|   | 
Details
   web
Records
Author Tafuri, F.; Carillo, F.; Lombardi, F.; Granozio, F.M.; dii Uccio, U.S.; Testa, G.; Sarnelli, E.; Verbist, K.; Van Tendeloo, G.
Title YBa2Cu3O7-x Josephson junctions and dc SQUIDs based on 45\text{\textdegree} a-axis tilt and twist grain boundaries : atomically clean interfaces for applications Type A1 Journal article
Year 1999 Publication Superconductor science and technology T2 – International Superconductive Electronics Conference, JUN 21-25, 1999, BERKELEY, CALIFORNIA Abbreviated Journal Supercond Sci Tech
Volume (up) 12 Issue 11 Pages 1007-1009
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract YBa2Cu3O7-x artificial grain boundary Josephson junctions have been fabricated, employing a recently implemented biepitaxial technique. The grain boundaries can be obtained by controlling the orientation of the MgO seed layer and are characterized by a misalignment of the c-axes (45 degrees a-axis tilt or 45 degrees a-axis twist). These types of grain boundaries are still mostly unexplored. We carried out a complete characterization of their transport properties and microstructure. Junctions and de SQUIDs associated with these grain boundaries exhibit an excellent Josephson phenomenology and high values of the ICRN product and of the magnetic flux-to-voltage transfer parameter respectively. Remarkable differences in the transport parameters of tilt and twist junctions have been observed, which can be of interest for several applications. A maximum speed of Josephson vortices as calculated from the voltage step values of the order of 2 x 10(6) m s(-1) is obtained. These devices could also have some impact on experiments designed to study the symmetry of the order parameter, exploiting their microstructure and anisotropic properties. High-resolution electron microscopy showed the presence of perfect basal plane faced boundaries in the cross sections of tilt boundaries.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000083948400093 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 3 Open Access
Notes Approved Most recent IF: 2.878; 1999 IF: 1.728
Call Number UA @ lucian @ c:irua:102896 Serial 3565
Permanent link to this record
 

 
Author Bussmann-Holder, A.; Michel, K.H.
Title The isotope effect in hydrogen-bonded systems Type A1 Journal article
Year 1998 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 1st International Conference on New Theories, Discoveries, and, Applications of Superconductors and Related Materials (New3SC-1), FEB 19-24, 19 Abbreviated Journal Int J Mod Phys B
Volume (up) 12 Issue 29-31 Pages 3406-3408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The giant isotope effect on the ferro- and antiferroelectric transition temperature upon deuteration of hydrogen-bonded systems is well known experimentally since various decades. Yet, theoretically only recently a microscopic understanding of this effect has been achieved which, specifically, took into account the geometry of the O ... H ... O bond. The implications of this modeling are multiple as numerous hydrogen-bonded organic systems show the same effects as ferro- and antiferroelectrics, i.e., cooperative proton tunneling at a well-defined temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Singapore Editor
Language Wos 000079114500104 Publication Date 2003-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record
Impact Factor 0.736 Times cited Open Access
Notes Approved Most recent IF: 0.736; 1998 IF: 0.987
Call Number UA @ lucian @ c:irua:102920 Serial 3589
Permanent link to this record
 

 
Author Verberck, B.; Nikolaev, A.V.; Michel, K.H.
Title Theoretical model for the structural phase transition and the metal-insulator transition in polymerized KC60 Type A1 Journal article
Year 2004 Publication Fullerenes, nanotubes, and carbon nanostructures T2 – 6th Biennial International Workshop on Fullerenes and Atomic Clusters, JUN 30-JUL 04, 2003, St Petersburg, RUSSIA Abbreviated Journal Fuller Nanotub Car N
Volume (up) 12 Issue 1-2 Pages 243-252
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The recently discovered structural phase transition in Polymerized KC60 at about 50K leads to a doubling of the unit cell volume and is accompanied by a metal-insulator transition. Here, we show that the ((a) over right arrow + (c) over right arrow, (b) over right arrow, (a) over right arrow – (c) over right arrow) superstructure results from orientational charge density waves along the polymer chains and correlated displacements of the K+ ions. The presented model can also account for the metal-insulator transition. The effect is specific for the space group Pmnn of KC60 and is absent in both Rb- and CsC60 (space group 12/m), in agreement with the present experimental knowledge of these compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000220551600040 Publication Date 2004-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X;1536-4046; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.35 Times cited Open Access
Notes Approved Most recent IF: 1.35; 2004 IF: 1.117
Call Number UA @ lucian @ c:irua:103259 Serial 3607
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K.
Title Theory of trions in quantum wells Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC Abbreviated Journal Physica E
Volume (up) 12 Issue 1-4 Pages 543-545
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We investigate the energy levels of the negatively and positively charged excitons (also called trions) in a 200 Angstrom wide GaAs quantum well in the presence of a perpendicular magnetic field. A comparison is made with the experimental results of Glasberg et al. (Phys. Rev. B. 59 (1999) R10 425) and of Yusa et al. (cond-mat/0103505). (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000175206300134 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 2 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:103903 Serial 3624
Permanent link to this record
 

 
Author Laffez, P.; Retoux, R.; Boullay, P.; Zaghrioui, M.; Lacorre, P.; Van Tendeloo, G.
Title Transmission electron microscopy of NdNiO3 thin films on silicon substrates Type A1 Journal article
Year 2000 Publication European physical journal: applied physics Abbreviated Journal Eur Phys J-Appl Phys
Volume (up) 12 Issue Pages 55-60
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000165528800006 Publication Date 2003-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-0042;1286-0050; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.684 Times cited 16 Open Access
Notes Approved Most recent IF: 0.684; 2000 IF: 0.535
Call Number UA @ lucian @ c:irua:54781 Serial 3711
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M.
Title Transport of magnetic edge states in a quantum wire exposed to a non-homogeneous magnetic field Type A1 Journal article
Year 2001 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume (up) 12 Issue Pages 570-576
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000173305300041 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 5 Open Access
Notes Approved Most recent IF: 3.44; 2001 IF: 1.621
Call Number UA @ lucian @ c:irua:37276 Serial 3727
Permanent link to this record
 

 
Author Santamarta, R.; Schryvers, D.
Title Twinned b.c.c. sherical particles in a partially crystallised Ti50Ni25Cu25 melt-spun ribbon Type A1 Journal article
Year 2004 Publication Intermetallics Abbreviated Journal Intermetallics
Volume (up) 12 Issue Pages 341-348
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Chicago, Ill. Editor
Language Wos 000189229300012 Publication Date 2004-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.14 Times cited 14 Open Access
Notes Approved Most recent IF: 3.14; 2004 IF: 1.770
Call Number UA @ lucian @ c:irua:48369 Serial 3767
Permanent link to this record
 

 
Author Liu, Y.; Claes, N.; Trepka, B.; Bals, S.; Lang, P.R.
Title A combined 3D and 2D light scattering study on aqueous colloidal model systems with tunable interactions Type A1 Journal article
Year 2016 Publication Soft matter Abbreviated Journal Soft Matter
Volume (up) 12 Issue 12 Pages 8485-8494
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this article we report on the synthesis and characterization of a system of colloidal spheres suspended in an aqueous solvent which can be refractive index-matched, thus allowing for investigations of the particle near-wall dynamics by evanescent wave dynamic light scattering at concentrations up to the isotropic to ordered transition and beyond. The particles are synthesized by copolymerization of a fluorinated acrylic ester monomer with a polyethylene-glycol (PEG) oligomer by surfactant free emulsion polymerization. Static and dynamic light scattering experiments in combination with cryo transmission electron microscopy reveal that the particles have a core shell structure with a significant enrichment of the PEG chains on the particles surface. In index-matching DMSO/water suspensions the particles arrange in an ordered phase at volume fraction above 7%, if no additional electrolyte is present. The near-wall dynamics at low volume fraction are quantitatively described by the combination of electrostatic repulsion and hydrodynamic interaction between the particles and the wall. At volume fractions close to the isotropic to ordered transition, the near-wall dynamics are more complex and qualitatively reminiscent of the behaviour which was observed in hard sphere suspensions at high concentrations.
Address Forschugszentrum Julich, Institute of Complex Systems ICS-3, Julich, Germany. p.lang@fz-juelich.de and Heinrich-Heine Universitat, Dusseldorf, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000386247100004 Publication Date 2016-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-683X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.889 Times cited 2 Open Access OpenAccess
Notes The authors thank Prof. J. K. G. Dhont and the ICS-3 group for useful discussions and support. YL would like to thank the Marie Sklodowska Curie Initial Training Network SOMATAI under the EU Grant Agreement No. 316866 for financial support. BT contributed to this work during an internship at Forschungszentrum Ju¨lich supported by the International Helmholtz Research School of Biophysics and Soft Matter (IHRS BioSoft), which is gratefully acknowledged. SB and NC acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.889
Call Number EMAT @ emat @ c:irua:136166 Serial 4292
Permanent link to this record
 

 
Author Yu, H.; Kopach, A.; Misko, V.R.; Vasylenko, A.A.; Makarov, D.; Marchesoni, F.; Nori, F.; Baraban, L.; Cuniberti, G.
Title Confined Catalytic Janus Swimmers in a Crowded Channel: Geometry-Driven Rectification Transients and Directional Locking Type A1 Journal article
Year 2016 Publication Small Abbreviated Journal Small
Volume (up) 12 Issue 12 Pages 5882-5890
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Self-propelled Janus particles, acting as microscopic vehicles, have the potential to perform complex tasks on a microscopic scale, suitable, e.g., for environmental applications, on-chip chemical information processing, or in vivo drug delivery. Development of these smart nanodevices requires a better understanding of how synthetic swimmers move in crowded and confined environments that mimic actual biosystems, e.g., network of blood vessels. Here, the dynamics of self-propelled Janus particles interacting with catalytically passive silica beads in a narrow channel is studied both experimentally and through numerical simulations. Upon varying the area density of the silica beads and the width of the channel, active transport reveals a number of intriguing properties, which range from distinct bulk and boundary-free diffusivity at low densities, to directional “locking” and channel “unclogging” at higher densities, whereby a Janus swimmer is capable of transporting large clusters of passive particles.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000389403900010 Publication Date 2016-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 14 Open Access
Notes ; H.Y., A.K., and L.B. contributed equally to this work. This work was funded in part by the European Union (ERDF) and the Free State of Saxony via the ESF project InnoMedTec, the DFG cluster for Excellence, the Center for Advancing Electronics Dresden (CfAED), and via the European Research Council under the European Union's Seventh Framework program (FP7/2007-2013)/ERC grant agreement no. 306277. V.R.M. and A.A.V. acknowledge support from the Odysseus Program of the Flemish Government and the FWO-VI. F.N. is partially supported by the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Grant No. FA9550-14-1-0040, the IMPACT program of the JST, and a Grant-in-Aid for the Scientific Research (A). ; Approved Most recent IF: 8.643
Call Number UA @ lucian @ c:irua:140256 Serial 4453
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y.
Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
Volume (up) 12 Issue 11 Pages 1045-+
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414531800011 Publication Date 2017-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 38.986 Times cited 65 Open Access
Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986
Call Number UA @ lucian @ c:irua:147406 Serial 4902
Permanent link to this record
 

 
Author Neyts, E.C.
Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume (up) 12 Issue 1 Pages 145-154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000425156500017 Publication Date 2017-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ lucian @ c:irua:149233 Serial 4927
Permanent link to this record
 

 
Author Sandoval, S.; Kepic, D.; Perez del Pino, A.; Gyorgy, E.; Gomez, A.; Pfannmöller, M.; Van Tendeloo, G.; Ballesteros, B.; Tobias, G.
Title Selective laser-assisted synthesis of tubular van der Waals heterostructures of single-layered PbI2 within carbon nanotubes exhibiting carrier photogeneration Type A1 Journal article
Year 2018 Publication ACS nano Abbreviated Journal Acs Nano
Volume (up) 12 Issue 7 Pages 6648-6656
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electronic and optical properties of two-dimensional layered materials allow the miniaturization of nanoelectronic and optoelectronic devices in a competitive manner. Even larger opportunities arise when two or more layers of different materials are combined. Here, we report on an ultrafast energy efficient strategy, using laser irradiation, which allows bulk synthesis of crystalline single-layered lead iodide in the cavities of carbon nanotubes by forming cylindrical van der Waals heterostructures. In contrast to the filling of van der Waals solids into carbon nanotubes by conventional thermal annealing, which favors the formation of inorganic nanowires, the present strategy is highly selective toward the growth of monolayers forming lead iodide nanotubes. The irradiated bulk material bearing the nanotubes reveals a decrease of the resistivity as well as a significant increase in the current flow upon illumination. Both effects are attributed to the presence of single-walled lead iodide nanotubes in the cavities of carbon nanotubes, which dominate the properties of the whole matrix. The present study brings in a simple, ultrafast and energy efficient strategy for the tailored synthesis of rolled-up single-layers of lead iodide (i.e., single-walled PbI2 nanotubes), which we believe could be expanded to other two-dimensional (2D) van der Waals solids. In fact, initial tests with ZnI2 already reveal the formation of single-walled ZnI2 nanotubes, thus proving the versatility of the approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440505000029 Publication Date 2018-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 8 Open Access OpenAccess
Notes ; We acknowledge funding from MINECO (Spain), through MAT2017-86616-R, ENE2017-89210-C2-1-R, and “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496, SEV-2013-0295), CERCA programme for funding ICN2 and support from AGAUR of Generalitat de Catalunya through the projects 2017 SGR 1086, 2017 SGR 581 and 2017 SGR 327. We thank Thomas Swan Co., Ltd., for supplying MWCNT Elicarb samples. D.K. acknowledges financial support from the Ministry of Education, Science, and Technological Development of the Republic of Serbia for postdoctoral research. We are grateful to R Rurali (ICMAB-CSIC) for providing the structural model of the PbI<INF>2</INF> nanotube employed for the schematic representation of PbI<INF>2</INF>@MVWCNT. ; Approved Most recent IF: 13.942
Call Number UA @ lucian @ c:irua:153169 Serial 5127
Permanent link to this record
 

 
Author Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G.
Title Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis Type A1 Journal article
Year 2019 Publication Nano Research Abbreviated Journal Nano Res
Volume (up) 12 Issue 1 Pages 33-39
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene-graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N-2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453629900004 Publication Date 2018-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 7 Open Access Not_Open_Access
Notes ; The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing. ; Approved Most recent IF: 7.354
Call Number UA @ admin @ c:irua:156210 Serial 5265
Permanent link to this record
 

 
Author Adams, F.; Adriaens, A.; Aerts, A.; de Raedt, I.; Janssens, K.; Schalm, O.
Title Micro and surface analysis in archaeology Type A1 Journal article
Year 1997 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume (up) 12 Issue 3 Pages 257-265
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1997WN16300001 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited Open Access
Notes Approved Most recent IF: 3.379; 1997 IF: 3.595
Call Number UA @ admin @ c:irua:16274 Serial 5711
Permanent link to this record
 

 
Author Janssens, K.; Legrand, S.; van der Snickt, G.; Vanmeert, F.
Title Virtual archaeology of altered paintings : multiscale chemical imaging tools Type A1 Journal article
Year 2016 Publication Elements Abbreviated Journal Elements
Volume (up) 12 Issue 1 Pages 39-44
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Understanding how painted works of art were constructed, layer-by-layer, requires a range of macroscopic and microscopic X-ray and infrared-based analytical methods. Deconstructing complex assemblies of paints horizontally across a picture and vertically through it provides insight into the detailed production process of the art work and on the painting techniques and styles of its maker. The unwanted chemical transformations that some paint pigments undergo are also detectable; these changes can alter the paint's optical properties. Understanding the chemistry behind such paint degradation gives conservators vital clues to counter these effects and is an invaluable asset in protecting these cultural artefacts for future generations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370987700007 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1811-5209 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.038 Times cited 12 Open Access
Notes ; ; Approved Most recent IF: 4.038
Call Number UA @ admin @ c:irua:132301 Serial 5904
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S.
Title Biotemplated diatom silica-titania materials for air purification Type A1 Journal article
Year 2013 Publication Photochemical & photobiological sciences Abbreviated Journal Photoch Photobio Sci
Volume (up) 12 Issue 4 Pages 690-695
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract We present a novel manufacture route for silicatitania photocatalysts using the diatom microalga Pinnularia sp. Diatoms self-assemble into porous silica cell walls, called frustules, with periodic micro-, meso- and macroscale features. This unique hierarchical porous structure of the diatom frustule is used as a biotemplate to incorporate titania by a solgel methodology. Important material characteristics of the modified diatom frustules under study are morphology, crystallinity, surface area, pore size and optical properties. The produced biosilicatitania material is evaluated towards photocatalytic activity for NOx abatement under UV radiation. This research is the first step to obtain sustainable, well-immobilised silicatitania photocatalysts using diatoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316572500016 Publication Date 2012-10-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-905x; 1474-9092 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.344 Times cited 18 Open Access
Notes ; ; Approved Most recent IF: 2.344; 2013 IF: 2.939
Call Number UA @ admin @ c:irua:106625 Serial 5930
Permanent link to this record
 

 
Author Saviuc, I.; Peremans, H.; Van Passel, S.; Milis, K.
Title Economic performance of using batteries in European residential microgrids under the net-metering scheme Type A1 Journal article
Year 2019 Publication Energies Abbreviated Journal Energies
Volume (up) 12 Issue 1 Pages 165-28
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract Decentralized energy production offers an increased share of renewable energy and autonomy compared to the conventional, grid-only solution. However, under the net-metering scheme, the energy losses in batteries translate into financial losses to an investor seeking to move away from grid-only electricity and set up a residential PV+Battery microgrid. Our paper examines a hypothetical support scheme for such a project, designed to balance the economic disadvantage through partially supporting the acquisition of batteries, and thus ensure that the microgrid solution is more attractive than no investment. For this we develop four case studies based on experiments carried out in Greece, Italy, Denmark and Finland. Using the minimization of the Net Present Cost for each project, we compare the PV+Battery solution to the grid-only scenario over 25 years, for a range of electricity prices. The results illustrate first how the success of this project depends on the price of electricity. Second, we find that under current conditions in the respective countries the need for battery support varies between zero in Denmark and 86% in Italy, which reflects how the disadvantages of net metering can only be counterbalanced by either very high electricity price or very high solar resource. Our paper contributes thus to the discussion about the favourable environment for batteries in residential microgrids.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Additional Links UA library record
Impact Factor 2.262 Times cited Open Access
Notes Approved Most recent IF: 2.262
Call Number UA @ admin @ c:irua:156009 Serial 6189
Permanent link to this record
 

 
Author Rezaei, F.; Vanraes, P.; Nikiforov, A.; Morent, R.; De Geyter, N.
Title Applications of plasma-liquid systems : a review Type A1 Journal article
Year 2019 Publication Materials Abbreviated Journal Materials
Volume (up) 12 Issue 17 Pages 2751
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000488880300104 Publication Date 2019-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 4 Open Access
Notes Approved Most recent IF: 2.654
Call Number UA @ admin @ c:irua:163805 Serial 6285
Permanent link to this record
 

 
Author Finizola e Silva, M.; Van Passel, S.
Title Climate-Smart Agriculture in the Northeast of Brazil: An Integrated Assessment of the Aquaponics Technology Type A1 Journal Article
Year 2020 Publication Sustainability Abbreviated Journal Sustainability-Basel
Volume (up) 12 Issue 9 Pages 3734
Keywords A1 Journal Article; aquaponics; Aquaponova; Brazil; semi-arid region; food insecurity; cost–benefit analysis; socio-economic approach; climate-smart agriculture; Engineering Management (ENM) ;
Abstract The purpose of this study is to determine if aquaponic systems can reduce food insecurity in the semi-arid regions of Brazil and generate income for the beneficiaries. Aquaponics is a potentially sustainable way to produce food based on gardening, hydroponics and aquaculture. A case study, based on a project called Aquaponova, was developed. The aquaponic systems currently used in the project are non-commercial and designed for households with limited resources. The data based on six existing systems within this project were used to compare the costs and the benefits. The cost–benefit analysis covers four scenarios and three financing options. The results show that aquaponic systems have a large potential and can reduce food insecurity in semi-arid regions while generating income for the beneficiaries. Even if the system only produces 40% of the total estimated production, the system will still be feasible. However, the low opportunity cost of labour is an essential factor for obtaining these positive results. Moreover, the social benefits, such as a community spirit and the health benefits of the system, should not be underestimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000537476200232 Publication Date 2020-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes We would like to express our gratitude to Francisco Fechine Borges who introduced Maíra Finizola e Silva the basics of aquaponics and gave her the opportunity to base her research on the data from the Aquaponova project. We would also like to thank the participants of the 2nd LA SDEWES conference in Buenos Aires (9–12 February 2020) for the useful comments and suggestions. Approved Most recent IF: 3.9; 2020 IF: 1.789
Call Number ENM @ enm @c:irua:170074 Serial 6382
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C.
Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume (up) 12 Issue 7 Pages 8788-8794
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000515214300101 Publication Date 2020-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504
Call Number EMAT @ emat @c:irua:167770 Serial 6398
Permanent link to this record
 

 
Author Das, P.P.; Guzzinati, G.; Coll, C.; Gomez Perez, A.; Nicolopoulos, S.; Estrade, S.; Peiro, F.; Verbeeck, J.; Zompra, A.A.; Galanis, A.S.
Title Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy Type A1 Journal article
Year 2020 Publication Polymers Abbreviated Journal Polymers-Basel
Volume (up) 12 Issue 7 Pages 1434
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Organic and biological compounds (especially those related to the pharmaceutical industry) have always been of great interest for researchers due to their importance for the development of new drugs to diagnose, cure, treat or prevent disease. As many new API (active pharmaceutical ingredients) and their polymorphs are in nanocrystalline or in amorphous form blended with amorphous polymeric matrix (known as amorphous solid dispersion—ASD), their structural identification and characterization at nm scale with conventional X-Ray/Raman/IR techniques becomes difficult. During any API synthesis/production or in the formulated drug product, impurities must be identified and characterized. Electron energy loss spectroscopy (EELS) at high energy resolution by transmission electron microscope (TEM) is expected to be a promising technique to screen and identify the different (organic) compounds used in a typical pharmaceutical or biological system and to detect any impurities present, if any, during the synthesis or formulation process. In this work, we propose the use of monochromated TEM-EELS, to analyze selected peptides and organic compounds and their polymorphs. In order to validate EELS for fingerprinting (in low loss/optical region) and by further correlation with advanced DFT, simulations were utilized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000556786700001 Publication Date 2020-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4360 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.364 Times cited 6 Open Access OpenAccess
Notes C.C., F.P., S.E. acknowledges the Spanish government for projects MAT2016-79455-P, Research Network RED2018-102609-T and the FPI (BES-2017-080045) grant of Ministerio de Ciència, Innovación y Universidades. G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO). P.P.D., A.G.P., S.N. gratefully acknowledge much helpful discussion on EELS study for organic compounds with Dr. Andrey Chuvilin (CIC NANOGUNE, Donostia—San Sebastian, Spain). The authors also acknowledge Raúl Arenal (University de Zaragoza, Spain) for useful discussion on EELS. The authors acknowledge also Ulises Julio Amador Elizondo (Universidad CEU San Pablo, Spain) for kindly provide the aripiprazole and piroxicam samples for EELS study.; EUSMI_TA; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:170603 Serial 6400
Permanent link to this record
 

 
Author Verloy, R.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
Title Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells Type A1 Journal article
Year 2020 Publication Cancers Abbreviated Journal Cancers
Volume (up) 12 Issue 10 Pages 2782
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584150700001 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Server Medical Art templates were used for creating figures. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:172454 Serial 6418
Permanent link to this record
 

 
Author Clemen, R.; Heirman, P.; Lin, A.; Bogaerts, A.; Bekeschus, S.
Title Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells Type A1 Journal article
Year 2020 Publication Cancers Abbreviated Journal Cancers
Volume (up) 12 Issue 12 Pages 3575
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000601901900001 Publication Date 2020-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes This work was funded by the German Federal Ministry of Education and Research (BMBF), grant numbers 03Z22DN11 and 03Z22Di1; The authors acknowledge the technical assistance of Eric Freund, Julia Berner, Sanjeev Kumar Sagwal, Christina Wolff, Felix Niessner, Walison Brito, and Lea Miebach. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:173863 Serial 6442
Permanent link to this record
 

 
Author Ben Dkhil, S.; Perkhun, P.; Luo, C.; Mueller, D.; Alkarsifi, R.; Barulina, E.; Quiroz, Y.A.A.; Margeat, O.; Dubas, S.T.; Koganezawa, T.; Kuzuhara, D.; Yoshimoto, N.; Caddeo, C.; Mattoni, A.; Zimmermann, B.; Wuerfel, U.; Pfannmöller, M.; Bals, S.; Ackermann, J.; Videlot-Ackermann, C.
Title Direct correlation of nanoscale morphology and device performance to study photocurrent generation in donor-enriched phases of polymer solar cells Type A1 Journal article
Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume (up) 12 Issue 25 Pages 28404-28415
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C-71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000543780900058 Publication Date 2020-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 7 Open Access OpenAccess
Notes ; J.A., O.M., and C.V.-A. acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant Number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant Number: 287594). J.A., C.V.-A., and E.B. acknowledge the Association Nationale de la Recherche et de la Technologie (ANRT) and the Ministere de l'Enseignement Superieur, de la Recherche et de l'Innovation, awarded through the company Dracula Technologies (Valence, France), for framework of a CIFRE Ph.D. grant 2017/0529. J.A. and P.P. received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant agreement no. 713750. They further acknowledge support of the Regional Council of Provence-Alpes-Cote d'Azur, A*MIDEX (no. ANR-11-IDEX-0001-02), and the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR). J.A. and Y.A.A.Q. acknowledge the French Research Agency for funding through the project NFA-15 (ANR-17-CE05-0020-01). N.Y. acknowledges that the synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2017B1629 and 2018B1791). S.B. acknowledges financial support from the European Research Council (ERC Consolidator Grant 815128-REALNANO) and from FWO (G.0381.16N). M.P. gratefully acknowledges funding by the Ministerium fur Wissenschaft, Forschung und Kunst Baden-Wurttemberg through the HEiKA materials research centre FunTECH-3D (MWK, 33-753-30-20/3/3) and the Large-Scale-Data-Facility (LSDF) sds@hd through grant INST 35/1314-1 FUGG. A.M. acknowledges Italian MIUR for funding through the project PON04a2 00490 M2M Netergit, PRACE, for awarding access to Marconi KNL at CINECA, Italy, through projects DECONVOLVES (2018184466) and PROVING-IL (2019204911). C.C. acknowledges the CINECA award under the ISCRA initiative for the availability of high-performance computing resources and support (project MITOMASC). ; sygma Approved Most recent IF: 9.5; 2020 IF: 7.504
Call Number UA @ admin @ c:irua:170703 Serial 6484
Permanent link to this record
 

 
Author Bekaert, J.; Sevik, C.; Milošević, M.V.
Title First-principles exploration of superconductivity in MXenes Type A1 Journal article
Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale
Volume (up) 12 Issue Pages 17354-17361
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract MXenes are an emerging class of two-dimensional materials, which in their thinnest limit consist of a monolayer of carbon or nitrogen (X) sandwiched between two transition metal (M) layers. We have systematically searched for superconductivity among MXenes for a range of transition metal elements, based on a full first-principles characterization in combination with the Eliashberg formalism. Thus, we identified six superconducting MXenes: three carbides (Mo2C, W2C and Sc2C) and three nitrides (Mo2N, W2N and Ta2N). The highest critical temperature of similar to 16 K is found in Mo2N, for which a successful synthesis method has been established [Urbankowskiet al.,Nanoscale, 2017,9, 17722-17730]. Moreover, W2N presents a novel case of competing superconducting and charge density wave phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000563481700017 Publication Date 2020-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 15 Open Access
Notes ; This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the contract number COST-118F187, the Air Force Office of Scientific Research under award number FA9550-19-1-7048, by Research Foundation-Flanders (FWO) and the University of Antwerp (BOF). The collaboration was fostered by COST action NANOCOHYBRI (CA16218). Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government – department EWI. J. B. acknowledges support of a postdoctoral fellowship of the FWO. ; Approved Most recent IF: 6.7; 2020 IF: 7.367
Call Number UA @ admin @ c:irua:171988 Serial 6521
Permanent link to this record
 

 
Author Shi, P.; Ratkowsky, D.A.; Gielis, J.
Title The generalized Gielis geometric equation and its application Type A1 Journal article
Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume (up) 12 Issue 4 Pages 645-10
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Many natural shapes exhibit surprising symmetry and can be described by the Gielis equation, which has several classical geometric equations (for example, the circle, ellipse and superellipse) as special cases. However, the original Gielis equation cannot reflect some diverse shapes due to limitations of its power-law hypothesis. In the present study, we propose a generalized version by introducing a link function. Thus, the original Gielis equation can be deemed to be a special case of the generalized Gielis equation (GGE) with a power-law link function. The link function can be based on the morphological features of different objects so that the GGE is more flexible in fitting the data of the shape than its original version. The GGE is shown to be valid in depicting the shapes of some starfish and plant leaves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000540222200156 Publication Date 2020-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 4 Open Access
Notes ; This research was funded by the Jiangsu Government Scholarship for Overseas Studies (grant number: JS-2018-038). ; Approved Most recent IF: 2.7; 2020 IF: 1.457
Call Number UA @ admin @ c:irua:168141 Serial 6526
Permanent link to this record
 

 
Author Kertik, A.; Wee, L.H.; Şentosun, K.; Navarro, J.A.R.; Bals, S.; Martens, J.A.; Vankelecom, I.F.J.
Title High-performance CO2-selective hybrid membranes by exploiting MOF-breathing effects Type A1 Journal article
Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume (up) 12 Issue 2 Pages 2952-2961
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Conventional CO2 separation in the petrochemical industry via cryogenic distillation or amine-based absorber-stripper units is energy-intensive and environmentally unfriendly. Membrane-based gas separation technology, in contrast, has contributed significantly to the development of energy-efficient systems for processes such as natural gas purification. The implementation of commercial polymeric membranes in gas separation processes is restricted by their permeability-selectivity trade-off and by their insufficient thermal and chemical stability. Herein, we present the fabrication of a Matrimid-based membrane loaded with a breathing metal-organic framework (MOF) (NH2-MIL-53(Al)) which is capable of separating binary CO2/CH4 gas mixtures with high selectivities without sacrificing much of its CO2 permeabilities. NH2-MIL-53(Al) crystals were embedded in a polyimide (PI) matrix, and the mixed-matrix membranes (MMMs) were treated at elevated temperatures (up to 350 degrees C) in air to trigger PI cross-linking and to create PI-MOF bonds at the interface to effectively seal the grain boundary. Most importantly, the MOF transitions from its narrow-pore form to its large-pore form during this treatment, which allows the PI chains to partly penetrate the pores and cross-link with the amino functions at the pore mouth of the NH2-MIL-53(Al) and stabilizes the open-pore form of NH2-MIL-53(Al). This cross-linked MMM, with MOF pore entrances was made more selective by the anchored PI-chains and achieves outstanding CO2/CH4 selectivities. This approach provides significant advancement toward the design of selective MMMs with enhanced thermal and chemical stabilities which could also be applicable for other potential applications, such as separation of hydrocarbons (olefin/paraffin or isomers), pervaporation, and solvent-resistant nanofiltration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000508464500108 Publication Date 2019-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 26 Open Access OpenAccess
Notes ; A.K. is grateful to the Erasmus Mundus Doctorate in Membrane Engineering (EUDIME) programme. L.H.W. thanks the FWO-Vlaanderen for a postdoctoral research fellowships under contract number 12M1418N. We thank Methusalem and IAP-PAI for research funding. S.B. acknowledges financial support from European Research Council (ERC) (ERC Starting Grant No. 335078-COLOURATOM). We are also grateful to Frank Mathijs (KU Leuven) for the mechanical tests, Bart Goderis and Olivier Verkinderen for the DSC measurements, and Huntsman (Switzerland) for providing the Matrimid polymer. ; Approved Most recent IF: 9.5; 2020 IF: 7.504
Call Number UA @ admin @ c:irua:166576 Serial 6534
Permanent link to this record
 

 
Author Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L.
Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale
Volume (up) 12 Issue 15 Pages 8364-8370
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000529201500029 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 4 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367
Call Number UA @ admin @ c:irua:169578 Serial 6550
Permanent link to this record
 

 
Author Samaee, V.; Dupraz, M.; Pardoen, T.; VAn Swygenhoven, H.; Schryvers, D.; Idrissi, H.
Title Deciphering the interactions between single arm dislocation sources and coherent twin boundary in nickel bi-crystal Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume (up) 12 Issue 1 Pages 962
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The introduction of a well-controlled population of coherent twin boundaries (CTBs) is an attractive route to improve the strength ductility product in face centered cubic (FCC) metals. However, the elementary mechanisms controlling the interaction between single arm dislocation sources (SASs), often present in nanotwinned FCC metals, and CTB are still not well understood. Here, quantitative in-situ transmission electron microscopy (TEM) observations of these mechanisms under tensile loading are performed on submicron Ni bi-crystal. We report that the absorption of curved screw dislocations at the CTB leads to the formation of constriction nodes connecting pairs of twinning dislocations at the CTB plane in agreement with large scale 3D atomistic simulations. The coordinated motion of the twinning dislocation pairs due to the presence of the nodes leads to a unique CTB sliding mechanism, which plays an important role in initiating the fracture process at a CTB ledge. TEM observations of the interactions between non-screw dislocations and the CTB highlight the importance of the synergy between the repulsive force of the CTB and the back stress from SASs when the interactions occur in small volumes. Interactions of dislocations with coherent twin boundaries contribute to strength and ductility in metals, but investigating the interaction mechanisms is challenging. Here the authors unravel these mechanisms through quantitative in-situ transmission electron microscopy observations in nickel bi-crystal samples under tensile loading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000620142700024 Publication Date 2021-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:176680 Serial 6722
Permanent link to this record
 

 
Author Boschker, H.T.S.; Cook, P.L.M.; Polerecky, L.; Eachambadi, R.T.; Lozano, H.; Hidalgo-Martinez, S.; Khalenkow, D.; Spampinato, V.; Claes, N.; Kundu, P.; Wang, D.; Bals, S.; Sand, K.K.; Cavezza, F.; Hauffman, T.; Bjerg, J.T.; Skirtach, A.G.; Kochan, K.; McKee, M.; Wood, B.; Bedolla, D.; Gianoncelli, A.; Geerlings, N.M.J.; Van Gerven, N.; Remaut, H.; Geelhoed, J.S.; Millan-Solsona, R.; Fumagalli, L.; Nielsen, L.P.; Franquet, A.; Manca, J.V.; Gomila, G.; Meysman, F.J.R.
Title Efficient long-range conduction in cable bacteria through nickel protein wires Type A1 Journal article
Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun
Volume (up) 12 Issue 1 Pages 3996
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000669944900006 Publication Date 2021-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access OpenAccess
Notes The authors thank Marlies Neiemeisland for assistance with Raman microscopy, Michiel Kienhuis for assistance with NanoSIMS analysis, Peter Hildebrandt and Diego Millo for helping with the interpretation of the Raman spectra, IONTOF for the Orbitrap Hybrid- SIMS analysis, and Rene Fabregas for helping with finite-element numerical modeling for SDM. H.T.S.B. and F.J.R.M. were financially supported by the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). Research Foundation Flanders supported F.J.R.M., J.V.M., and R.T.E. through FWO grant G031416N, and F.J.R.M. and J.S.G. through FWO grant G038819N. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from NWO in the Netherlands (grant 023.005.049). The NanoSIMS facility at Utrecht University was financed through a large infrastructure grant by the Netherlands Organization for Scientific Research (NWO, grant no. 175.010.2009.011) and through a Research Infrastructure Fund by the Utrecht University Board. A.G.S. is supported by the Special Research Fund (BOF) of Ghent University (BOF14/IOP/003, BAS094-18, 01IO3618) and FWO (G043219). The ToF-SIMS was funded by FWO Hercules grant (ZW/13/07) to J.V.M. and A.F. H.L., R.M.S., and G.G. were funded by the European Union H2020 Framework Programme (MSCA-ITN-2016) under grant agreement n 721874.EU, the Spanish Agencia Estatal de Investigación and EU FEDER under grant agreements TEC2016-79156-P and TEC2015-72751-EXP, the Generalitat de Catalunya through 2017-SGR1079 grant and CERCA Program. G.G. was recipient of an ICREA Academia Award, and H.L. of a FPI fellowship (BES-2015-074799) from the Agencia Estatal de Investigación/Fondo Social Europeo. L.F. received funding from the European Research Council (grant agreement No. 819417) under the European Union’s Horizon 2020 research and innovation programme. Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:179813 Serial 6803
Permanent link to this record