toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Somsen, C.; Kästner, J.; Wassermann, E.F.; Boullay, P.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure of quenched Ni-rich Ni-Ti shape memory alloys Type A1 Journal article
  Year 2001 Publication Journal de physique: 4 T2 – 8th European Symposium on Martensitic Transformations (ESOMAT2000), SEP 04-08, 2000, COMO, ITALY Abbreviated Journal J Phys Iv  
  Volume (down) 11 Issue Pr8 Pages 445-449  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural investigations with transmission electron microscopy were carried out on quenched Ni-Ti alloys with 52 and 54.5 at% Ni. For the Ni52Ti48 specimen long time exposed diffraction patterns of a single grain show besides the expected reflections of the B2-phase, two sets of extra reflections in different zones. The first type of spots is explained by lattice displacement waves, which are regarded as precursors of the martensitic Ni-Ti phases, B 19' and R-phase, respectively. The second set of reflection with more diffuse intensity than the other reflections is related to Ni4Ti3 precipitates in an early state of formation. For the Ni-richer Ni54.5Ti45.5 alloy only Ni4Ti3 precipitates in an early state of formation are found but no precursors of the B 19'- and R-phase.  
  Address  
  Corporate Author Thesis  
  Publisher E d p sciences Place of Publication Les ulis cedexa Editor  
  Language Wos 000173253800075 Publication Date 2007-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104187 Serial 2073  
Permanent link to this record
 

 
Author Potapov, P.; Ochin, P.; Pons, J.; Schryvers, D. doi  openurl
  Title Nanoscale inhomogeneities in melt-spun Ni-Al Type A1 Journal article
  Year 2001 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv  
  Volume (down) 11 Issue Pages 439-444  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000173253800074 Publication Date 2007-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48387 Serial 2264  
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.; Ledda, A.; Shelyakov, A. doi  openurl
  Title Structural characterisation of melt-spun Ti-Ni-Cu-ribbons Type A1 Journal article
  Year 2001 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv  
  Volume (down) 11 Issue Pages 363-368  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000173253800062 Publication Date 2007-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48386 Serial 3214  
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year 2018 Publication Materials Abbreviated Journal Materials  
  Volume (down) 11 Issue 11 Pages 1304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444112800041 Publication Date 2018-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited 15 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654  
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064  
Permanent link to this record
 

 
Author Van Cauwenbergh, P.; Samaee, V.; Thijs, L.; Nejezchlebova, J.; Sedlak, P.; Ivekovic, A.; Schryvers, D.; Van Hooreweder, B.; Vanmeensel, K. url  doi
openurl 
  Title Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume (down) 11 Issue 1 Pages 6423  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Tailoring heat treatments for Laser Powder Bed Fusion (LPBF) processed materials is critical to ensure superior and repeatable material properties for high-end applications. This tailoring requires in-depth understanding of the LPBF-processed material. Therefore, the current study aims at unravelling the threefold interrelationship between the process (LPBF and heat treatment), the microstructure at different scales (macro-, meso-, micro-, and nano-scale), and the macroscopic material properties of AlSi10Mg. A similar solidification trajectory applies at different length scales when comparing the solidification of AlSi10Mg, ranging from mould-casting to rapid solidification (LPBF). The similarity in solidification trajectories triggers the reason why the Brody-Flemings cellular microsegregation solidification model could predict the cellular morphology of the LPBF as-printed microstructure. Where rapid solidification occurs at a much finer scale, the LPBF microstructure exhibits a significant grain refinement and a high degree of silicon (Si) supersaturation. This study has identified the grain refinement and Si supersaturation as critical assets of the as-printed microstructure, playing a vital role in achieving superior mechanical and thermal properties during heat treatment. Next, an electrical conductivity model could accurately predict the Si solute concentration in LPBF-processed and heat-treated AlSi10Mg and allows understanding the microstructural evolution during heat treatment. The LPBF-processed and heat-treated AlSi10Mg conditions (as-built (AB), direct-aged (DA), stress-relieved (SR), preheated (PH)) show an interesting range of superior mechanical properties (tensile strength: 300-450 MPa, elongation: 4-13%) compared to the mould-cast T6 reference condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632047000003 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.259  
  Call Number UA @ admin @ c:irua:177634 Serial 6791  
Permanent link to this record
 

 
Author Yandouzi, M.; Toth, L.; Schryvers, D. doi  openurl
  Title High resolution transmission electron microscopy study of nanoscale Ni-rich Ni-Al films evaporated onto NaCl and KCl Type A1 Journal article
  Year 1998 Publication Nanostructured materials Abbreviated Journal Nanostruct Mater  
  Volume (down) 10 Issue Pages 99-115  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000073840600011 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0965-9773; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48370 Serial 1463  
Permanent link to this record
 

 
Author Fredrickx, P.; Schryvers, D. openurl 
  Title La microscopie électronique à transmission (MET) et son utilisation dans l'étude d'inclusions nano-cristallines dans le verre Type A3 Journal article
  Year 2002 Publication L'archéométrie au service des monuments et des oeuvres d'art Abbreviated Journal  
  Volume (down) 10 Issue Pages 131-136  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:48776 Serial 2036  
Permanent link to this record
 

 
Author Pourbabak, S.; Wang, X.; Van Dyck, D.; Verlinden, B.; Schryvers, D. pdf  url
doi  openurl
  Title Ni cluster formation in low temperature annealed Ni50.6Ti49.4 Type A1 Journal article
  Year 2017 Publication Functional materials letters Abbreviated Journal Funct Mater Lett  
  Volume (down) 10 Issue 10 Pages 1740005  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Various low temperature treatments of Ni50.6Ti49.4 have shown an unexpected effect on the martensitic start temperature. Periodic diffuse intensity distributions in reciprocal space indicate the formation of short pure Ni strings along the <111> directions in the B2 ordered lattice, precursing the formation of Ni4Ti3 precipitates formed at higher annealing temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395164100006 Publication Date 2017-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-6047 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.234 Times cited 4 Open Access Not_Open_Access  
  Notes The authors like to thank the Flemish Science Foundation FWO for financial support under project G.0366.15N “Influence of nano- and microstructural features and defects in fine-grained Ni-Ti on the thermal and mechanical reversibility of the martensitic transformation and the shape memory and superelastic behavior”. We are also very grateful to Prof. Dr. Jan Van Humbeeck for initiating this work, for his continuous support and inspiring discussions. Approved Most recent IF: 1.234  
  Call Number EMAT @ emat @ c:irua:142545 Serial 4619  
Permanent link to this record
 

 
Author Satto, C.; Ledda, A.; Potapov, P.; Janssens, J.F.; Schryvers, D. doi  openurl
  Title Phase transformations and precipitation in amorphous Ti50Ni25Cu25 ribbons Type A1 Journal article
  Year 2001 Publication Intermetallics Abbreviated Journal Intermetallics  
  Volume (down) 9 Issue Pages 395-401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos 000168882500005 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.14 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.14; 2001 IF: 1.239  
  Call Number UA @ lucian @ c:irua:48367 Serial 2590  
Permanent link to this record
 

 
Author Idrissi, H.; Ghidelli, M.; Béché, A.; Turner, S.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T. url  doi
openurl 
  Title Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films Type A1 Journal article
  Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (down) 9 Issue 1 Pages 13426  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at roomtemperature

correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486139700008 Publication Date 2019-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access  
  Notes H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T.0178.19. FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’) and Hercules fund ‘Direct electron detector for soft matter TEM’ from Flemish Government are acknowledged. Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @c:irua:162786 Serial 5375  
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D. pdf  doi
openurl 
  Title Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain Type A1 Journal article
  Year 2009 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume (down) 8 Issue 9 Pages 752-757  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract NiTi is one of the most popular shape-memory alloys, a phenomenon resulting from a martensitic transformation. Commercial NiTi-based alloys are often thermally treated to contain Ni4Ti3 precipitates. The presence of these precipitates can introduce an extra transformation step related to the so-called R-phase. It is believed that the strain field surrounding the precipitates, caused by the matrixprecipitate lattice mismatch, lies at the origin of this intermediate transformation step. Atomic-resolution transmission electron microscopy in combination with geometrical phase analysis is used to measure the elastic strain field surrounding these precipitates. By combining measurements from two different crystallographic directions, the three-dimensional strain matrix is determined from two-dimensional measurements. Comparison of the measured strain matrix to the eigenstrain of the R-phase shows that both are very similar and that the introduction of the R-phase might indeed compensate the elastic strain introduced by the precipitate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000269215500022 Publication Date 2009-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 53 Open Access  
  Notes Multimat Approved Most recent IF: 39.737; 2009 IF: 29.504  
  Call Number UA @ lucian @ c:irua:77657 Serial 1822  
Permanent link to this record
 

 
Author Samaee, V.; Gatti, R.; Devincre, B.; Pardoen, T.; Schryvers, D.; Idrissi, H. url  doi
openurl 
  Title Dislocation driven nanosample plasticity: new insights from quantitative in-situ TEM tensile testing Type A1 Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume (down) 8 Issue 1 Pages 12012  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Intrinsic dislocation mechanisms in the vicinity of free surfaces of an almost FIB damage-free single crystal Ni sample have been quantitatively investigated owing to a novel sample preparation method combining twin-jet electro-polishing, in-situ TEM heating and FIB. The results reveal that the small-scale plasticity is mainly controlled by the conversion of few tangled dislocations, still present after heating, into stable single arm sources (SASs) as well as by the successive operation of these sources. Strain hardening resulting from the operation of an individual SAS is reported and attributed to the decrease of the length of the source. Moreover, the impact of the shortening of the dislocation source on the intermittent plastic flow, characteristic of SASs, is discussed. These findings provide essential information for the understanding of the regime of ‘dislocation source’ controlled plasticity and the related mechanical size effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460200900001 Publication Date 2018-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 9 Open Access Not_Open_Access  
  Notes Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaee also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Dr. Ruth Schwaiger is acknowledged for providing the Ni foils used to prepare the in-situ TEM tensile specimens. Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @c:irua:155772 Serial 5136  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Liu, D.; Jiang, Q.; van Humbeeck, J. pdf  doi
openurl 
  Title Stability of Ni in nitinol oxide surfaces Type A1 Journal article
  Year 2011 Publication Acta biomaterialia Abbreviated Journal Acta Biomater  
  Volume (down) 7 Issue 2 Pages 892-899  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The stability of Ni in titanium oxide surface layers on nitinol wires known to release certain amounts of Ni was investigated by first principles density functional theory and transmission electron microscopy. The oxides were identified as a combination of TiO and TiO2 depending on the thickness of the layer. The calculations indicate that free Ni atoms can exist in TiO at ambient temperature while Ni particles form in TiO2, which was confirmed by the transmission electron microscopy observations. The results are discussed with respect to surface stability and Ni release due to free Ni atoms and Ni particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000286707700047 Publication Date 2010-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-7061; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 39 Open Access  
  Notes Fwo Approved Most recent IF: 6.319; 2011 IF: 4.865  
  Call Number UA @ lucian @ c:irua:85998 Serial 3128  
Permanent link to this record
 

 
Author Schouteden, K.; Amin-Ahmadi, B.; Li, Z.; Muzychenko, D.; Schryvers, D.; Van Haesendonck, C. url  doi
openurl 
  Title Electronically decoupled stacking fault tetrahedra embedded in Au(111) films Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 7 Issue 7 Pages 14001  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Stacking faults are known as defective structures in crystalline materials that typically lower the structural quality of the material. Here, we show that a particular type of defects, i.e., stacking fault tetrahedra (SFTs), exhibits quantized, particle-in-a-box electronic behaviour, revealing a potential synthetic route to decoupled nanoparticles in metal films. We report on the electronic properties of SFTs that exist in Au(111) films, as evidenced by scanning tunnelling microscopy and confirmed by transmission electron microscopy. We find that the SFTs reveal a remarkable decoupling from their metal surroundings, leading to pronounced energy level quantization effects within the SFTs. The electronic behaviour of the SFTs can be described well by the particle-in-a-box model. Our findings demonstrate that controlled preparation of SFTs may offer an alternative way to achieve well decoupled nanoparticles of high crystalline quality in metal thin films without the need of thin insulating layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390367700001 Publication Date 2016-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 7 Open Access  
  Notes The research in Leuven has been supported by the Research Foundation – Flanders (FWO, Belgium), and by the Flemish Concerted Research Action program (BOF KU Leuven, Project No. GOA/14/007). Z.L. acknowledges the support from the China Scholarship Council (No. 2011624021) and from Internal Funds KU Leuven. K.S. acknowledges additional support from the FWO. The research in Moscow has been supported by grants of the Russian Foundation for Basic Research (RFBR). Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:138983 Serial 4336  
Permanent link to this record
 

 
Author Marteleur, M.; Idrissi, H.; Amin-Ahmadi, B.; Prima, F.; Schryvers, D.; Jacques, P.J. doi  openurl
  Title On the nucleation mechanism of {112} < 111 > mechanical twins in as-quenched beta metastable Ti-12 wt.% Mo alloy Type A1 Journal article
  Year 2019 Publication Materialia Abbreviated Journal  
  Volume (down) 7 Issue Pages Unsp 100418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently developed beta-metastable Ti grades take advantage of the simultaneous activation of TRIP and TWIP effects for enhancing their work hardening rate. However, the role of each plasticity mechanism on the macroscopic mechanical response is still unclear. In this work, the nucleation mechanism of the first activated plasticity mechanism, namely {112} < 111 > twinning, was investigated. Firstly, post-mortem TEM analysis showed that twins nucleate on pre-existing microstructural defects such as thermal jogs with the zonal dislocation mechanism. The precipitation of the omega phase on twin boundaries has been observed, as well as the emission of numerous dislocations from super-jogs present in these twin boundaries. It is also shown that {112} < 111 > twins act as effective dislocation sources for the subsequent plasticity mechanisms such as beta -> alpha '' martensitic transformation and {332} < 111 > twinning. Secondly, in situ TEM tensile testing of the investigated Ti grade highlighted the primary role of the initial defect configuration present in the microstructure. It is shown that twins cannot nucleate without the presence of specific defects allowing the triggering of the dislocation decomposition needed for the twinning mechanism highlighted in investigated bulk samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537131000052 Publication Date 2019-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-1529 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:170326 Serial 6875  
Permanent link to this record
 

 
Author Schryvers, D.; Holland-Moritz, D. doi  openurl
  Title Austenite and martensite microstructures in splat-cooled Ni-Al Type A1 Journal article
  Year 1998 Publication Intermetallics Abbreviated Journal Intermetallics  
  Volume (down) 6 Issue Pages 427-436  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos 000074235500010 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.14 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.14; 1998 IF: 1.785  
  Call Number UA @ lucian @ c:irua:48365 Serial 209  
Permanent link to this record
 

 
Author Colla, M.-S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J.-P.; Schryvers, D.; Pardoen, T. pdf  url
doi  openurl
  Title Dislocation-mediated relaxation in nanograined columnar ​palladium films revealed by on-chip time-resolved HRTEM testing Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (down) 6 Issue 6 Pages 5922  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on ​palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as ​palladium membranes for hydrogen applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348742300002 Publication Date 2015-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 34 Open Access  
  Notes Iap7/21; Fwo G012012n Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number c:irua:122045 Serial 731  
Permanent link to this record
 

 
Author Samajdar, I.; Ratchev, P.; Verlinden, B.; Schryvers, D. doi  openurl
  Title Recrystallization and grain growth in a B2 iron aluminide alloy Type A1 Journal article
  Year 1998 Publication Intermetallics Abbreviated Journal Intermetallics  
  Volume (down) 6 Issue Pages 419-425  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos 000074235500009 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.14 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.14; 1998 IF: 1.785  
  Call Number UA @ lucian @ c:irua:48366 Serial 2846  
Permanent link to this record
 

 
Author Van Aelst, J.; Philippaerts, A.; Bartholomeeusen, E.; Fayad, E.; Thibault-Starzyk, F.; Lu, J.; Schryvers, D.; Ooms, R.; Verboekend, D.; Jacobs, P.; Sels, B. url  doi
openurl 
  Title Towards biolubricant compatible vegetable oils by pore mouth hydrogenation with shape-selective Pt/ZSM-5 catalysts Type A1 Journal article
  Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol  
  Volume (down) 6 Issue 6 Pages 2820-2828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pt/ZSM-5 catalysts with various crystal sizes were prepared via competitive ion-exchange, followed by a slow activation procedure. Even when using very large ZSM-5 crystals, highly dispersed Pt nano-clusters were contained within the zeolite crystal's voids, as ascertained by 2D pressure-jump IR spectroscopy of adsorbed CO and focussed ion-beam transmission electron microscopy. The shape-selective properties of the Pt/ZSM-5 catalysts were evaluated in the partial hydrogenation of soybean oil. Unique hydrogenation selectivities were observed, as the fatty acids located at the central position of the triacylglycerol (TAG) molecules were preferentially hydrogenated. The resulting oil has therefore high levels of intermediately melting TAGs, which are compatible with biolubricants due to their improved oxidative stability and still appropriate low-temperature fluidity. The TAG distribution in the partially hydrogenated soybean oil samples was independent from the zeolite crystal size, while the hydrogenation activity linearly increases with the crystal's external surface area. This trend was confirmed with a Pt loaded mesoporous ZSM-5 zeolite, obtained via a mild alkaline treatment. These observations imply and confirm a genuine pore mouth catalysis mechanism, in which only one fatty acid chain of the TAG is able to enter the micropores of ZSM-5, where the double bonds are hydrogenated by the crystal encapsulated Pt-clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374790200031 Publication Date 2016-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.773 Times cited 5 Open Access  
  Notes The research was funded through a PhD grant to J. V. A. of the Agency for Innovation by Science and Technology in Flanders (IWT). A. P. and D. V. acknowledge the F. W. O.-Vlaanderen (Research Foundation Flanders) for a post-doctoral fellowship. E. B. was kindly funded by an F. W. O.-Vlaanderen project. This work was performed in the framework of an Associated International Laboratory between FWO and CNRS. Approved Most recent IF: 5.773  
  Call Number EMAT @ emat @ c:irua:138981 Serial 4335  
Permanent link to this record
 

 
Author Seo, J.W.; Schryvers, D. doi  openurl
  Title Defect structures in CuZr martensite, studies by CTEM and HRTEM Type A1 Journal article
  Year 1997 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv  
  Volume (down) C5 Issue Pages 149-154  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000072520300024 Publication Date 2007-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:21351 Serial 623  
Permanent link to this record
 

 
Author Schryvers, D. doi  openurl
  Title Electron microscopy studies of martensite microstructures Type A1 Journal article
  Year 1997 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv  
  Volume (down) C5 Issue Pages 109-118  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000072520300018 Publication Date 2007-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:21348 Serial 968  
Permanent link to this record
 

 
Author Schryvers, D.; Yandouzi, M.; Holland-Moritz, D.; Toth, L. doi  openurl
  Title HRTEM study of austenite and martensite in splat-cooled and nanoscale thin film Ni-Al Type A1 Journal article
  Year 1997 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv  
  Volume (down) C5 Issue Pages 203-208  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos 000072520300033 Publication Date 2007-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:21350 Serial 1517  
Permanent link to this record
 

 
Author Schryvers, D. pdf  doi
openurl 
  Title Martensitic and related transformations in Ni-Al alloys Type A1 Journal article
  Year 1995 Publication Journal de physique: 4 T2 – IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPAIN Abbreviated Journal IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPA  
  Volume (down) 5 Issue C2 Pages 225-234  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present paper gives a review of results of recent studies investigating the fundamentals of the martensitic and related phase transformations in Ni-Al. For the former case, the emphasis will be on the microstructure of martensite plates. The latter include the metastable Ni2Al omega-like and stable Ni5Al3 bainitic phases. These phases will be discussed in view of their atomic structure, nucleation, growth and effect on the martensitic transformation. A separate chapter will deal with precursor effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1995QX40700036 Publication Date 2007-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104437 Serial 1947  
Permanent link to this record
 

 
Author Schryvers, D.; Toth, L.; Ma, Y.; Tanner, L. pdf  doi
openurl 
  Title Nucleation and growth of the Ni5Al3 phase in Ni-Al austenite and martensite Type A1 Journal article
  Year 1995 Publication Journal de physique: 4 T2 – IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPAIN Abbreviated Journal IIIrd European Symposium on Martensitic Transformations (ESOMAT 94), SEP 14-16, 1994, BARCELONA, SPA  
  Volume (down) 5 Issue C2 Pages 299-304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The nucleation and growth mechanisms of Ni5Al3 precipitates and microtwinned plates in B2 austenite and 2M (3R) martensite phases are described on the basis of conventional and high resolution electron microscopy. In the Ni62.5Al37.5 B2 austenite matrix short annealings at 550 degrees C introduce three-pointed star shaped precipitates consisting of twin related parts of different variants of the Ni5Al3 structure. Longer annealings result in plates growing separately from these wings and developing microtwinning in order to accommodate stress built-up at the interfaces with the surrounding matrix. Annealing of Ni65Al35 2M martensite plates induces simple reordering into the Ni5Al3 phase, increasing the fct c/a ratio by about 1%. As a result stracking faults are introduced in the smallest twin variants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1995QX40700047 Publication Date 2007-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:104438 Serial 2387  
Permanent link to this record
 

 
Author Schryvers, D. pdf  doi
openurl 
  Title SAED and HREM results suggest a NiTi B19' based superstructure for CuZr martensite Type A1 Journal article
  Year 1995 Publication Journal de physique: colloques, suppléments Abbreviated Journal  
  Volume (down) 5 Issue 8 Pages 1047-1052  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1995TX21300085 Publication Date 2014-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:13168 Serial 2939  
Permanent link to this record
 

 
Author Schryvers, D.; Toth, L.; van Humbeeck, J.; Beyer, J. doi  openurl
  Title Ni2Al versus Ni5Al3 ordering in Ni65Al35 austenite and martensite Type A1 Journal article
  Year 1995 Publication Journal de physique: colloques, suppléments Abbreviated Journal  
  Volume (down) 5 Issue 8 Pages 1029-1034  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos A1995TX21300082 Publication Date 2014-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access  
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #  
  Call Number UA @ lucian @ c:irua:13167 Serial 3548  
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Samaee, V.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D. pdf  url
doi  openurl
  Title In-Situ TEM Stress Induced Martensitic Transformation in Ni50.8Ti49.2 Microwires Type A1 Journal article
  Year 2019 Publication Shape memory and superelasticity Abbreviated Journal Shap. Mem. Superelasticity  
  Volume (down) 5 Issue 2 Pages 154-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In-situ transmission electron microscopy tensile straining is used to study the stress induced martensitic transformation in Ni50.8Ti49.2. Two microwire samples with different heat treatment are investigated from which one single crystal and three polycrystalline TEM specimens, the latter with micro- and nano-size grains, have been produced. The measured Young’s modulus for all TEM specimens is around 70 GPa, considerably higher than the averaged 55 GPa of the original microwire sample. The height of the superelastic stress plateau shows an inverse relationship with the specimen thickness for the polycrystalline specimens. Martensite starts nucleating within the elastic region of the stress–strain curve and on the edges of the specimens while also grain boundaries act as nucleation sites in the polycrystalline specimens. When a martensite plate reaches a grain boundary in the polycrystalline specimen, it initiates the transformation in the neighboring grain at the other side of the grain boundary. In later stages martensite plates coalesce at higher loads in the stress plateau. In highly strained specimens, residual martensite remains after release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472940200002 Publication Date 2019-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-384X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Saeid Pourbabak likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. This work was also made possible through the AUHA13009 Grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159989 Serial 5177  
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. pdf  doi
openurl 
  Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume (down) 4 Issue 6 Pages 2718-2728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819431200001 Publication Date 2022-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189555 Serial 7081  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Mohanchandra, K.P.; Carman, G.P.; van Humbeeck, J. pdf  doi
openurl 
  Title Fabrication and characterization of functionally graded Ni-Ti multilayer thin films Type A1 Journal article
  Year 2009 Publication Functional materials letters Abbreviated Journal Funct Mater Lett  
  Volume (down) 2 Issue 2 Pages 61-66  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A functionally graded multilayer NiTi thin film was deposited on a SiO2/Si substrate by d.c. sputtering using a ramped heated NiTi alloy target. The stand-alone films were crystallized at 500°C in vacuum better than 10-7 Torr. Transmission electron microscopy micrographs taken along the film cross section show two distinct regions, thin and thick, with weak R and B2 phases, respectively. The film compositions along the thickness were measured and quantified using the standard-less EELSMODEL method. The film deposited during the initial thermal ramp (thin regions) displays an average of 54 at.% Ni while the film deposited at a more elevated target temperature (thick regions) shows about 51 at.% Ni.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000271077000003 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-6047;1793-7213; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.234 Times cited 9 Open Access  
  Notes Fwo Approved Most recent IF: 1.234; 2009 IF: 2.561  
  Call Number UA @ lucian @ c:irua:77655 Serial 1165  
Permanent link to this record
 

 
Author Schryvers, D. openurl 
  Title Martensitic and bainitic transformations in Ni-Al alloys Type A1 Journal article
  Year 1994 Publication Journal de physique: 4 Abbreviated Journal  
  Volume (down) C2 Issue Pages 225-234  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Les Ulis Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:10014 Serial 1946  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: