toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Golovachev, I.B.; Mychinko, M.Y.; Volkova, N.E.; Gavrilova, L.Y.; Raveau, B.; Maignan, A.; Cherepanov, V.A. pdf  url
doi  openurl
  Title Effect of cobalt content on the properties of quintuple perovskites Sm₂Ba₃Fe₅-xCoxO₁₅-δ Type A1 Journal article
  Year 2021 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem  
  Volume (up) 301 Issue Pages 122324  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quintuple perovskites Sm2Ba3Fe5-xCoxO15-delta = 0.5, 1.0 and 1.5) have been prepared by glycerin-nitrate tech- nique in air. The phase purity was confirmed by XRD. Partial substitution of Co for Fe decreases the oxygen content and thus the mean oxidation state of 3d-metals. It also slightly decreases the thermal expansion coefficient of oxides. Positive value of the Seebeck coefficient confirmed p-type conductivity, though the thermopower decreases as the Co content increases. The temperature dependence of electrical conductivity reveals a maximum at 550-750 degrees C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000684543700028 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:181656 Serial 6864  
Permanent link to this record
 

 
Author Buyle, M.; Maes, B.; Van Passel, S.; Boonen, K.; Vercalsteren, A.; Audenaert, A. pdf  doi
openurl 
  Title Ex-ante LCA of emerging carbon steel slag treatment technologies : fast forwarding lab observations to industrial-scale production Type A1 Journal article
  Year 2021 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume (up) 313 Issue Pages 127921  
  Keywords A1 Journal article; Engineering sciences. Technology; Energy and Materials in Infrastructure and Buildings (EMIB)  
  Abstract The valuable properties of carbon steel slag are currently underexploited. To date, research mainly focusses on valorising a single property of the slag. In this study an ex-ante life cycle assessment (LCA) was applied to evaluate the environmental profile of a novel technological pathway aimed at the extraction of chromium from carbon steel slag in combination with high quality valorisation of the residual matrix material. A comparison with current practice was made, not only by calculating the environmental impact of the lab scale observations, but more importantly by estimating the impact on an industrial scale. Practical guidance on ex-ante LCA is limited, so this study contributes by incorporating simulations on thermodynamic behaviour, complemented with empirical calculation rules and including information derived from similar technologies to perform the upscaling. These principles of ex-ante LCA were applied to the lab results of two consecutive research iterations. Substantial improvements of the environmental profile were observed: ex-ante results turned out to be a factor 20 lower compared to the results from the lab observations after the first iteration and had decreased by a factor 2 compared to the small pilot scale of the second iteration. All upscaled results are better than those from the worst case reference scenario (landfill). Based on the experience gained after this iterative research cycle, a practical recommendation is that at a low technology readiness level using more simple calculation rules in combination with a flowsheet based on elementary design principles for processes at an industrial scale is a more efficient way of modelling compared to a fully-fledged process design from the start.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000693416000002 Publication Date 2021-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.715 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 5.715  
  Call Number UA @ admin @ c:irua:179313 Serial 6922  
Permanent link to this record
 

 
Author Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Van Passel, S.; Kurban, A.; Lopez-Carr, D. pdf  doi
openurl 
  Title Rethinking resilient agriculture : from Climate-Smart Agriculture to Vulnerable-Smart Agriculture Type A1 Journal article
  Year 2021 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume (up) 319 Issue Pages 128602  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Climate-Smart Agriculture (CSA) is seeking to overcome the food security problem and develop rural livelihoods while minimizing negative impacts on the environment. However, when such synergies exist, the situation of small-scale farmers is often overlooked, and they are unable to implement new practices and technologies. Therefore, the main aim of this study is to improve CSA by adding the neglected but very important element “small-scale farmer”, and introduce Vulnerable-Smart Agriculture (VSA) as a complete version of CSA. VSA indicates, based on the results of this study, that none of the decisions made by policymakers can be realistic and functional as long as the voice of the farmers influenced by their decisions is not heard. Therefore, to identify different levels for possible interventions and develop VSA monitoring indicators, a new conceptual framework needs to be developed. This study proposed such a framework consisting of five elements: prediction of critical incidents by farmers, measuring the consequences of incidents, identifying farmers' coping strategies, assessing farmers' livelihood capital when facing an incident, and adapting to climate incidents. The primary focus of this study is on farmers' learning and operational preparation to deal with tension and disasters at farm level. Understanding the implications of threats from climate change and the recognizing of coping mechanisms will contribute to an increase in understanding sustainable management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728681500005 Publication Date 2021-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.715 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.715  
  Call Number UA @ admin @ c:irua:184869 Serial 6942  
Permanent link to this record
 

 
Author Alloul, A.; Muys, M.; Hertoghs, N.; Kerckhof, F.-M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume (up) 319 Issue Pages 124192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4–3.9 d−1 28 °C; protein 36–59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45–71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613136600013 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:171766 Serial 7677  
Permanent link to this record
 

 
Author Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume (up) 329 Issue Pages 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M. pdf  doi
openurl 
  Title Tunable effective masses of magneto-excitons in two-dimensional materials Type A1 Journal article
  Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun  
  Volume (up) 334 Issue Pages 114371  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitonic properties of Ge2H2 and Sn2H2, also known as Xanes, are investigated within the effective mass model. A perpendicularly applied magnetic field induces a negative shift on the exciton center-of-mass kinetic energy that is approximately quadratic with its momentum, thus pushing down the exciton dispersion curve and flattening it. This can be interpreted as an increase in the effective mass of the magneto-exciton, tunable by the field intensity. Our results show that in low effective mass two-dimensional semiconductors, such as Xanes, the applied magnetic field allows one to tune the magneto-exciton effective mass over a wide range of values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670329600003 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.554 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.554  
  Call Number UA @ admin @ c:irua:179762 Serial 7037  
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume (up) 337 Issue Pages 129819  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386500001 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:176353 Serial 7762  
Permanent link to this record
 

 
Author Spanoghe, J.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Microbial food from light, carbon dioxide and hydrogen gas : kinetic, stoichiometric and nutritional potential of three purple bacteria Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume (up) 337 Issue Pages 125364  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The urgency for a protein transition towards more sustainable solutions is one of the major societal challenges. Microbial protein is one of the alternative routes, in which land- and fossil-free production should be targeted. The photohydrogenotrophic growth of purple bacteria, which builds on the H2– and CO2-economy, is unexplored for its microbial protein potential. The three tested species (Rhodobacter capsulatus, Rhodobacter sphaeroides and Rhodopseudomonas palustris) obtained promising growth rates (2.3–2.7 d−1 at 28°C) and protein productivities (0.09–0.12 g protein L−1 d−1), rendering them likely faster and more productive than microalgae. The achieved protein yields (2.6–2.9 g protein g−1 H2) transcended the ones of aerobic hydrogen oxidizing bacteria. Furthermore, all species provided full dietary protein matches for humans and their fatty acid content was dominated by vaccenic acid (82–86%). Given its kinetic and nutritional performance we recommend to consider Rhodobacter capsulatus as a high-potential sustainable source of microbial food.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694862500007 Publication Date 2021-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:178752 Serial 8243  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume (up) 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume (up) 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Ryabova, A.S.; Istomin, S.Y.; Dosaev, K.A.; Bonnefont, A.; Hadermann, J.; Arkharova, N.A.; Orekhov, A.S.; Sena, R.P.; Saveleva, V.A.; Kerangueven, G.; Antipov, E., V.; Savinova, E.R.; Tsirlina, G.A. pdf  url
doi  openurl
  Title Mn₂O₃ oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media : highly active if properly manipulated Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume (up) 367 Issue Pages 137378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We consider compositional and structural factors which can affect the activity of bixbyite alpha-Mn2O3 towards the oxygen reduction reaction (ORR) and the stability of this oxide in alkaline solution. We compare electrochemistry of undoped, Fe and Al-doped alpha-Mn2O3 with bixbyite structure and braunite Mn7SiO12 having bixbyite-related crystal structure, using the rotating disk electrode (RDE), the rotating ring-disk electrode (RRDE), and cyclic voltammetry (CV) techniques. All manganese oxides under study are stable in the potential range between the ORR onset and ca. 0.7 V vs. Reversible Hydrogen Electrode (RHE). It is found that any changes introduced in the bixbyite structure and/or composition of alpha-Mn2O3 lead to an activity drop in both the oxygen reduction and hydrogen peroxide reactions in this potential interval. For the hydrogen peroxide reduction reaction these modifications also result in a change in the nature of the rate-determining step. The obtained results confirm that due to its unique crystalline structure undoped alpha-Mn2O3 is the most ORR active (among currently available) Mn oxide catalyst and favor the assumption of the key role of the (111) surface of alpha-Mn2O3 in the very high activity of this material towards the ORR. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607621500013 Publication Date 2020-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176080 Serial 6731  
Permanent link to this record
 

 
Author Schram, J.; Thiruvottriyur Shanmugam, S.; Sleegers, N.; Florea, A.; Samyn, N.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Local conversion of redox inactive molecules into redox active ones : a formaldehyde based strategy for the electrochemical detection of illicit drugs containing primary and secondary amines Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume (up) 367 Issue Pages 137515  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Electrochemical techniques have evidenced to be highly suitable for the development of portable, rapid and accurate screening methods for the detection of illicit drugs in seized samples. However, the redox inactivity of primary amines, one of the most common functional groups of illicit drugs, masks voltammetric detection in aqueous environment at carbon electrodes and, therefore, leads to false negative results if only these primary amines are present in the structures. This work explores the feasibility of a derivatisation approach that introduces formaldehyde in the measuring conditions in order to achieve methylation, via an Eschweiler-Clarke mechanism, of illicit drugs containing primary and secondary amines, using amphetamine (AMP) and methamphetamine (MET) as model molecules. As a result the electrochemical fingerprint is enriched and thereby the detectability enhanced. A combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOFMS) and square-wave voltammetric (SWV) measurements is employed to identify reaction products and link them to the observed redox peaks. Although an alkaline environment (pH 12.0) proved to increase the reaction yield, a richer electrochemical fingerprint (EF) is obtained in neutral conditions (pH 7.0). Similarly, the addition of formate improved the reaction conversion but reduced the EF by eliminating a redox peak that is attributed to side products formed in the absence of formate. To illustrate the applicability, the derivatisation strategy is applied to several prominent illicit drugs containing primary and secondary amines to demonstrate its EF enriching capabilities. Finally, real street samples from forensic seizures are analysed. Overall, this strategy unlocks the detectability of the hitherto undetectable AMP and other drugs only containing primary amines, while strongly facilitating the identification of MET and analogues. These findings are not limited to illicit drugs, the insights can ultimately be applied to other target molecules containing similar functional groups. (C) 2020 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607620700010 Publication Date 2020-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176083 Serial 8177  
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C. pdf  doi
openurl 
  Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume (up) 376 Issue Pages 137994  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761900003 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:177677 Serial 7491  
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. pdf  url
doi  openurl
  Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume (up) 389 Issue Pages 138734  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687283100018 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:178908 Serial 8626  
Permanent link to this record
 

