link to this record
 

 
Author Opherden, L.; Sieger, M.; Pahlke, P.; Hühne, R.; Schultz, L.; Meledin, A.; Van Tendeloo, G.; Nast, R.; Holzapfel, B.; Bianchetti, M.; MacManus-Driscoll, J.L.; Hänisch, J. url  doi
openurl 
  Title Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 21188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000370364500001 Publication Date 2016-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 39 Open Access  
  Notes The authors gratefully acknowledge J. Scheiter, U. Besold, and U. Fiedler for technical assistance. This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432. Approved Most recent IF: 4.259  
  Call Number c:irua:131920 Serial 4026  
Permanent link to this record
 

 
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.; doi  openurl
  Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 4 Issue 4 Pages 1295-1304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000370723300020 Publication Date 2016-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited Open Access  
  Notes Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:132327 Serial 4211  
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K. url  doi
openurl 
  Title Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders Type A1 Journal article
  Year 2016 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume Issue Pages 1-7  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We report on a wearable fingertip sensor for on-the-spot identification of cocaine and its cutting agents in street samples. Traditionally, on-site screening is performed by means of colour tests which are difficult to interpret and lack selectivity. By presenting the distinct voltammetric response of cocaine, cutting agents, binary mixtures of cocaine and street samples in solution and powder street samples, we were able to elucidate the electrochemical fingerprint of all these compounds. The new electrochemical concept holds considerable promise as an on-site screening method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000371021900094 Publication Date 2016-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 37 Open Access  
  Notes ; The authors acknowledge BELSPO for funding the APTADRU project (BR/314/PI/ APTADRU). ; Approved Most recent IF: 8.668  
  Call Number UA @ admin @ c:irua:130404 Serial 5591  
Permanent link to this record
 

 
Author Neubert, S.; Mitoraj, D.; Shevlin, S.A.; Pulisova, P.; Heimann, M.; Du, Y.; Goh, G.K.L.; Pacia, M.; Kruczała, K.; Turner, S.; Macyk, W.; Guo, Z.X.; Hocking, R.K.; Beranek, R.; url  doi
openurl 
  Title Highly efficient rutile TiO2 photocatalysts with single Cu(II) and Fe(III) surface catalytic sites Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 4 Issue 4 Pages 3127-3138  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Highly active photocatalysts were obtained by impregnation of nanocrystalline rutile TiO2 powders with small amounts of Cu(II) and Fe(III) ions, resulting in the enhancement of initial rates of photocatalytic degradation of 4-chlorophenol in water by factors of 7 and 4, compared to pristine rutile, respectively. Detailed structural analysis by EPR and X-ray absorption spectroscopy (EXAFS) revealed that Cu(II) and Fe(III) are present as single species on the rutile surface. The mechanism of the photoactivity enhancement was elucidated by a combination of DFT calculations and detailed experimental mechanistic studies including photoluminescence measurements, photocatalytic experiments using scavengers, OH radical detection, and photopotential transient measurements. The results demonstrate that the single Cu(II) and Fe(III) ions act as effective cocatalytic sites, enhancing the charge separation, catalyzing “dark” redox reactions at the interface, thus improving the normally very low quantum yields of UV light-activated TiO2 photocatalysts. The exact mechanism of the photoactivity enhancement differs depending on the nature of the cocatalyst. Cu(II)-decorated samples exhibit fast transfer of photogenerated electrons to Cu(II/I) sites, followed by enhanced catalysis of dioxygen reduction, resulting in improved charge separation and higher photocatalytic degradation rates. At Fe(III)-modified rutile the rate of dioxygen reduction is not improved and the photocatalytic enhancement is attributed to higher production of highly oxidizing hydroxyl radicals produced by alternative oxygen reduction pathways opened by the presence of catalytic Fe(III/II) sites. Importantly, it was demonstrated that excessive heat treatment (at 450 degrees C) of photocatalysts leads to loss of activity due to migration of Cu(II) and Fe(III) ions from TiO2 surface to the bulk, accompanied by formation of oxygen vacancies. The demonstrated variety of mechanisms of photoactivity enhancement at single site catalyst-modified photocatalysts holds promise for developing further tailored photocatalysts for various applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos (up) 000371077300040 Publication Date 2015-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 44 Open Access  
  Notes Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:132322 Serial 4191  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: