|   | 
Details
   web
Records
Author Van Laer, K.; Bogaerts, A.
Title Fluid modelling of a packed bed dielectric barrier discharge plasma reactor Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 015002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800009 Publication Date 2015-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 50 Open Access
Notes The authors gratefully thank St Kolev for the many interesting discussions and the useful advise in setting up the models. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. Approved Most recent IF: 3.302
Call Number c:irua:129802 Serial 3982
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A.
Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 015023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370974800030 Publication Date 2016-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 25 Open Access
Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302
Call Number c:irua:130790 Serial 4006
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Bogaerts, A.; Reniers, F.
Title The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2 Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 025013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this experimental study, a flowing dielectric barrier discharge operating at atmospheric pressure is used for the splitting of CO2 into O2 and CO. The influence of the applied frequency and plasma power on the microdischarge properties is investigated to understand their role on the CO2 conversion. Electrical measurements are carried out to explain the conversion trends and to characterize the microdischarges through their number, their lifetime,

their intensity and the induced electrical charge. Their influence on the gas and electrode temperatures is also evidenced through optical emission spectroscopy and infrared imaging. It is shown that, in our configuration, the conversion depends mostly on the charge delivered in the plasma and not on the effective plasma voltage when the applied power is modified. Similarly, at constant total current, a better conversion is observed at low frequencies, where a less filamentary discharge regime with a higher effective plasma voltage than that at a higher

frequency is obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372337900015 Publication Date 2016-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 40 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. N Britun is a postdoctoral researcher of the F.R.S.-FNRS, Belgium. Approved Most recent IF: 3.302
Call Number c:irua:131904 Serial 4021
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Bogaerts, A.
Title A 3D model of a reverse vortex flow gliding arc reactor Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 035014
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this computational study, a gliding arc plasma reactor with a reverse-vortex flow stabilization is modelled for the first time by a fluid plasma description. The plasma reactor operates with argon gas at atmospheric pressure. The gas flow is simulated using the k-ε Reynolds-averaged Navier–Stokes turbulent model. A quasi-neutral fluid plasma model is used for computing the plasma properties. The plasma arc movement in the reactor is observed, and the results for the gas flow, electrical characteristics, plasma density, electron temperature, and gas temperature are analyzed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000376557400022 Publication Date 2016-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 20 Open Access
Notes This research was carried out in the framework of the network on Physical Chemistry of Plasma–Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO), and it was also funded by the Fund for Scientific Research Flanders (FWO). Grant number: 11U5316N. Approved Most recent IF: 3.302
Call Number c:irua:132888 c:irua:132888 Serial 4063
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F.
Title How do the barrier thickness and dielectric material influence the filamentary mode and CO2conversion in a flowing DBD? Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 045016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at

atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the

electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380380200030 Publication Date 2016-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 24 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302
Call Number c:irua:134396 Serial 4100
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title Modeling of plasma-based CO2conversion: lumping of the vibrational levels Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 045022
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although CO2 conversion by plasma technology is gaining increasing interest, the

underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380380200036 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 33 Open Access
Notes This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606889 and it was also carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7) supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number c:irua:134397 Serial 4101
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A.
Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403945500005 Publication Date 2016-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 17 Open Access
Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302
Call Number c:irua:134841 Serial 4107
Permanent link to this record
 

 
Author Bogaerts, A.; Wang, W.; Berthelot, A.; Guerra, V.
Title Modeling plasma-based CO2conversion: crucial role of the dissociation cross section Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 055016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based CO2 conversion is gaining increasing interest worldwide. A large research effort is devoted to improving the energy efficiency. For this purpose, it is very important to understand the underlying mechanisms of the CO2 conversion. The latter can be obtained by computer modeling, describing in detail the behavior of the various plasma species and all relevant chemical processes. However, the accuracy of the modeling results critically depends on the accuracy of the assumed input data, like cross sections. This is especially true for the cross section of electron impact dissociation, as the latter process is believed

to proceed through electron impact excitation, but it is not clear from the literature which excitation channels effectively lead to dissociation. Therefore, the present paper discusses the effect of different electron impact dissociation cross sections reported in the literature on the calculated CO2 conversion, for a dielectric barrier discharge (DBD) and a microwave (MW) plasma. Comparison is made to experimental data for the DBD case, to elucidate which cross section might be the most realistic. This comparison reveals that the cross sections proposed

by Itikawa and by Polak and Slovetsky both seem to underestimate the CO2 conversion. The cross sections recommended by Phelps with thresholds of 7 eV and 10.5 eV yield a CO2 conversion only slightly lower than the experimental data, but the sum of both cross sections overestimates the values, indicating that these cross sections represent dissociation, but most probably also include other (pure excitation) channels. Our calculations indicate that the choice of the electron impact dissociation cross section is crucial for the DBD, where this process is the dominant mechanism for CO2 conversion. In the MW plasma, it is only significant at pressures up to 100 mbar, while it is of minor importance for higher pressures, when dissociation proceeds mainly through collisions of CO2 with heavy particles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384030600001 Publication Date 2016-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 57 Open Access
Notes The authors would like to thank R Snoeckx and S Heijkers for the interesting discussions. This research was supported by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska-Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the FWO project (grant G.0383.16N), and the Network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7), supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. VG was partially supported by the Portuguese FCT— Fundação para a Ci Approved Most recent IF: 3.302
Call Number c:irua:135070 Serial 4111
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A.
Title Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 055025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385494000006 Publication Date 2016-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 3 Open Access
Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281
Permanent link to this record
 

 
Author Van Aelst, J.; Verboekend, D.; Philippaerts, A.; Nuttens, N.; Kurttepeli, M.; Gobechiya, E.; Haouas, M.; Sree, S.P.; Denayer, J.F.M.; Martens, J.A.; Kirschhock, C.E.A.; Taulelle, F.; Bals, S.; Baron, G.V.; Jacobs, P.A.; Sels, B.F.
Title Catalyst design by NH4OH treatment of USY zeolite Type A1 Journal article
Year 2015 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume (up) 25 Issue 25 Pages 7130-7144
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hierarchical zeolites are a class of superior catalysts which couples the intrinsic zeolitic properties to enhanced accessibility and intracrystalline mass transport to and from the active sites. The design of hierarchical USY (Ultra-Stable Y) catalysts is achieved using a sustainable postsynthetic room temperature treatment with mildly alkaline NH4OH ( 0.02(M)) solutions. Starting from a commercial dealuminated USY zeolite (Si/Al = 47), a hierarchical material is obtained by selective and tuneable creation of interconnected and accessible small mesopores (2- 6 nm). In addition, the treatment immediately yields the NH4+ form without the need for additional ion exchange. After NH4OH modification, the crystal morphology is retained, whereas the microporosity and relative crystallinity are decreased. The gradual formation of dense amorphous phases throughout the crystal without significant framework atom leaching rationalizes the very high material yields (>90%). The superior catalytic performance of the developed hierarchical zeolites is demonstrated in the acid-catalyzed isomerization of alpha-pinene and the metal-catalyzed conjugation of safflower oil. Significant improvements in activity and selectivity are attained, as well as a lowered susceptibility to deactivation. The catalytic performance is intimately related to the introduced mesopores, hence enhanced mass transport capacity, and the retained intrinsic zeolitic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000366503700003 Publication Date 2015-10-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 64 Open Access OpenAccess
Notes ; The authors thank Dr. M. Thommes and Dr. K. Cychosz for numerous and helpful discussions on the correct evaluation of the Ar isotherms. I. Cuppens is acknowledged for ICP-AES analyses. Research was funded through a PhD grant to J.V.A. of the Agency for Innovation by Science and Technology in Flanders (IWT). D.V. and A.P. acknowledge F.W.O.-Vlaanderen (Research Foundation Flanders) for a postdoctoral fellowship. N.N. thanks the KU Leuven for financial support (FLOF). E.G., C.K., and J.M. acknowledge the long-term structural funding by the Flemish Government (Methusalem). S.B. acknowledges the European Research Council for funding under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 335078-COLOURATOMS. The authors are grateful for financial support by the Belgian government through Interuniversity Attraction Poles (IAP-PAI). They also thank Oleon NV for supplying safflower oil. ; ecas_Sara Approved Most recent IF: 12.124; 2015 IF: 11.805
Call Number UA @ lucian @ c:irua:130214 Serial 4147
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A.
Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 25 Pages 065012
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386605100002 Publication Date 2016-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 3 Open Access
Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286
Permanent link to this record
 

 
Author Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G.
Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 25 Issue 5 Pages 053002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384715400001 Publication Date 2016-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 460 Open Access
Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Towards Reproducible and Transparent Science of (Big) Electron Microscopy Data Using Version Control Type P1 Proceeding
Year 2019 Publication Microscopy and microanalysis T2 – Microscopy & Microanalysis 2019, 4-8 August, 2019, Portland, Oregon Abbreviated Journal Microsc Microanal
Volume (up) 25 Issue S2 Pages 232-233
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:164058 Serial 5377
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Open Source Development Tools for Robust and Reproducible Electron Microscopy Data Analysis Type P3
Year 2019 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume (up) 25 Issue S2 Pages 138-139
Keywords P3; Electron Microscopy for Materials Science (EMAT) ;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @ Serial 5378
Permanent link to this record
 

 
Author Kardel, F.; Wuyts, K.; De Wael, K.; Samson, R.
Title Biomonitoring of atmospheric particulate pollution via chemical composition and magnetic properties of roadside tree leaves Type A1 Journal article
Year 2018 Publication Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume (up) 25 Issue 26 Pages 25994-26004
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Particulate matter (PM) is a main atmospheric pollution which threats human health and well-being. In this research, we chemically and magnetically analysed roadside tree leaves, collected from three tree species in two main roads (from two different cities) and a reference area, for 28 elements and the saturation isothermal remanent magnetisation. Comparison of unwashed and washed leaves revealed that deposited particles on the leaf surface contain various elements including Al, Ca, Fe, Mg, Mn, Na, Si, Ti, Ba, Co, Cr, Cu, Ni, Rb, V, Zn and Zr. Moreover, there was no significant difference between washed/unwashed leaves in Cl, K, P, S, As, Cd, Cs, Pb, Sn and Sr concentrations, which indicates tree leaves may not be a suitable biomonitor for these elements. Our results showed that site and tree species are important factors which affect atmospheric elements deposition. Among the three considered tree species, Chamaecyparis lawsoniana showed the highest potential for atmospheric particle accumulation. The PCA results revealed that Al, Fe, Ti, Co, Cr, Cu, Ni, Rb, Si, V, Zn and Zr indicated emissions from road traffic activities and soil dust; Ca, Mg and Na from sea salts and Mn and Sb from industrial activity. The biplot results showed that the site effect was much stronger than the species effect for all elements and saturation isothermal remanent magnetisation (SIRM) values. Moreover, elements from traffic, industrial activity and soil dust are significantly correlated with leaf SIRM indicating that leaf SIRM can be a suitable bioindicator of exposure to traffic-derived particles and soil dust, and not from sea salts. It is concluded that chemical composition and SIRM of urban tree leaves can serve as a good indicator of atmospheric PM pollution in Iran and anywhere else where the studied trees grow.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000443329100034 Publication Date 2018-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.741 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 2.741
Call Number UA @ admin @ c:irua:153669 Serial 5489
Permanent link to this record
 

 
Author Rather, J.A.; Debnath, P.; De Wael, K.
Title Fullerene-\beta-cyclodextrin conjugate based electrochemical sensing device for ultrasensitive detection of p-nitrophenol Type A1 Journal article
Year 2013 Publication Electroanalysis Abbreviated Journal Electroanal
Volume (up) 25 Issue 9 Pages 2145-2150
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The article describes the use of a fullerene (C60)-β-cyclodextrin conjugate, synthesized via 1,3-dipolar cycloaddition, for the ultrasensitive electrochemical detection of p-nitrophenol. This conjugate was successfully immobilized on the surface of a glassy carbon electrode and the developed device showed high activity towards p-nitrophenol due to the synergetic effect of C60, the latter becoming highly conductive upon reduction. The determination of p-nitrophenol was performed by using square wave voltammetry over a concentration range from 2.8×10−9 mol L−1 to 4.2×10−7 mol L−1 and the detection limit was calculated to be 1.2×10−9 mol L−1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000327590600017 Publication Date 2013-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.851 Times cited 13 Open Access
Notes ; Jahangir Ahmad Rather is highly thankful for mobility grant provided by the Belspo co-funded by Marie Curie Actions. ; Approved Most recent IF: 2.851; 2013 IF: 2.502
Call Number UA @ admin @ c:irua:110033 Serial 5629
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S.
Title Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems : a feasibility study Type A1 Journal article
Year 2018 Publication Environmental Science and Pollution Research Abbreviated Journal Environ Sci Pollut R
Volume (up) 25 Issue 18 Pages 18015-18026
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436879200071 Publication Date 2018-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.741 Times cited 3 Open Access
Notes ; J.V.W. acknowledges the Agentschap Innoveren and Ondernemen for a PhD fellowship. ; Approved Most recent IF: 2.741
Call Number UA @ admin @ c:irua:150946 Serial 5967
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; O'Leary, C.M.; Yang, H.; Nellist, P.D.
Title Efficient Phase Contrast Imaging via Electron Ptychography, a Tutorial Type A1 Journal article
Year 2019 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume (up) 25 Issue S2 Pages 2684-2685
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number EMAT @ emat @c:irua:172444 Serial 6424
Permanent link to this record
 

 
Author Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A.
Title Avoiding solid carbon deposition in plasma-based dry reforming of methane Type A1 Journal Article
Year 2023 Publication Green Chemistry Abbreviated Journal Green Chem.
Volume (up) 25 Issue 24 Pages 10485-10497
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110100100001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.8 Times cited Open Access
Notes Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; Approved Most recent IF: 9.8; 2023 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:202138 Serial 8978
Permanent link to this record
 

 
Author Posokhova, S.M.M.; Morozov, V.A.; Deyneko, D.V.V.; Redkin, B.S.S.; Spassky, D.A.A.; Nagirnyi, V.; Belik, A.A.A.; Hadermann, J.; Pavlova, E.T.T.; Lazoryak, B.I.I.
Title K₅Eu(MoO₄)₄ red phosphor for solid state lighting applications, prepared by different techniques Type A1 Journal article
Year 2023 Publication CrystEngComm Abbreviated Journal Crystengcomm
Volume (up) 25 Issue 5 Pages 835-847
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of preparation techniques on the structure and luminescent properties of K5Eu(MoO4)(4) (KEMO) was investigated. KEMO phosphors were synthesized by three different techniques: solid state and sol-gel (sg) methods as well as the Czochralski (CZ) crystal growth technique. Laboratory powder X-ray diffraction (PXRD) studies revealed that all KEMO samples had a structure analogous to that of other high temperature alpha-K5R(MoO4)(4) palmierite-type phases (space group (SG) R3m). Contrary to laboratory PXRD data, electron diffraction revealed that the KEMO crystal grown by the CZ technique had a (3 + 1)D incommensurately modulated structure (super space group (SSG) C2/m(0 beta 0)00) with the modulation vector q = 0.689b*. A detailed analysis of electron diffraction patterns has shown formation of three twin domains rotated along the c axis of the R-subcell at 60 degrees with respect to each other. Synchrotron XRD patterns showed additional ultra-wide reflexes in addition to reflections of the R-subcell of the palmierite. However, the insufficient number of reflections, their low intensity and large width in the synchrotron X-ray diffraction patterns made it impossible to refine the structure as incommensurately modulated C2/m(0 beta 0)00. An average structure was refined in the C2/m space group with random distribution of K1 and Eu1 in [M1A(2)O(8)]-layers of the palmierite-type structure. The dependence of luminescent properties on utilized synthesis techniques was studied. The emission spectra of all samples exhibit intense red emission originating from the D-5(0) -> F-7(2) Eu3+ transition. The integrated intensity of the emission from the Eu3+ 5D0 term was found to be the highest in the crystal grown by the CZ technique. The quantum yield measured for KEMO crystals demonstrates a very high value of 66.5%. This fact confirms that KEMO crystals are exceptionally attractive for applications as a near-UV converting red phosphor for LEDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000912021300001 Publication Date 2023-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.1; 2023 IF: 3.474
Call Number UA @ admin @ c:irua:194320 Serial 7317
Permanent link to this record
 

 
Author Rojas, C.M.; Injuk, J.; Van Grieken, R.E.; Maenhaut, W.
Title Atmospheric particulate element concentrations and deposition rates in French Polynesia Type A3 Journal article
Year 2000 Publication Journal de recherche océanographique Abbreviated Journal
Volume (up) 25 Issue 3/4 Pages 74-86
Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0397-5347 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:32610 Serial 7529
Permanent link to this record
 

 
Author Čevik, U.; Damla, N.; Van Grieken, R.; Vefa Akpinar, M.
Title Chemical composition of building materials used in Turkey Type A1 Journal article
Year 2011 Publication Construction and building materials Abbreviated Journal
Volume (up) 25 Issue 4 Pages 1546-1552
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The main goal of this work was to determine the chemical composition of building materials used in Turkey by utilizing energy dispersive X-ray fluorescence (EDXRF) spectrometry. Gas concrete, cement, sand, bricks, roofing tiles, marble, lime and gypsum materials were selected as building materials for this research. The chemical contents and their trace concentrations of the selected samples were determined. The most abundant oxides measured were generally SiO2, Al2O3, CaO, MgO, Fe2O3, K2O and SO3 for all samples. While the main chemical component of gas concrete, cement, sand and marble samples were SiO2 and CaO, brick and roofing tile mainly consisted of SiO2 and Al2O3. CaO and SO3 were major component of lime and gypsum samples, respectively. For U and Th concentrations in the samples, activities of 226Ra and 232Th were measured by utilizing gamma spectrometry. ANOVA and Pearson correlation analyses were performed on the studied data for statistical analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000287379300007 Publication Date 2010-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:86448 Serial 7653
Permanent link to this record
 

 
Author Vanderstappen, M.G.; Van Grieken, R.E.
Title Co-crystallization with 1-(2-pyridylazo)-2-naphthol, and X-ray fluorescence, for trace metal analysis of water Type A1 Journal article
Year 1978 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
Volume (up) 25 Issue 11/12 Pages 653-658
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Adding 20mg of 1-(2-pyridylazo)-2-naphthol (PAN) to a water sample at 70°, and filtering off the precipitate after cooling, gives efficient preconcentration prior to X-ray fluorescence analysis of water. Up to the capacity of about 100 μeq of PAN used, the trace metal recoveries are around 90% or higher for Cr3+, Mn2+, Ni2+, Cu2+, Zn2+, Hg2+ and Eu3+, and above 70% for many other ions. The recovery yields usually do not vary critically with pH in the neutral pH-range, and are practically independent of the sample salinity, sample volume and trace-metal concentration. Enrichment factors as high as 2 × 105 can be achieved. Counting statistics would then allow detection limits of 0.03 ppM. The blank levels in commercial PAN, however, lead to typical detection limits of about 1 ppm. The coefficient of variation is typically in the 510% range at the 10-ppM level. The accuracy and applicability of the procedure are illustrated by comparative analyses on samples of synthetic solutions, river and drinking water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1978GG18200005 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116556 Serial 7675
Permanent link to this record
 

 
Author Vazquez, C.; Martin Palacios, O.; Darchuk, L.; Marco Parra, L.-M.
Title Compositional study of prehistoric pigments (Carriqueo rock shelter, Argentina) by synchrotron radiation X-ray diffraction Type A1 Journal article
Year 2010 Publication Powder diffraction Abbreviated Journal
Volume (up) 25 Issue 3 Pages 264-269
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract In this work synchrotron radiation X-ray diffraction technique was successfully applied for the analysis of pigments found in excavation at Carriqueo rock shelter, Neuquen, Argentina. The pigment samples of orange, red, and brown shades were collected from different levels of this archaeological site and compared with a suspected source of provenance (La Oficina creek). X-ray diffraction patterns of several yellowish, reddish, and red pigments showed the presence of haematite, goethite, kaolinite, and quartz. The majority of Carriqueo collected samples belonged to the same group of the suspected source, having haematite and quartz as main crystalline phases. The results indicate that the raw material from La Oficina is the source of most of the pigments found at Carriqueo. The present work helps us to understand the strategy of supplying raw materials by human groups in the North Patagonia region. (C) 2010 International Centre for Diffraction Data. [DOI: 10.1154/1.3478884]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000282386500009 Publication Date 2010-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-7156 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:95582 Serial 7717
Permanent link to this record
 

 
Author Robberecht, H.; Deelstra, H.; Van Grieken, R.
Title Determination of selenium in blood components by X-ray emission spectrometry Type A1 Journal article
Year 1990 Publication Biological trace element research Abbreviated Journal
Volume (up) 25 Issue 3 Pages 149-185
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Sampling, storing, sample pretreatment, and experimental conditions for selenium (Se) determination in human serum, plasma, and whole blood by X-ray emission spectrometric (XRS) methods are described. Concentration levels in these biological fluids, found by this technique, are discussed and compared to values found by other techniques for the same healthy population group in the same area. XRS analysis of blood from patients with various pathological conditions is reviewed, with special attention to the relation of Se with the concentration level of other essential or nonessential trace elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1990DT88700001 Publication Date 2008-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-4984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116798 Serial 7788
Permanent link to this record
 

 
Author Vagin, M.Y.; Trashin, S.A.; Beloglazkina, E.K.; Majouga, A.G.
Title Direct reagentless detection of the affinity binding of recombinant His-tagged firefly luciferase with a nickel-modified gold electrode Type A1 Journal article
Year 2015 Publication Mendeleev communications Abbreviated Journal
Volume (up) 25 Issue 4 Pages 290-292
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract The direct reagentless electrochemical detection of recombinant firefly luciferase binding with a gold electrode modified with nickel complex of 1,16-di[4-(2,6-dihydroxycarbonyl)pyridyl]-1,16-dioxa-8,9-dithiahexadecane has been carried out.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360416600021 Publication Date 2015-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9436 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:127814 Serial 7811
Permanent link to this record
 

 
Author Robberecht, H.; vanden Berghe, D.; Deelstra, H.; Van Grieken, R.
Title Selenium in the Belgian soils and its uptake by rye-grass Type A1 Journal article
Year 1982 Publication The science of the total environment Abbreviated Journal
Volume (up) 25 Issue 1 Pages 61-69
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Data obtained by atomic absorption spectroscopy showed a selenium concentration of only 0.11 ppm as an average value for the most representative agricultural soils in Belgium. The selenium content in rye-grass grown on different soil types was between 0.05 and 0.11 ppm, and positively correlated with the soil selenium level. Addition of selenium in the form of selenite to the different soil types resulted in an increased selenium uptake by the plant. The ultimate concentration in the plant depended on the structural and chemical composition of the soil. Twelve other elements were determined in the soils by energy-dispersive X-ray fluorescence; none showed a strong correlation with the soil selenium content or with the selenium uptake by ryegrass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1982PJ93000006 Publication Date 2003-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116646 Serial 8510
Permanent link to this record
 

 
Author Shani, J.; Barak, S.; Ram, M.; Levi, D.; Pfeifer, Y.; Schlesinger, T.; Avrach, W.W.; Robberecht, H.; Van Grieken, R.
Title Serum bromine levels in psoriasis Type A1 Journal article
Year 1982 Publication Pharmacology Abbreviated Journal
Volume (up) 25 Issue 6 Pages 297-307
Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Serum bromine levels in psoriatic Danes increased 2- to 3-fold during a 4-week bathing course in the Dead Sea. This increase correlated well with the improvement in their clinical and psychic condition. Serum bromine levels in psoriatic Danes were somewhat lower than those in healthy subjects residing in Denmark, but the difference was not significant. Israelis working in the open air in the Dead Sea area (air bromine 20-fold higher than in Jerusalem) had higher bromine levels than psoriatic or healthy Israelis residing in Jerusalem or healthy Israelis working in air-conditioned rooms in the Dead Sea area (p < 0.05), but those levels were still within the normal range. As our animal experimentation indicates that the skin is a major target organ for 82Br, applied either by bathing or as an aerosol, we conclude that the higher bromine levels noticed in the psoriatic Danes after their 4-week stay at the Dead Sea may be equally due to their contact with the bromine-containing aerosol and the high bromine level of the Dead Sea waters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1982PV13800001 Publication Date 2008-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-7012 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:116653 Serial 8515
Permanent link to this record
 

 
Author Bliokh, K.Y.; Karimi, E.; Padgett, M.J.; Alonso, M.A.; Dennis, M.R.; Dudley, A.; Forbes, A.; Zahedpour, S.; Hancock, S.W.; Milchberg, H.M.; Rotter, S.; Nori, F.; Ozdemir, S.K.; Bender, N.; Cao, H.; Corkum, P.B.; Hernandez-Garcia, C.; Ren, H.; Kivshar, Y.; Silveirinha, M.G.; Engheta, N.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Leykam, D.; Smirnova, D.A.; Rong, K.; Wang, B.; Hasman, E.; Picardi, M.F.; Zayats, A.V.; Rodriguez-Fortuno, F.J.; Yang, C.; Ren, J.; Khanikaev, A.B.; Alu, A.; Brasselet, E.; Shats, M.; Verbeeck, J.; Schattschneider, P.; Sarenac, D.; Cory, D.G.; Pushin, D.A.; Birk, M.; Gorlach, A.; Kaminer, I.; Cardano, F.; Marrucci, L.; Krenn, M.; Marquardt, F.
Title Roadmap on structured waves Type A1 Journal article
Year 2023 Publication Journal of optics Abbreviated Journal
Volume (up) 25 Issue 10 Pages 103001-103079
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological----- structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g. for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061350200001 Publication Date 2023-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.1 Times cited 7 Open Access Not_Open_Access: Available from 30.03.2024
Notes This work is funded by the Royal Society and EPSRC under the Grant Number EP/M01326X/1.M A A acknowledges funding from the Excellence Initiative of Aix Marseille University-A*MIDEX, a French Investissements d'Avenir' programme, and from the Agence Nationale de Recherche (ANR) through project ANR-21-CE24-0014-01.M R D acknowledges support from the EPSRC Centre for Doctoral Training in Topological Design(EP/S02297X/1).S R acknowledges support by the Austrian Science Fund (FWF, Grant P32300 WAVELAND) and by the European Commission (Grant MSCA-RISE 691209 NHQWAVE). FN is supported in part by NTT Research, and S K OE by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Award No. FA9550-21-1-0202.The authors thank their co-workers Yaron Bromberg, Hasan Yilmaz, and collaborators Joerg Bewersdorf and Mengyuan Sun for their contributions to the works presented here. They also acknowledge financial support from the Office of Naval Research (N00014-20-1-2197) and the National Science Foundation (DMR-1905465).H R acknowledges a support from the Australian Research Council DECRA Fellowship DE220101085. Y K acknowledges a support from the Australian Research Council (Grant DP210101292).M G S acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, from the Institution of Engineering and Technology (IET) under the A F Harvey Research Prize 2018, and from Instituto de Telecomunicacoes under project UIDB/50008/2020. N E acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, and from the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant number FA9550-21-1-0312.We acknowledge funding by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. Moreover, financial support from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 899275 (DAALI) is gratefully acknowledged.D L acknowledges a support from the National Research Foundation, Singapore and A*STAR under its CQT Bridging Grant. D A S acknowledges support from the Australian Research Council (FT230100058).The authors gratefully acknowledge financial support from the Israel Science Foundation (ISF), the U.S. Air Force Office of Scientific Research (FA9550-18-1-0208) through their program on Photonic Metamaterials, the Israel Ministry of Science, Technology and Space. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit(MNF & PU), Technion.This work was supported by the European Research Council projects iCOMM (789340) and Starting Grant ERC-2016-STG-714151-PSINFONI.Our work in this area has been funded by the National Science Foundation, the Office of Naval Research, and the Simons Foundation.This work was supported by the Australian Research Council Discovery Project DP190100406.J V acknowledges funding from the eBEAM Project supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101017720 (FET-Proactive EBEAM), FWO Project G042820N Exploring adaptive optics in transmission electron microscopy' and European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities Grant Agreement No. 823717-ESTEEM3. P S acknowledges the support of the Austrian Science Fund under Project Nr. P29687-N36.; The authors would like to thank their many collaborators including Wangchun Chen, Charles W Clark, Lisa DeBeer-Schmitt, Huseyin Ekinci, Melissa Henderson, Michael Huber, Connor Kapahi, Ivar Taminiau, and Kirill Zhernenkov. The authors would also like to acknowledge their funding sources: the Canadian Excellence Research Chairs (CERC) program, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada First Research Excellence Fund (CFREF).E K acknowledges the support of Canada Research Chairs, Ontario's Early Research Award, and NRC-uOttawa Joint Centre for Extreme Quantum Photonics (JCEP) via the High Throughput and Secure Networks Challenge Program at the National Research Council of Canada. Approved Most recent IF: 2.1; 2023 IF: 1.741
Call Number UA @ admin @ c:irua:199327 Serial 8925
Permanent link to this record
 

 
Author Bellizotti Souza, J.C.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A.
Title Spontaneous skyrmion conformal lattice and transverse motion during dc and ac compression Type A1 Journal article
Year 2023 Publication New journal of physics Abbreviated Journal
Volume (up) 25 Issue 5 Pages 053020-15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We use atomistic-based simulations to investigate the behavior of ferromagnetic skyrmions being continuously compressed against a rigid wall under dc and ac drives. The compressed skyrmions can be annihilated close to the wall and form a conformal crystal with both a size and a density gradient, making it distinct from conformal crystals observed previously for superconducting vortices and colloidal particles. For both dc and ac driving, the skyrmions can move transverse to the compression direction due to a combination of density and size gradients. Forces in the compression direction are converted by the Magnus force into transverse motion. Under ac driving, the amount of skyrmion annihilation is reduced and we find a skyrmion Magnus ratchet pump. We also observe shear banding in which skyrmions near the wall move up to twice as fast as skyrmions further from the wall. When we vary the magnitude of the applied drive, we find a critical current above which the skyrmions are completely annihilated during a time scale that depends on the magnitude of the drive. By varying the magnetic parameters, we find that the transverse motion is strongly dependent on the skyrmion size. Smaller skyrmions are more rigid, which interferes with the size gradient and destroys the transverse motion. We also confirm the role of the size gradient by comparing our atomistic simulations with a particle-based model, where we find that the transverse motion is only transient. Our results are relevant for applications where skyrmions encounter repulsive magnetic walls, domain walls, or interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000994003200001 Publication Date 2023-05-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.3; 2023 IF: 3.786
Call Number UA @ admin @ c:irua:197365 Serial 8934
Permanent link to this record