 
Author Xi, J.; Yang, S.; Silvioli, L.; Cao, S.; Liu, P.; Chen, Q.; Zhao, Y.; Sun, H.; Hansen, J.N.; Haraldsted, J.-P.B.; Kibsgaard, J.; Rossmeisl, J.; Bals, S.; Wang, S.; Chorkendorff, I. pdf  doi
openurl 
  Title Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H₂O₂ synthesis under acidic conditions Type A1 Journal article
  Year 2021 Publication Journal Of Catalysis Abbreviated Journal J Catal  
  Volume (up) 393 Issue Pages 313-323  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Single-atom catalysts (SACs) have recently attracted broad scientific interests due to their unique structural feature, the single-atom dispersion. Optimized electronic structure as well as high stability are required for single-atom catalysts to enable efficient electrochemical production of H2O2. Herein, we report a facile synthesis method that stabilizes atomic Pd species on the reduced graphene oxide/Ndoped carbon hollow carbon nanospheres (Pd1/N-C). Pd1/N-C exhibited remarkable electrochemical H2O2 production rate with high faradaic efficiency, reaching 80%. The single-atom structure and its high H2O2 production rate were maintained even after 10,000 cycle stability test. The existence of single-atom Pd as well as its coordination with N species is responsible for its high activity, selectivity, and stability. The N coordination number and substrate doping around Pd atoms are found to be critical for an optimized adsorption energy of intermediate *OOH, resulting in efficient electrochemical H2O2 production. (C) 2020 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640923500003 Publication Date 2020-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 40 Open Access Not_Open_Access  
  Notes This research was financially supported by the National Natural Science Foundation of China (No. 51772110), Natural Science Foundation of Hubei Province (No. 2019CFB539), Danmarks Innovationsfond within the ProActivE project (5160-00003B), Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals, the Carlsberg Foundation grant CF18-0435, the Institutional Research Program (2E30220) of the Korea Institute of Science and Technology (KIST), Shenzhen Science and Technology Plan under Grant (JCYJ20170818160751460) and the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCP20200205). The authors would like to acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology and the Wuhan National Laboratory for Optoelectronics for SEM, TEM, Raman and XPS measurements. Approved Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:178321 Serial 6796  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Hereijgers, J.; Breugelmans, T.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume (up) 405 Issue Pages 126618  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract DBD plasma reactors are commonly used in a static ‘one inlet – one outlet’ design that goes against reactor design principles for multi-component reactions, such as dry reforming of methane (DRM). Therefore, in this paper we have developed a novel reactor design, and investigated how the shape and size of the reaction zone, as well as gradual gas addition, and the method of mixing CO2 and CH4 can influence the conversion and product com­ position of DRM. Even in the standard ‘one inlet – one outlet’ design, the direction of the gas flow (i.e. short or long path through the reactor, which defines the gas velocity at fixed residence time), as well as the dimensions of the reaction zone and the power delivery to the reactor, largely affect the performance. Using gradual gas addition and separate plasma activation zones for the individual gases give increased conversions within the same operational parameters, by optimising mixing ratios and kinetics. The choice of the main (pre-activated) gas and the direction of gas flow largely affect the conversion and energy cost, while the gas inlet position during separate addition only influences the product distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626511800005 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes Interreg; Flanders; FWO; University of Antwerp; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund 13 for Scientific Research (FWO; grant number: G.0254.14N), and an IOFSBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:170609 Serial 6410  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title On the kinetics and equilibria of plasma-based dry reforming of methane Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume (up) 405 Issue Pages 126630  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma reactors are interesting for gas-based chemical conversion but the fundamental relation between the plasma chemistry and selected conditions remains poorly understood. Apparent kinetic parameters for the loss and formation processes of individual components of gas conversion processes, can however be extracted by performing experiments in an extended residence time range (2–75 s) and fitting the gas composition to a firstorder kinetic model of the evolution towards partial chemical equilibrium (PCE). We specifically investigated the differences in kinetic characteristics and PCE state of the CO2 dissociation and CH4 reforming reactions in a dielectric barrier discharge reactor (DBD), how these are mutually affected when combining both gases in the dry reforming of methane (DRM) reaction, and how they change when a packing material (non-porous SiO2) is added to the reactor. We find that CO2 dissociation is characterized by a comparatively high reaction rate of 0.120 s−1 compared to CH4 reforming at 0.041 s−1; whereas CH4 reforming reaches higher equilibrium conversions, 82% compared to 53.6% for CO2 dissociation. Combining both feed gases makes the DRM reaction to proceed at a relatively high rate (0.088 s−1), and high conversion (75.4%) compared to CO2 dissociation, through accessing new chemical pathways between the products of CO2 and CH4. The addition of the packing material can also distinctly influence the conversion rate and position of the equilibrium, but its precise effect depends strongly on the gas composition. Comparing different CO2:CH4 ratios reveals the delicate balance of the combined chemistry. CO2 drives the loss reactions in DRM, whereas CH4 in the mixture suppresses back reactions. As a result, our methodology provides some of the insight necessary to systematically tune the conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621197700003 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; grant number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:172458 Serial 6411  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume (up) 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Dillen, A.; Vandezande, W.; Daems, D.; Lammertyn, J. pdf  doi
openurl 
  Title Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers : a thermodynamic study Type A1 Journal article
  Year 2021 Publication Analytical And Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume (up) 413 Issue 19 Pages 4739-4750  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Duplexed aptamers (DAs) are widespread aptasensor formats that simultaneously recognize and signal the concentration of target molecules. They are composed of an aptamer and aptamer complementary element (ACE) which consists of a short oligonucleotide that partially inhibits the aptamer sequence. Although the design principles to engineer DAs are straightforward, the tailored development of DAs for a particular target is currently based on trial and error due to limited knowledge of how the ACE sequence affects the final performance of DA biosensors. Therefore, we have established a thermodynamic model describing the influence of the ACE on the performance of DAs applied in equilibrium assays and demonstrated that this relationship can be described by the binding strength between the aptamer and ACE. To validate our theoretical findings, the model was applied to the 29-mer anti-thrombin aptamer as a case study, and an experimental relation between the aptamer-ACE binding strength and performance of DAs was established. The obtained results indicated that our proposed model could accurately describe the effect of the ACE sequence on the performance of the established DAs for thrombin detection, applied for equilibrium assays. Furthermore, to characterize the binding strength between the aptamer and ACEs evaluated in this work, a set of fitting equations was derived which enables thermodynamic characterization of DNA-based interactions through thermal denaturation experiments, thereby overcoming the limitations of current predictive software and chemical denaturation experiments. Altogether, this work encourages the development, characterization, and use of DAs in the field of biosensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659366300001 Publication Date 2021-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642; 1618-2650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.431 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.431  
  Call Number UA @ admin @ c:irua:179163 Serial 8713  
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S. pdf  url
doi  openurl
  Title Development of a novel type activated carbon fiber filter for indoor air purification Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume (up) 417 Issue Pages 128109  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel type of activated carbon fiber filter was developed for indoor air purification. The filter is equipped with electrodes for thermo-electrical regeneration at the point of saturation. The electrodes are arranged in such a way that the filter forms a pleated structure with an electrode in the tip of each pleat. This allows for a uniform temperature distribution on the filter surface during the regeneration process and the pleated structure reduces the overall pressure drop across the filter. The latter was validated by Computational Fluid Dynamics, using Darcy-Forchheimer parameters derived in previous work. The CFD model was further used to perform a virtual sensitivity study in search for the optimal ACF filter design by varying the pleat length, pleat height and filter thickness. Finally, adsorption and desorption properties were investigated with acetaldehyde and toluene as model compounds. Freundlich and Langmuir adsorption parameters, derived in previous work were successfully validated with a Multiphysics model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653229500132 Publication Date 2020-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:174105 Serial 7800  
Permanent link to this record
 

