toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martens, T.; Bogaerts, A.; Brok, W.J.M.; van der Mullen, J.J.A.M. doi  openurl
  Title Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma Type A1 Journal article
  Year 2007 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 22 Issue 9 Pages 1003-1042  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000248917300013 Publication Date 2007-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.379; 2007 IF: 3.269  
  Call Number UA @ lucian @ c:irua:64791 Serial 2140  
Permanent link to this record
 

 
Author Bogaerts, A. doi  openurl
  Title Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges Type A1 Journal article
  Year 2007 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 22 Issue 1 Pages 13-40  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000242978500001 Publication Date 2006-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.379; 2007 IF: 3.269  
  Call Number UA @ lucian @ c:irua:61139 Serial 2633  
Permanent link to this record
 

 
Author Slaets, J.; Aghaei, M.; Ceulemans, S.; Van Alphen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2and CH4conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2and O2affect the performance? Type A1 Journal article
  Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume (down) 22 Issue 4 Pages 1366-1377  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper we study dry reforming of methane (DRM) in a gliding arc plasmatron (GAP) in the presence of N<sub>2</sub>and O<sub>2</sub>. N<sub>2</sub>is added to create a stable plasma at equal fractions of CO<sub>2</sub>and CH<sub>4</sub>, and because emissions from industrial plants typically contain N<sub>2</sub>, while O<sub>2</sub>is added to enhance the process. We test different gas mixing ratios to evaluate the conversion and energy cost. We obtain conversions between 31 and 52% for CO<sub>2</sub>and between 55 and 99% for CH<sub>4</sub>, with total energy costs between 3.4 and 5.0 eV per molecule, depending on the gas mixture. This is very competitive when benchmarked with the literature. In addition, we present a chemical kinetics model to obtain deeper insight in the underlying plasma chemistry. This allows determination of the major reaction pathways to convert CO<sub>2</sub>and CH<sub>4</sub>, in the presence of O<sub>2</sub>and N<sub>2</sub>, into CO and H<sub>2</sub>. We show that N<sub>2</sub>assists in the CO<sub>2</sub>conversion, but part of the applied energy is also wasted in N<sub>2</sub>excitation. Adding O<sub>2</sub>enhances the CH<sub>4</sub>conversion, and lowers the energy cost, while the CO<sub>2</sub>conversion remains constant, and only slightly drops at the highest O<sub>2</sub>fractions studied, when CH<sub>4</sub>is fully oxidized into CO<sub>2</sub>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518034000032 Publication Date 2020-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes H2020 European Research Council, 810182 ; Fonds Wetenschappelijk Onderzoek, GoF9618n 12M7118N ; We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the FWO postdoctoral fellowship of M. A. (Grant number 12M7118N). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 9.8; 2020 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:167136 Serial 6339  
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L. pdf  url
doi  openurl
  Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
  Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume (down) 22 Issue 19 Pages 6258-6287  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000575015700002 Publication Date 2020-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 9.8; 2020 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430  
Permanent link to this record
 

 
Author Bengtson, C.; Bogaerts, A. url  doi
openurl 
  Title The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling Type A1 Journal article
  Year 2021 Publication International Journal Of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume (down) 22 Issue 9 Pages 5033  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide () has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous . We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650366900001 Publication Date 2021-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.226 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.226  
  Call Number PLASMANT @ plasmant @c:irua:178123 Serial 6757  
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R. openurl 
  Title Ab initio spectroscopy and thermochemistry of the BN molecule Type A1 Journal article
  Year 1991 Publication Zeitschrift für Physik : D : atoms, molecules and clusters Abbreviated Journal  
  Volume (down) 21 Issue Pages 47-55  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1991GA17200008 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0178-7683 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 17 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:714 Serial 34  
Permanent link to this record
 

 
Author Bleiner, D.; Bogaerts, A. doi  openurl
  Title Computer simulations of laser ablation sample introduction for plasma-source elemental microanalysis Type A1 Journal article
  Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 21 Issue 11 Pages 1161-1174  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000241568200005 Publication Date 2006-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.379; 2006 IF: 3.630  
  Call Number UA @ lucian @ c:irua:60157 Serial 471  
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A. pdf  doi
openurl 
  Title The effect of F2 attachment by low-energy electrons on the electron behaviour in an Ar/CF4 inductively coupled plasma Type A1 Journal article
  Year 2012 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 21 Issue 2 Pages 025008-025008,13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electron behaviour in an Ar/CF4 inductively coupled plasma is investigated by a Langmuir probe and a hybrid model. The simulated and measured results include electron density, temperature and electron energy distribution function for different values of Ar/CF4 ratio, coil power and gas pressure. The hybrid plasma equipment model simulations show qualitative agreement with experiment. The effect of F2 electron attachment on the electron behaviour is explored by comparing two sets of data based on different F atom boundary conditions. It is demonstrated that electron attachment at F2 molecules is responsible for the depletion of low-energy electrons, causing a density decrease as well as a temperature increase when CF4 is added to an Ar plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000302779400022 Publication Date 2012-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.302; 2012 IF: 2.515  
  Call Number UA @ lucian @ c:irua:96549 Serial 841  
Permanent link to this record
 

 
Author Bogaerts, A.; Chen, Z.; Bleiner, D. doi  openurl
  Title Laser ablation of copper in different background gases: comparative study by numerical modeling and experiments Type A1 Journal article
  Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 21 Issue Pages 384-395  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000236391400002 Publication Date 2006-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 67 Open Access  
  Notes Approved Most recent IF: 3.379; 2006 IF: 3.630  
  Call Number UA @ lucian @ c:irua:56972 Serial 1784  
Permanent link to this record
 

 
Author van Vaeck, L.; van Roy, W.; Gijbels, R. openurl 
  Title Laser ionization mass spectrometry for the characterization of solid materials Type A1 Journal article
  Year 1993 Publication Analusis : chimie analytique, méthodes physiques d'analyse, composition de la matière Abbreviated Journal  
  Volume (down) 21 Issue Pages 53-75  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos A1993KQ28400013 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0365-4877 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:6170 Serial 1790  
Permanent link to this record
 

 
Author van Vaeck, L.; Poels, K.; de Nollin, S.; Hachimi, A.; Gijbels, R. doi  openurl
  Title Laser microprobe mass spectrometry: principle and applications in biology and medicine Type A1 Journal article
  Year 1997 Publication Cell biology international Abbreviated Journal Cell Biol Int  
  Volume (down) 21 Issue Pages 635-648  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000074882700003 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1065-6995; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.831 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.831; 1997 IF: 1.124  
  Call Number UA @ lucian @ c:irua:20464 Serial 1797  
Permanent link to this record
 

 
Author Bleiner, D.; Chen, Z.; Autrique, D.; Bogaerts, A. doi  openurl
  Title Role of laser-induced melting and vaporization of metals during ICP-MS and LIBS analysis, investigated with computer simulations and experiments Type A1 Journal article
  Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 21 Issue 9 Pages 910-921  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000240082600010 Publication Date 2006-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.379; 2006 IF: 3.630  
  Call Number UA @ lucian @ c:irua:58840 Serial 2914  
Permanent link to this record
 

 
Author Fei, G.; Xue-Chun, L.; Zhao, S.-X.; You-Nian, W. pdf  doi
openurl 
  Title Spatial variation behaviors of argon inductively coupled plasma during discharge mode transition Type A1 Journal article
  Year 2012 Publication Chinese physics B Abbreviated Journal Chinese Phys B  
  Volume (down) 21 Issue 7 Pages 075203  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H (inductive discharge) mode transitions at different pressures. It is found that plasma exists with a low electron density and a weak emission intensity in the E mode, while it has a high electron density and a strong emission intensity in the H mode. Meanwhile, the plasma emission intensity spatial (2D image) profile is symmetrical in the H mode, but the 2D image is an asymmetric profile in the E mode. Moreover, the electron density and emission intensity jump up discontinuously at high pressure, but increase almost continuously at the E to H mode transition under low pressure.  
  Address  
  Corporate Author Thesis  
  Publisher IOP publishing Place of Publication Bristol Editor  
  Language Wos 000306558300058 Publication Date 2012-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1056; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.223 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.223; 2012 IF: 1.148  
  Call Number UA @ lucian @ c:irua:100843 Serial 3065  
Permanent link to this record
 

 
Author Gamez, G.; Bogaerts, A.; Hieftje, G.M. doi  openurl
  Title Temporal and spatially resolved laser-scattering plasma diagnostics for the characterization of a ms-pulsed glow discharge Type A1 Journal article
  Year 2006 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume (down) 21 Issue Pages 350-359  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000235990200015 Publication Date 2006-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.379; 2006 IF: 3.630  
  Call Number UA @ lucian @ c:irua:56539 Serial 3503  
Permanent link to this record
 

 
Author Gorbanev, Y.; Van der Paal, J.; Van Boxem, W.; Dewilde, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research? Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume (down) 21 Issue 8 Pages 4117-4121  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461722500001 Publication Date 2019-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 4 Open Access Not_Open_Access: Available from 31.01.2020  
  Notes H2020 Marie Skłodowska-Curie Actions, 743151 ; Fonds Wetenschappelijk Onderzoek, 11U5416N ; Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:157688 Serial 5167  
Permanent link to this record
 

 
Author Dabral, A.; Lu, A.K.A.; Chiappe, D.; Houssa, M.; Pourtois, G. pdf  doi
openurl 
  Title A systematic study of various 2D materials in the light of defect formation and oxidation Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume (down) 21 Issue 3 Pages 1089-1099  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The thermodynamic aspects of various 2D materials are explored using Density Functional Theory (DFT). Various metal chalcogenides (MX2, M = metal, chalcogen X = S, Se, Te) are investigated with respect to their interaction and stability under different ambient conditions met in the integration process of a transistor device. Their interaction with high- dielectrics is also addressed, in order to assess their possible integration in Complementary Metal Oxide Semiconductor (CMOS) field effect transistors. 2D materials show promise for high performance nanoelectronic devices, but the presence of defects (vacancies, grain boundaries,...) can significantly impact their electronic properties. To assess the impact of defects, their enthalpies of formation and their signature levels in the density of states have been studied. We find, consistently with literature reports, that chalcogen vacancies are the most likely source of defects. It is shown that while pristine 2D materials are in general stable whenever set in contact with different ambient atmospheres, the presence of defective sites affects the electronic properties of the 2D materials to varying degrees. We observe that all the 2D materials studied in the present work show strong reactivity towards radical oxygen plasma treatments while reactivity towards other common gas phase chemical such as O-2 and H2O and groups present at the high- surface varies significantly between species. While energy band-gaps, effective masses and contact resistivities are key criteria in selection of 2D materials for scaled CMOS and tunneling based devices, the phase and ambient stabilities might also play a very important role in the development of reliable nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456147000009 Publication Date 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:156715 Serial 5267  
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title Ionized water confined in graphene nanochannels Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume (down) 21 Issue 18 Pages 9285-9295  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract When confined between graphene layers, water behaves differently from the bulk and exhibits unusual properties such as fast water flow and ordering into a crystal. The hydrogen-bonded network is affected by the limited space and by the characteristics of the confining walls. The presence of an extraordinary number of hydronium and hydroxide ions in narrow channels has the following effects: (i) they affect water permeation through the channel, (ii) they may interact with functional groups on the graphene oxide surface and on the edges, and (iii) they change the thermochemistry of water, which are fundamentally important to understand, especially when confined water is subjected to an external electric field. Here we study the physical properties of water when confined between two graphene sheets and containing hydronium and hydroxide. We found that: (i) there is a disruption in the solvation structure of the ions, which is also affected by the layered structure of confined water, (ii) hydronium and hydroxide occupy specific regions inside the nanochannel, with a prevalence of hydronium (hydroxide) ions at the edges (interior), and (iii) ions recombine more slowly in confined systems than in bulk water, with the recombination process depending on the channel height and commensurability between the size of the molecules and the nanochannel height – a decay of 20% (40%) in the number of ions in 8 ps is observed for a channel height of h = 7 angstrom (bulk water). Our work reveals distinctive properties of water confined in a nanocapillary in the presence of additional hydronium and hydroxide ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472922500028 Publication Date 2019-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 9 Open Access  
  Notes ; This work was supported by the Fund for Scientific Research Flanders (FWO-Vl) and the Methusalem programe. ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161377 Serial 5419  
Permanent link to this record
 

 
Author Van der Paal, J.; Hong, S.-H.; Yusupov, M.; Gaur, N.; Oh, J.-S.; Short, R.D.; Szili, E.J.; Bogaerts, A. url  doi
openurl 
  Title How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage : an experimental and computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume (down) 21 Issue 35 Pages 19327-19341  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486175400045 Publication Date 2019-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:162782 Serial 6303  
Permanent link to this record
 

 
Author Heirman, P.; Van Boxem, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume (down) 21 Issue 24 Pages 12881-12894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472214000012 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161314 Serial 6320  
Permanent link to this record
 

 
Author Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C. url  doi
openurl 
  Title Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume (down) 21 Issue 19 Pages 8103-8110  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000709549100026 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access OpenAccess  
  Notes Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:184137 Serial 6857  
Permanent link to this record
 

 
Author Surmenev, R.A.; Grubova, I.Y.; Neyts, E.; Teresov, A.D.; Koval, N.N.; Epple, M.; Tyurin, A.I.; Pichugin, V.F.; Chaikina, M.V.; Surmeneva, M.A. pdf  url
doi  openurl
  Title Ab initio calculations and a scratch test study of RF-magnetron sputter deposited hydroxyapatite and silicon-containing hydroxyapatite coatings Type A1 Journal article
  Year 2020 Publication Surfaces and interfaces Abbreviated Journal  
  Volume (down) 21 Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A crucial property for implants is their biocompatibility. To ensure biocompatibility, thin coatings of hydroxyapatite (HA) are deposited on the actual implant. In this study, we investigate the effects of the addition of silicate anions to the structure of hydroxyapatite coatings on their adhesion strength via a scratch test and ab initio calculations. We find that both the grain size and adhesion strength decrease with the increase in the silicon content in the HA coating (SiHA). The increase in the silicon content to 1.2 % in the HA coating leads to a decrease in the average crystallite size from 28 to 21 nm, and in the case of 4.6 %, it leads to the formation of an amorphous or nanocrystalline film. The decreases in the grain and crystallite sizes lead to peeling and destruction of the coating from the titanium substrate at lower loads. Further, our ab initio simulations demonstrate an increased number of molecular bonds at the amorphous SiHA-TiO2 interface. However, the experimental results revealed that the structure and grain size have more pronounced effects on the adhesion strength of the coatings. In conclusion, based on the results of the ab initio simulations and the experimental results, we suggest that the presence of Si in the form of silicate ions in the HA coating has a significant impact on the structure, grain size, and number of molecular bonds at the interface and on the adhesion strength of the SiHA coating to the titanium substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697616300009 Publication Date 2020-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access  
  Notes Approved Most recent IF: 6.2; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:181685 Serial 7400  
Permanent link to this record
 

 
Author Morais, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling the dynamics of hydrogen synthesis from methane in nanosecond‐pulsed plasmas Type A1 Journal Article
  Year 2024 Publication Plasma processes and polymers Abbreviated Journal Plasma Processes & Polymers  
  Volume (down) 21 Issue 1 Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A chemical kinetics model was developed to characterise the gas‐phase dynamics of H<sub>2</sub>production in nanosecond‐pulsed CH<sub>4</sub>plasmas. Pulsed behaviour was observed in the calculated electric field, electron temperature and species densities at all pressures. The model agrees reasonably with experimental results, showing CH<sub>4</sub>conversion at 30% and C<sub>2</sub>H<sub>2</sub>and H<sub>2</sub>as major products. The underlying mechanisms in CH<sub>4</sub>dissociation and H<sub>2</sub>formation were analysed, highlighting the large contribution of vibrationally excited CH<sub>4</sub>and H<sub>2</sub>to coupling energy from the plasma into gas‐phase heating, and revealing that H<sub>2</sub>synthesis is not affected by applied pressure, with selectivity remaining unchanged at ~42% in the 1–5 bar range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001091258700001 Publication Date 2023-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access Not_Open_Access  
  Notes We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project “Power‐to‐Olefins” (P2O; HBC.2020.2620) and funding from the Independent Research Fund Denmark (project nr. 0217‐00231B). Approved Most recent IF: 3.5; 2024 IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:201192 Serial 8983  
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A. pdf  doi
openurl 
  Title Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 20 Issue 4 Pages 045013-045013,12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiOx thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar+ ions, {\rm O}_2  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000295829800015 Publication Date 2011-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:89732 Serial 316  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. doi  openurl
  Title Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 20 Issue 1 Pages 015008-015008,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an O2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al2O3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O2, while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000286592200009 Publication Date 2011-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:85285 Serial 467  
Permanent link to this record
 

 
Author De Bie, C.; Martens, T.; van Dijk, J.; Paulussen, S.; Verheyde, B.; Corthals, S.; Bogaerts, A. pdf  doi
openurl 
  Title Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 20 Issue 2 Pages 024008,1-024008,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conversion of methane to value-added chemicals and fuels is considered to be one of the challenges of the 21st century. In this paper we study, by means of fluid modeling, the conversion of methane to higher hydrocarbons or oxygenates by partial oxidation with CO2 or O2 in a dielectric barrier discharge. Sixty-nine different plasma species (electrons, ions, molecules, radicals) are included in the model, as well as a comprehensive set of chemical reactions. The calculation results presented in this paper include the conversion of the reactants and the yields of the reaction products as a function of residence time in the reactor, for different gas mixing ratios. Syngas (i.e. H2 + CO) and higher hydrocarbons (C2Hx) are typically found to be important reaction products.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000290719900009 Publication Date 2011-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:87868 Serial 689  
Permanent link to this record
 

 
Author van Vaeck, L.; Vanroy, W.; Gijbels, R. openurl 
  Title Laser ionization mass-spectrometry for the characterization of solid materials Type A1 Journal article
  Year 1992 Publication Analusis : chimie analytique, méthodes physiques d'analyse, composition de la matière Abbreviated Journal  
  Volume (down) 20 Issue 7 Pages S29-S31  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos A1992JN30700030 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0365-4877 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104498 Serial 1791  
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching : effects of SiO2 chamber wall coating Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume (down) 20 Issue 4 Pages 045012-045012,19  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000295829800014 Publication Date 2011-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:91045 Serial 2141  
Permanent link to this record
 

 
Author Vandelannoote, R.; Blommaert, W.; Sadurski, A.; Van 'T Dack, L.; Gijbels, R.; Van Grieken, R.; Bosch, B.; Leleu, M.; Rochon, J.; Sarcia, C.; Sureau, J.F.; pdf  doi
openurl 
  Title Trace-elemental anomalies in surface water near a small lead-zinc mineralization at Menez-Albot (Brittany, France) Type A1 Journal article
  Year 1984 Publication Journal of geochemical exploration Abbreviated Journal J Geochem Explor  
  Volume (down) 20 Issue 1 Pages 33-46  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Sensitive multi-element analysis techniques were applied to water samples collected in the vicinity of a small Zn-Pb-Cu sulfide mineralization in the region of Menez-Albot (Finistère, France). The variation of the trace-element content along a local stream shows the presence of the mineralization, mainly through a simultaneous positive anomaly in solution for a group of about 10 elements (e.g. Ni, Cu, Zn, As, Sb) which are connected with this type of mineralization. The anomaly decreases steeply due to the influx of swamp water rich in Fe, Mn and organic matter. The precipitation barrier is reflected in the stream sediment composition. Contamination from fertilizers was observed in some samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1984SF42900004 Publication Date 2003-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.747 Times cited 4 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:111449 Serial 3695  
Permanent link to this record
 

 
Author Xu, Y.; Jia, D.J.; Chen, Z.Y. doi  openurl
  Title Trial solution and critical frequency to the singly quantized vortex in big Bose-Einstein condensates Type A1 Journal article
  Year 2006 Publication Modern physics letters B Abbreviated Journal Mod Phys Lett B  
  Volume (down) 20 Issue 16 Pages 995-1005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Singapore Editor  
  Language Wos 000239683400006 Publication Date 2006-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9849;1793-6640; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.617 Times cited Open Access  
  Notes Approved Most recent IF: 0.617; 2006 IF: 0.569  
  Call Number UA @ lucian @ c:irua:60587 Serial 3731  
Permanent link to this record
 

 
Author Gorbanev, Y.; Verlackt, C.C.W.; Tinck, S.; Tuenter, E.; Foubert, K.; Cos, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume (down) 20 Issue 4 Pages 2797-2808  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The vast biomedical potential of cold atmospheric pressure plasmas (CAPs) is governed by the formation of reactive species. These biologically active species are formed upon the interaction of CAPs with the surroundings. In biological milieu, water plays an essential role. The development of biomedical CAPs thus requires understanding of the sources of the reactive species in aqueous media exposed to the plasma. This is especially important in case of the COST RF plasma jet, which is developed as a reference microplasma system. In this work, we investigated the formation of the OH radicals, H atoms and H2O2 in aqueous solutions exposed to the COST plasma jet. This was done by combining experimental and modelling approaches. The liquid phase species were analysed using UV-Vis spectroscopy and spin trapping with hydrogen isotopes and electron paramagnetic resonance (EPR) spectroscopy. The discrimination between the species formed from the liquid phase and the gas phase molecules was performed by EPR and 1H-NMR analyses of the liquid samples. The concentrations of the reactive species in the gas phase plasma were obtained using a zero-dimensional (0D) chemical kinetics computational model. A three-dimensional (3D) fluid dynamics model was developed to provide information on the induced humidity in the plasma effluent. The comparison of the experimentally obtained trends for the formation of the species as a function of the feed gas and effluent humidity with the modelling results suggest that all reactive species detected in our system are mostly formed in the gas phase plasma inside the COST jet, with minor amounts arising from the plasma effluent humidity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423505500066 Publication Date 2018-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 23 Open Access OpenAccess  
  Notes We are grateful to Volker Schulz-von der Gathen (Experimental Physics II: Application Oriented Plasma Physics, Ruhr-Universita¨t Bochum, Germany) for providing the COST RF plasma jet. We thank our colleagues at the University of Antwerp: Gilles Van Loon (Mechanical Workshop), Karen Leyssens (Research group PLASMANT), and Sylvia Dewilde (Department of Biomedical Sciences) for their help with the equipment. This work was funded by the European Marie Sklodowska-Curie Individual Fellowship ‘LTPAM’ within Horizon2020 (grant no. 657304). Stefan Tinck thanks the Fund for Scientific Research – Flanders (FWO) for supporting his work (grant no. 0880.212.840). Approved Most recent IF: 4.123  
  Call Number PLASMANT @ plasmant @c:irua:148365 Serial 4808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: