|
Record |
Links |
|
Author |
Uytdenhouwen, Y.; Hereijgers, J.; Breugelmans, T.; Cool, P.; Bogaerts, A. |
|
|
Title |
How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Chemical Engineering Journal |
Abbreviated Journal |
Chem Eng J |
|
|
Volume |
405 |
Issue |
|
Pages |
126618 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Applied Electrochemistry & Catalysis (ELCAT) |
|
|
Abstract |
DBD plasma reactors are commonly used in a static ‘one inlet – one outlet’ design that goes against reactor design principles for multi-component reactions, such as dry reforming of methane (DRM). Therefore, in this paper we have developed a novel reactor design, and investigated how the shape and size of the reaction zone, as well as gradual gas addition, and the method of mixing CO2 and CH4 can influence the conversion and product com position of DRM. Even in the standard ‘one inlet – one outlet’ design, the direction of the gas flow (i.e. short or long path through the reactor, which defines the gas velocity at fixed residence time), as well as the dimensions of the reaction zone and the power delivery to the reactor, largely affect the performance. Using gradual gas addition and separate plasma activation zones for the individual gases give increased conversions within the same operational parameters, by optimising mixing ratios and kinetics. The choice of the main (pre-activated) gas and the direction of gas flow largely affect the conversion and energy cost, while the gas inlet position during separate addition only influences the product distribution. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000626511800005 |
Publication Date |
2020-08-12 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1385-8947 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.216 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
Interreg; Flanders; FWO; University of Antwerp; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund 13 for Scientific Research (FWO; grant number: G.0254.14N), and an IOFSBO (SynCO2Chem) project from the University of Antwerp. |
Approved |
Most recent IF: 6.216 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:170609 |
Serial |
6410 |
|
Permanent link to this record |