 
Author Ejsmont, A.; Andreo, J.; Lanza, A.; Galarda, A.; Macreadie, L.; Wuttke, S.; Canossa, S.; Ploetz, E.; Goscianska, J. pdf  url
doi  openurl
  Title Applications of reticular diversity in metal-organic frameworks : an ever-evolving state of the art Type A1 Journal article
  Year 2021 Publication Coordination Chemistry Reviews Abbreviated Journal Coordin Chem Rev  
  Volume (up) 430 Issue Pages 213655  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) are exciting materials due to their extensive applicability in a multitude of modern technological fields. Their most prominent characteristic and primary origin of their widespread success is the exceptional variety of their structures, which we termed 'reticular diversity'. Naturally, the ever-emerging applications of MOFs made it increasingly common that researchers from various areas delve into reticular chemistry to overcome their scientific challenges. This confers a crucial role to comprehensive overviews capable of providing newcomers with the knowledge of the state of the art, as well as with the key physics and chemistry considerations needed to design MOFs for a specific application. In this review, we commit to this purpose by outlining the fundamental understanding needed to carefully navigate MOFs' reticular diversity in their main fields of application, namely hostguest chemistry, chemical sensing, electronics, photophysics, and catalysis. Such knowledge and a meticulous, open-minded approach to the design of MOFs paves the way for their most innovative and successful applications, and for the global advancement of the research areas they are employed in. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000615299000008 Publication Date 2020-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-8545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.324 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 13.324  
  Call Number UA @ admin @ c:irua:176731 Serial 6715  
Permanent link to this record
 

 
Author Alloul, A.; Wille, M.; Lucenti, P.; Bossier, P.; Van Stappen, G.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Purple bacteria as added-value protein ingredient in shrimp feed : Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress Type A1 Journal article
  Year 2021 Publication Aquaculture Abbreviated Journal Aquaculture  
  Volume (up) 530 Issue Pages 735788  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aquafeeds contain protein ingredients such as fishmeal and soybean meal, yet their production puts pressure on the environment. Finding novel protein sources such as dried microbial biomass produced on recovered or renewable resources, so-called single-cell protein or microbial protein, can contribute to a more sustainable aquaculture industry. New microbial protein sources are emerging with photoheterotrophic grown purple non‑sulfur bacteria (PNSB) showing high potential, yet research of PNSB as added-value protein ingredient is limited. This research studied their use as a protein source for the white leg shrimp (Penaeus vannamei) and investigated the shrimp's tolerance against Vibrio and ammonia stress. A 28-day shrimp feeding trial was performed with a commercial formulation without PNSB as experimental control (diet i), two pure PNSB species, namely Rhodopseudomonas palustris (diets ii-iii), Rhodobacter capsulatus (diets iv-v) at two protein inclusion levels of 5 and 11 g PNSBprotein 100 g−1 feedprotein and a PNSB enriched culture at a protein inclusion level of 11 g PNSBprotein 100 g−1 feedprotein (diet vi). For the shrimp fed with Rb. capsulatus, 5–25% higher individual weights (p < .05) and better feed conversion ratios were observed relative to the commercial diet (1.3–1.4 vs. control 1.7 g feed g−1 biomass; p < .05). The diet containing Rps. palustris at 5 g PNSBprotein 100 g−1 feedprotein inclusion also showed higher individual weights (26%, p < .05) and a better feed conversion ratio compared to the commercial feed (1.3 vs. control 1.7 g feed g−1 biomass; p < .05). The challenge test subsequent to the feeding trial showed a higher tolerance against ammonia (3 mg N L−1) for shrimp fed with Rps. palustris (survival 63–75% vs. 8% commercial diet; p < .05). For a post-feeding challenge test with Vibrio parahaemolyticus TW01, mortality rates were equal among all treatments. Yet, in vitro tests in 96-Well plates and agar spot assays showed that the PNSB species (i) Rps. palustris, (ii) Rb. capsulatus, (iii) Rb. sphaeroides, (iv) Rhodospirillum rubrum and (v) Afifella marina suppressed the pathogens V. parahaemolyticus TW01 and V. campbellii LMG 21363. Overall, this study demonstrated the potential of PNSB as an added-value protein ingredient in shrimp nursery feed. This can contribute to a circular economy, as PNSB can be cultivated on recovered or renewable resources (e.g. wastewater).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582169700073 Publication Date 2020-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0044-8486 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.57 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.57  
  Call Number UA @ admin @ c:irua:170549 Serial 8429  
Permanent link to this record
 

 
Author Foumani, A.A.; Forster, D.J.; Ghorbanfekr, H.; Weber, R.; Graf, T.; Niknam, A.R. pdf  doi
openurl 
  Title Atomistic simulation of ultra-short pulsed laser ablation of metals with single and double pulses : an investigation of the re-deposition phenomenon Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume (up) 537 Issue Pages 147775  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The demand for higher throughput in the processing of materials with ultra-short pulsed lasers has motivated studies on the use of double pulses (DP). It has been observed in such studies that at relatively high time delays between the two pulses, the ablated volume is lower than that for a single pulse (SP). This has been attributed to the shielding of the second pulse and the re-deposition of the material removed by the first pulse. The investigation of re-deposition in copper with the aid of atomistic simulations is the main objective of this study. Nevertheless, a computational investigation of SP-ablation and experimental measurement of the SP-ablation depths and threshold fluence are also covered. The applied computational apparatus comprises a combination of molecular dynamics with the two-temperature model and the Helmholtz wave equation. The analysis of the simulation results shows that the derived quantities like the SP-ablation threshold fluence and the ratio of DP ablation depth to SP-ablation depth are in agreement with the experimental values. An important finding of this study is that the characteristics of the re-deposition process are highly dependent on the fluence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000582798700006 Publication Date 2020-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors thank the Center for High-Performance Computing at Shahid Beheshti University of Iran (SARMAD) for making available the computational resources required for this work. ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174299 Serial 6683  
Permanent link to this record
 

 
Author Kahraman, Z.; Baskurt, M.; Yagmurcukardes, M.; Chaves, A.; Sahin, H. pdf  doi
openurl 
  Title Stable Janus TaSe₂ single-layers via surface functionalization Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume (up) 538 Issue Pages 148064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations are performed in order to investigate the formation of Janus structures of single layer TaSe2. The structural optimizations and phonon band dispersions reveal that the formation and stability of hydrogenated (HTaSe2), fluorinated (FTaSe2), and the one-side hydrogenated and one-side fluorinated (Janus-HTaSe2F) single-layers are feasible in terms of their phonon band dispersions. It is shown that bare metallic single-layer TaSe2 can be turned into a semiconductor as only one of its surface is functionalized while it remains as a metal via its two surfaces functionalization. In addition, the semiconducting nature of single-layers HTaSe2 and FTaSe2 and the metallic behavior of Janus TaSe2 are found to be robust under applied uniaxal strains. Further analysis on piezoelectric properties of the predicted single-layers reveal the enhanced in-plane and out of-plane piezoelectricity via formed Janus-HTaSe2F. Our study indicates that single-layer TaSe2 is a suitable host material for surface functionalization via fluorination and hydrogenation which exhibit distinctive electronic and vibrational properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595860900001 Publication Date 2020-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). HS acknowledges support from Turkiye Bilimler Akademisi -Turkish Academy of Sciences under the GEBIP program. This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174964 Serial 6699  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B. pdf  doi
openurl 
  Title Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume (up) 540 Issue 1 Pages 148289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599883200005 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174956 Serial 6688  
Permanent link to this record
 

 
Author Volykhov, A.A.; Frolov, A.S.; Neudachina, V.S.; Vladimirova, N.V.; Gerber, E.; Callaert, C.; Hadermann, J.; Khmelevsky, N.O.; Knop-Gericke, A.; Sanchez-Barriga, J.; Yashina, L.V. pdf  doi
openurl 
  Title Impact of ordering on the reactivity of mixed crystals of topological insulators with anion substitution: Bi₂SeTe₂ and Sb₂SeTe₂ Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume (up) 541 Issue Pages 148490  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional topological insulators are exotic materials with unique properties. Tetradymite type binary chalcogenides of bismuth and antimony, as well as their mixed crystals, belong to prototypical TIs. Potential device applications of these materials require in-depth knowledge of their stability in the ambient atmosphere and other media maintained during their processing. Here we investigated the reactivity of mixed crystals with anion substitution, Bi-2(Se1-xTex)(3) and Sb2(Se1-xTex)(3), towards molecular oxygen using both in situ and ex situ X-ray photoelectron spectroscopy. The results indicate that, in contrast to cation substitution, partial substitution of tellurium by selenium atoms leads to anomalously high surface reactivity, which even exceeds that of the most reactive binary constituent. We attribute this effect to anion ordering that essentially modifies the bond geometry, especially the respective bond angles as modeled by DFT.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608492900003 Publication Date 2020-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:176067 Serial 6728  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Khatibani, A.B.; Ziabari, A. abdolahzadeh; Ghergherehchi, M.; Nedaei, S.; Shayesteh, S.F.; Gogova, D. pdf  url
doi  openurl
  Title Tunable electronic and magnetic properties of MoSi₂N₄ monolayer via vacancy defects, atomic adsorption and atomic doping Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume (up) 559 Issue Pages 149862  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two dimensional MoSi2N4 (MSN) monolayer exhibiting rich physical and chemical properties was synthesized for the first time last year. We have used the spin-polarized density functional theory to study the effect of different types of point defects on the structural, electronic, and magnetic properties of the MSN monolayer. Adsorbed, substitutionally doped (at different lattice sites), and some kind of vacancies have been considered as point defects. The computational results show all defects studied decrease the MSN monolayer band gap. We found out the H-, O-, and P-doped MSN are n-type conductors. The arsenic-doped MSN, and MSN with vacancy defects have a magnetic moment. The MSN with a Si vacancy defect is a half-metallic which is favorable for spintronic applications, while the MSN with a single N vacancy or double vacancy (N + S) defects are metallic, i. e., beneficial as spin filters and chemical sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655645300001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:179098 Serial 7038  
Permanent link to this record
 

 
Author Bafekry, A.; Faraji, M.; Fadlallah, M.M.; Ziabari, A.A.; Khatibani, A.B.; Feghhi, S.A.H.; Ghergherehchi, M.; Gogova, D. pdf  doi
openurl 
  Title Adsorption of habitat and industry-relevant molecules on the MoSi₂N₄ monolayer Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume (up) 564 Issue Pages 150326  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption of various environmental gas molecules, including H-2, N-2, CO, CO2, O-2, NO, NO2, SO2 H2O, H2S, NH3 and CH4, on the surface of the recently synthesized two dimensional MoSi2N4 (MSN) monolayer has been investigated by means of spin-polarized first-principles calculations. The most stable adsorption configuration, adsorption energy, and charge transfer have been computed. Due to the weak interaction between molecules studied with the MSN monolayer surface, the adsorption energy is small and does not yield any significant distortion of the MSN lattice, i.e., the interaction between the molecules and MSN monolayer surface is physisorption. We find that all molecules are physisorbed on the MSM surface with small charge transfer, acting as either charge acceptors or donors. The MSN monolayer is a semiconductor with an indirect band gap of 1.79 eV. Our theoretical estimations reveal that upon adsorption of H-2, N-2, CO, CO2, NO, H2O, H2S, NH3 and CH4 molecules, the semiconducting character of MSN monolayer is preserved and the band gap value is decreased to similar to 1.5 eV. However, the electronic properties of the MSN monolayer can be significantly altered by adsorption of O-2, NO and SO2, and a spin polarization with magnetic moments of 2, 1, 2 mu(B), respectively, can be introduced. Furthermore, we demonstrate that the band gap and the magnetic moment of adsorbed MSN monolayer can be significantly modulated by the concentration of NO and SO2 molecules. As the concentration of NO2 molecule increases, the magnetic moment increase from 1 mu(B) to 2 and 3 mu(B). In the case of the SO2 molecule with increasing of concentration, the band gap decreases from 1.2 eV to 1.1 and 0.9 eV. Obviously, our theoretical studies indicate that MSN monolayer-based sensor has a high application potential for O-2, NO, NO2 and SO2 detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675534500002 Publication Date 2021-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:180421 Serial 6970  
Permanent link to this record
 

 
Author Schalm, O.; Nuyts, G.; Janssens, K. pdf  url
doi  openurl
  Title Some critical observations about the degradation of glass : the formation of lamellae explained Type A1 Journal article
  Year 2021 Publication Journal Of Non-Crystalline Solids Abbreviated Journal J Non-Cryst Solids  
  Volume (up) 569 Issue Pages 120984  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This study demonstrates that the mechanism responsible for the transformation of glass into a degradation layer is pH-dependent. In acid conditions, the transformed glass is homogeneous and brittle. In mild alkaline conditions, transformed glass is heterogeneous due to the presence of lamellae composed of silica nanoparticles and the occurrence of Ca-rich inclusions. The fundamental difference between acid and alkaline conditions cannot be explained by the currently accepted degradation mechanism based on ion exchange. To explain this critical observation, we propose a refined degradation mechanism based on existing knowledge that involves several inwardly moving reaction fronts. The fronts responsible for the transformation of the silicate network into amorphous silica are also responsible for the morphology of the transformed glass. We have identified the feedback mechanism that explains the formation of lamellae in alkaline conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000674487200009 Publication Date 2021-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.124  
  Call Number UA @ admin @ c:irua:179835 Serial 8551  
Permanent link to this record
 

 
Author Hasnat, A. pdf  doi
openurl 
  Title Performance optimization of the nano-sized pick-up loop of a dc-SQUID Type A1 Journal article
  Year 2021 Publication Physica C-Superconductivity And Its Applications Abbreviated Journal Physica C  
  Volume (up) 583 Issue Pages 1353852  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A flux transformer, consisting of a superconducting primary loop (pick-up loop) in series with a superconducting secondary loop on which measurement is done, is considered to optimize the approach and sensitivity of the Superconducting QUantum Interference Device (SQUID). Performance of such a pick-up loop placed above a magnetic particle is investigated using the numerical Ginzburg-Landau (GL) simulations. By solving 3D GL equations, static properties of the device such as the distribution of Cooper-pair density and the screening current in the secondary coil have been investigated as a function of the dimensions of the primary loop. Dynamic properties, such as current-voltage characteristics and flux-dependent critical current of the device have also been addressed, all leading to conclusion that smaller size pick-up loop is the first requirement for its optimal sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000636420000010 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.404  
  Call Number UA @ admin @ c:irua:177725 Serial 7008  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: