toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Slanina, Z.; Martin, J.M.L.; François, J.P.; Gijbels, R.
  Title On the quasi-random entropy of linear species Type A1 Journal article
  Year 1993 Publication Theochem: applications of theoretical chemistry to organic, inorganic and biological problems Abbreviated Journal
  Volume (up) 99 Issue Pages 83-87
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1993KU09200010 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0166-1280 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:6147 Serial 2448
Permanent link to this record
 

 
Author Kalkert, C.; Krisponeit, J.-O.; Esseling, M.; Lebedev, O.I.; Moshnyaga, V.; Damaschke, B.; Van Tendeloo, G.; Samwer, K.
  Title Resistive switching at manganite/manganite interfaces Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 99 Issue 13 Pages 132512-132512,3
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We report bipolar resistive switching between the interfaces of manganite nanocolumns. La0.7Sr0.3MnO3 films were prepared on Al2O3 substrates, where the films grow in nanocolumns from the substrate to the surface. Conductive atomic force microscopy directly detects that the resistive switching is located at the boundaries of the grains. Furthermore, mesoscopic transport measurements reveal a tunnel magnetoresistance. In combination with the resistive switching, this leads to a total of four different resistive states.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000295618000052 Publication Date 2011-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 10 Open Access
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844
  Call Number UA @ lucian @ c:irua:91884 Serial 2881
Permanent link to this record
 

 
Author Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T.
  Title Strong-coupling limit for one-dimensional polarons in a finite box Type A1 Journal article
  Year 1996 Publication Zeitschrift für Physik: B: condensed matter and quanta Abbreviated Journal
  Volume (up) 99 Issue Pages 345-351
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos A1996TW44800007 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0722-3277;1431-584X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #
  Call Number UA @ lucian @ c:irua:15035 Serial 3180
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K.
  Title Tuning of anisotropy in two-electron quantum dots by spin-orbit interactions Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 99 Issue 3 Pages 032102,1-032102,3
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the influence of the spin-orbit interactions (SOIs) on the electron distribution and the optical absorption of a two-electron quantum dot. It is shown that the interplay between the SOIs makes the two-electron quantum dot behave like two laterally coupled quantum dots and the anisotropic distribution can be rotated from [110] to [11®0] by reversing the direction of the perpendicular electric field and detect it through the optical absorption spectrum.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000293679000026 Publication Date 2011-07-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 8 Open Access
  Notes ; This work was supported by NSFC Grants No. 16760525405, 10874175 and 11004017 and the Belgian Science Policy 168(IAP). ; Approved Most recent IF: 3.411; 2011 IF: 3.844
  Call Number UA @ lucian @ c:irua:92473 Serial 3749
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M.
  Title Unraveling the deposition mechanism in a-C:H thin-film growth: a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume (up) 99 Issue 1 Pages 014902,1-8
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000234607200071 Publication Date 2006-01-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 25 Open Access
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316
  Call Number UA @ lucian @ c:irua:55831 Serial 3815
Permanent link to this record
 

 
Author Bercx, M.; Partoens, B.; Lamoen, D.
  Title Quantitative modeling of secondary electron emission from slow-ion bombardment on semiconductors Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 8 Pages 085413
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract When slow ions incident on a surface are neutralized, the excess potential energy is passed on to an electron inside the surface, leading to emission of secondary electrons. The microscopic description of this process, as

well as the calculation of the secondary electron yield, is a challenging problem due to its complexity as well

as its sensitivity to surface properties. One of the first quantitative descriptions was articulated in the 1950s by

Hagstrum, who based his calculation on a parametrization of the density of states of the material. In this paper, we

present a model for calculating the secondary electron yield, derived from Hagstrum’s initial approach. We use

first-principles density functional theory calculations to acquire the necessary input and introduce the concept of

electron cascades to Hagstrum’s model in order to improve the calculated spectra, as well as remove its reliance

on fitting parameters. We apply our model to He+ and Ne+ ions incident on Ge(111) and Si(111) and obtain

yield spectra that match closely to the experimental results of Hagstrum.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458367800010 Publication Date 2019-02-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access OpenAccess
  Notes We would like to thank Prof. D. Depla for the useful discussions on the secondary electron yield. Furthermore, we acknowledge financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWOVlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 3.836
  Call Number EMAT @ emat @UA @ admin @ c:irua:157174 Serial 5154
Permanent link to this record
 

 
Author Torre, I.; de Castro, L.V.; Van Duppen, B.; Barcons Ruiz, D.; Peeters, F.M.; Koppens, F.H.L.; Polini, M.
  Title Acoustic plasmons at the crossover between the collisionless and hydrodynamic regimes in two-dimensional electron liquids Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 14 Pages 144307
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Hydrodynamic flow in two-dimensional electron systems has so far been probed only by dc transport and scanning gate microscopy measurements. In this work we discuss theoretically signatures of the hydrodynamic regime in near-field optical microscopy. We analyze the dispersion of acoustic plasmon modes in two-dimensional electron liquids using a nonlocal conductivity that takes into account the effects of (momentumconserving) electron-electron collisions, (momentum-relaxing) electron-phonon and electron-impurity collisions, and many-body interactions beyond the celebrated random phase approximation. We derive the dispersion and, most importantly, the damping of acoustic plasmon modes and their coupling to a near-field probe, identifying key experimental signatures of the crossover between collisionless and hydrodynamic regimes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000465160000003 Publication Date 2019-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 14 Open Access
  Notes ; This work has been sponsored by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 785219 “Graphene Core2” and via the European Research Council (ERC) Grant Agreement No. 786285. B.V.D. is supported by a post-doctoral fellowship of the Flemish Science Foundation (FWO-Vl). F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grant Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. F.M.P. and L.V.d.C. were supported by the Methusalem Program of the Flemish Government. We thank Niels Hesp and Hanan Hertzig Sheinfux for useful discussions. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:159333 Serial 5193
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M.
  Title Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 11 Pages 115421
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000461958900006 Publication Date 2019-03-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 3 Open Access
  Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:158538 Serial 5199
Permanent link to this record
 

 
Author Dharma-Wardana, M.W.C.; Neilson, D.; Peeters, F.M.
  Title Correlation functions in electron-electron and electron-hole double quantum wells : temperature, density, and barrier-width dependence Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 3 Pages 035303
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The classical-map hypernetted-chain (CHNC) scheme, developed for treating fermion fluids at strong coupling and at finite temperatures, is applied to electron-electron and electron-hole double quantum wells. The pair-distribution functions and the local field factors needed in linear-response theory are determined for a range of temperatures, carrier densities, and barrier widths typical for experimental double-quantum-well systems in GaAs-GaAlAs. For electron-hole double quantum wells, a large enhancement in the pair-distribution functions is found for small carrier separations. The CHNC equations for electron-hole systems no longer hold at low densities where bound-state formation occurs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000455163800004 Publication Date 2019-01-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes ; This work was partially supported by the Flemish Science Foundation (FWO-Vl). M.W.C.D.-W. acknowledges with thanks the hospitality and stimulating atmosphere of the Condensed Matter Theory group at the University of Antwerp. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:156734 Serial 5201
Permanent link to this record
 

 
Author Menezes, R.M.; Mulkers, J.; de Souza Silva, C.C.; Milošević, M.V.
  Title Deflection of ferromagnetic and antiferromagnetic skyrmions at heterochiral interfaces Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 10 Pages 104409
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Devising magnetic nanostructures with spatially heterogeneous Dzyaloshinskii-Moriya interaction (DMI) is a promising pathway toward advanced confinement and control of magnetic skyrmions in potential devices. Here we discuss theoretically how a skyrmion interacts with a heterochiral interface using micromagnetic simulations and analytic arguments. We show that a heterochiral interface deflects the trajectory of ferromagnetic (FM) skyrmions, and that the extent of such deflection is tuned by the applied spin-polarized current and the difference in DMI across the interface. Further, we show that this deflection is characteristic of the FM skyrmion, and it is completely absent in the antiferromagnetic (AFM) case. In turn, we reveal that the AFM skyrmion achieves much higher velocities than its FM counterpart, yet experiences far stronger confinement in nanoengineered heterochiral tracks, which reinforces AFM skyrmions as a favorable choice for skyrmion-based devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000460720600005 Publication Date 2019-03-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 19 Open Access
  Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen) and Brazilian Agencies FACEPE under Grant No. APQ-0198-1.05/14, CAPES and CNPq. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:158557 Serial 5203
Permanent link to this record
 

 
Author Neek-Amal, M.; Rashidi, R.; Nair, R.R.; Neilson, D.; Peeters, F.M.
  Title Electric-field-induced emergent electrical connectivity in graphene oxide Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 11 Pages 115425
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Understanding the appearance of local electrical connectivity in liquid filled layered graphene oxide subjected to an external electric field is important to design electrically controlled smart permeable devices and also to gain insight into the physics behind electrical effects on confined water permeation. Motivated by recent experiments [K. G. Zhou et al. Nature (London) 559, 236 (2018)], we introduce a new model with random percolating paths for electrical connectivity in micron thick water filled layered graphene oxide, which mimics parallel resistors connected across the top and bottom electrodes. We find that a strong nonuniform radial electric field of the order similar to 10-50 mV/nm can be induced between layers depending on the current flow through the formed conducting paths. The maxima of the induced fields are not necessarily close to the electrodes and may be localized in the middle region of the layered material. The emergence of electrical connectivity and the associated electrical effects have a strong influence on the surrounding fluid in terms of ionization and wetting which subsequently determines the permeation properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000461960100001 Publication Date 2019-03-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 3 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:158534 Serial 5206
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J.
  Title Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 6 Pages 064512
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000459322400005 Publication Date 2019-02-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 11 Open Access
  Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:158621 Serial 5212
Permanent link to this record
 

 
Author Wang, W.; Van Duppen, B.; Peeters, F.M.
  Title Intense-terahertz-laser-modulated magnetopolaron effect on shallow-donor states in the presence of magnetic field in the Voigt configuration Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 1 Pages 014114
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The laser-modulated magnetopolaron effect on shallow donors in semiconductors is investigated in the presence of a magnetic field in the Voigt configuration. A nonperturbative approach is used to describe the electron-photon interaction by including the radiation field in an exact way via a laser-dressed interaction potential. Through a variational approach we evaluate the donor binding energy. We find that the interaction strength of the laser-dressed Coulomb potential in the z direction cannot only be enhanced but also weakened by the radiation field, while that in the x-y plane is only weakened. In this way, the binding energy of the states with odd z parity, like 2p(z) can be decreased or increased with respect to its static binding energy by the radiation field, while that of the other states can be only decreased. Furthermore, all binding energies become insensitive to the magnetic field if the radiation field is strong. The magnetopolaron effect on these energies is studied within second-order time-dependent perturbation theory. In the nonresonant region, a laser-modulated magnetopolaron correction, including the effect of single-photon processes, is observed. In the resonant region, a laser-modulated magnetopolaron effect, accompanied by the emission and absorption of a single photon, is found. Moreover, the 1s -> 2p(+) transition, accompanied by the emission of a single photon, is tuned by the radiation field into resonance with the longitudinal-optical phonon branch. This is electrically analogous to the magnetopolaron effect, and therefore we name it the dynamical magnetopolaron effect. Finally, by changing the frequency of the radiation field, these interesting effects can be tuned to be far away from the reststrahlen band and, therefore, can be detected experimentally. This in turn provides a direct measure of the electron-phonon interaction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000457057500001 Publication Date 2019-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 7 Open Access
  Notes ; This work was supported by National Natural Science Foundation of China (Grants No. 11404214, No. 11455015, and No. 61504016) and the China Scholarship Council (CSC), and Science and Technology Research Foundation of Jiangxi Provincial Education Department (Grants No. GJJ161062 and No. GJJ180868). B.V.D. was supported by the Research Foundation – Flanders (FWO-Vl) through a postdoctoral fellowship. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:157555 Serial 5218
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
  Title Multicomponent screening and superfluidity in gapped electron-hole double bilayer graphene with realistic bands Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 14 Pages 144517
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Superfluidity has recently been reported in double electron-hole bilayer graphene. The multiband nature of the bilayers is important because of the very small band gaps between conduction and valence bands. The long-range nature of the superfluid pairing interaction means that screening must be fully taken into account. We have carried out a systematic mean-field investigation that includes (i) contributions to screening from both intraband and interband excitations, (ii) the low-energy band structure of bilayer graphene with its small band gap and flattened Mexican-hat-like low-energy bands, (iii) the large density of states at the bottom of the bands, (iv) electron-hole pairing in the multibands, and (v) electron-hole pair transfers between the conduction and valence band condensates. We find that the superfluidity strongly modifies the intraband contributions to the screening, but that the interband contributions are unaffected. Unexpectedly, a net effect of the screening is to suppress Josephson-like pair transfers and to confine the superfluid pairing entirely to the conduction-band condensate even for very small band gaps, making the system behave similarly to a one-band superfluid.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000465160000004 Publication Date 2019-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 15 Open Access
  Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem Foundation. We thank Mohammad Zarenia and Alfredo VargasParedes for useful discussions. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:159332 Serial 5221
Permanent link to this record
 

 
Author Scuracchio, P.; Michel, K.H.; Peeters, F.M.
  Title Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 14 Pages 144303
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Starting from our previous work in which we obtained a system of coupled integrodifferential equations for acoustic sound waves and phonon density fluctuations in two-dimensional (2D) crystals, we derive here the corresponding hydrodynamic equations, and we study their consequences as a function of temperature and frequency. These phenomena encompass propagation and damping of acoustic sound waves, diffusive heat conduction, second sound, and Poiseuille heat flow, all of which are characterized by specific transport coefficients. We calculate these coefficients by means of correlation functions without using the concept of relaxation time. Numerical calculations are performed as well in order to show the temperature dependence of the transport coefficients and of the thermal conductivity. As a consequence of thermal tension, mechanical and thermal phenomena are coupled. We calculate the dynamic susceptibilities for displacement and temperature fluctuations and study their resonances. Due to the thermomechanical coupling, the thermal resonances such as the Landau-Placzek peak and the second-sound doublet appear in the displacement susceptibility, and conversely the acoustic sound wave doublet appears in the temperature susceptibility, Our analytical results not only apply to graphene, but they are also valid for arbitrary 2D crystals with hexagonal symmetry, such as 2D hexagonal boron nitride, 2H-transition-metal dichalcogenides, and oxides.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000464717300006 Publication Date 2019-04-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 16 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:159346 Serial 5225
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Ozen, S.; Iyikanat, F.; Peeters, F.M.; Sahin, H.
  Title Raman fingerprint of stacking order in HfS2-Ca(OH)(2) heterobilayer Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 20 Pages 205405
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using density functional theory-based first-principles calculations, we investigate the stacking order dependence of the electronic and vibrational properties of HfS2-Ca(OH)(2) heterobilayer structures. It is shown that while the different stacking types exhibit similar electronic and optical properties, they are distinguishable from each other in terms of their vibrational properties. Our findings on the vibrational properties are the following: (i) from the interlayer shear (SM) and layer breathing (LBM) modes we are able to deduce the AB' stacking order, (ii) in addition, the AB' stacking type can also be identified via the phonon softening of E-g(I) and A(g)(III) modes which harden in the other two stacking types, and (iii) importantly, the ultrahigh frequency regime possesses distinctive properties from which we can distinguish between all stacking types. Moreover, the differences in optical and vibrational properties of various stacking types are driven by two physical effects, induced biaxial strain on the layers and the layer-layer interaction. Our results reveal that with both the phonon frequencies and corresponding activities, the Raman spectrum possesses distinctive properties for monitoring the stacking type in novel vertical heterostructures constructed by alkaline-earth-metal hydroxides.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000467387800010 Publication Date 2019-05-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 27 Open Access
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the Project No. 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:160334 Serial 5226
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.
  Title Spectrum of exciton states in monolayer transition metal dichalcogenides : angular momentum and Landau levels Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 11 Pages 115439
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract A four-band exciton Hamiltonian is constructed starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs). The angular part of the exciton wave function can be separated from the radial part, in the case of zero center of mass momentum excitons, by exploiting the eigenstates of the total exciton angular momentum operator with which the Hamiltonian commutes. We explain why this approach fails for excitons with finite center of mass momentum or in the presence of a perpendicular magnetic field and present an approximation to resolve this issue. We calculate the (binding) energy and average interparticle distance of different excited exciton states in different TMDs and compare these with results available in the literature. Remarkably, we find that the intervalley exciton ground state in the -/+ K valley has angular momentum j = +/- 1, which is due to the pseudospin of the separate particles. The exciton mass and the exciton Landau levels are calculated and we find that the degeneracy of exciton states with opposite relative angular momentum is altered by a magnetic field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000462896400004 Publication Date 2019-03-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 10 Open Access
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:159406 Serial 5230
Permanent link to this record
 

 
Author Van Pottelberge, R.; Peeters, F.M.
  Title Tunable circular dipolelike system in graphene : mixed electron-hole states Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 12 Pages 125426
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Coupled electron-hole states are realized in a system consisting of a combination of an electrostatic potential barrier and ring-shaped potential well, which resembles a circular dipole. A perpendicular magnetic field induces confined states inside the Landau gaps which are mainly located at the barrier or ring. Hybridizations between the barrier and ring states are seen as anticrossings in the energy spectrum. As a consequence, the energy levels show an oscillating dependence on the electrostatic potential strength in combination with an oscillating migration of the wave functions between the barrier and ring. At the anticrossing points the quantum state consists of a mixture of electron and hole. The present system mimics closely the behavior of a relativistic dipole on gapped graphene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000462900200005 Publication Date 2019-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 4 Open Access
  Notes ; We thank M. Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for RVP. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:159409 Serial 5237
Permanent link to this record
 

 
Author Das, S.; Rata, A.D.; Maznichenko, I., V; Agrestini, I.S.; Pippel, E.; Gauquelin, N.; Verbeeck, J.; Chen, K.; Valvidares, S.M.; Vasili, H.B.; Herrero-Martin, J.; Pellegrin, E.; Nenkov, K.; Herklotz, A.; Ernst, A.; Mertig, I.; Hu, Z.; Doerr, K.
  Title Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3-SrRuO3interfaces Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 2 Pages 024416
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Interfaces of ferroic oxides can show complex magnetic textures which have strong impact on spintronics devices. This has been demonstrated recently for interfaces with insulating antiferromagnets such as BiFeO3. Here, noncollinear spin textures which can be switched in very low magnetic field are reported for conducting ferromagnetic bilayers of La0.7Sr0.3MnO3-SrRuO3 (LSMO-SRO). The magnetic order and switching are fundamentally different for bilayers coherently grown in reversed stacking sequence. The SRO top layer forms a persistent exchange spring which is antiferromagnetically coupled to LSMO and drives switching in low fields of a few milliteslas. Density functional theory reveals the crucial impact of the interface termination on the strength of Mn-Ru exchange coupling across the interface. The observation of an exchange spring agrees with ultrastrong coupling for the MnO2/SrO termination. Our results demonstrate low-field switching of noncollinear spin textures at an interface between conducting oxides, opening a pathway for manipulating and utilizing electron transport phenomena in controlled spin textures at oxide interfaces.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000455821400005 Publication Date 2019-01-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 19 Open Access OpenAccess
  Notes ; The research in Halle was supported by Deutsche Forschungsgemeinschaft (DFG), SFB 762 Functional Oxide Interfaces (Projects No. A9 and No. B1). K.C. benefited from support of the DFG (Project 600575). Discussions with M. Trassin, M. Ziese, H. M. Christen, E.-J. Guo, F. Grcondciel, M. Bibes, and H. N. Lee are gratefully acknowledged. N. G. and J. V. acknowledge funding under the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:156717 Serial 5255
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M.
  Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume (up) 99 Issue 23 Pages 235303
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000471983500006 Publication Date 2019-06-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 3 Open Access
  Notes ; ; Approved Most recent IF: 3.836
  Call Number UA @ admin @ c:irua:161329 Serial 5425
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Deutsch, F.; Godoi, R.H.M.; Van Grieken, R.; De Wael, K.
  Title Urban air pollutants and their micro effects on medieval stained glass windows Type A1 Journal article
  Year 2011 Publication Microchemical journal Abbreviated Journal Microchem J
  Volume (up) 99 Issue 2 Pages 508-513
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Levels of urban gaseous and particulate pollutants were investigated in the Cathedral of Cologne, Germany in the framework of the EU-project VIDRIO. The purpose of this study was to evaluate the influence of a protective double glazing system on the preservation of ancient stained glass windows by sampling at protected and unprotected windows (indoors, in the interspace and outdoor of the Cathedral). The interspace between the ancient stained glass window and the protective glazing is flushed in the Cathedral by indoor air, hence isolating the historic glass from the outdoor air and exposing it to indoor air on both sides of the glass panels. Concentrations of aggressive gaseous pollutants such as NO2, SO2, O3 and CO2 as well as elemental concentrations of bulk particles and relative abundances of single particles were surveyed at all sampling locations. Elemental concentrations in bulk particulate matter were found to be significantly lower inside the Cathedral in comparison to the outdoor air. This result is advantageous for the stained glass windows. Single particle analysis of the samples from Cologne showed also soil dust and organic particles as well as sulphates and nitrates, from which the latter two compounds are dangerous for the stained glass windows. On the base of the obtained results, it can be concluded that the protective glazing system in the Cathedral of Cologne can be considered as predominantly advantageous from both the gases' point of view (except for NO2-candles burning) and from the particles' point of view.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000295770700053 Publication Date 2011-07-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.034 Times cited 6 Open Access
  Notes ; This research was supported by the European Commission through the “VIDRIO-project”, contract no. EVK4-CT-2001-00045. Financial support is gratefully acknowledged. The authors acknowledge the assistance and advice during the experimental work given by the Dombauhutte team in Cologne, especially by Dr. Ulrike Brinkman and Gunter Hettinger. ; Approved Most recent IF: 3.034; 2011 IF: 3.048
  Call Number UA @ admin @ c:irua:91078 Serial 5889
Permanent link to this record
 

 
Author Danthurebandara, M.; Van Passel, S.; Machiels, L.; Van Acker, K.
  Title Valorization of thermal treatment residues in enhanced landfill mining : environmental and economic evaluation Type A1 Journal article
  Year 2015 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod
  Volume (up) 99 Issue Pages 275-285
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)
  Abstract Enhanced Landfill Mining is an innovative concept which allows the recovery of land, re-introduction of materials to the material cycles and recovery of energy from a considerably large stock of resources held in landfills. Plasma gasification is a viable candidate for combined energy and material valorization in the framework of Enhanced landfill Mining. Besides energy production, plasma gasification also delivers an environmentally stable vitrified residue called plasmastone, which can be converted into building materials. This paper presents an environmental and economic evaluation of the valorization of thermal treatment residues (plasmastone) in the context of Enhanced Landfill Mining. The most common valorization route, that is, the treatment of plasmastone via production of aggregates, is compared with two other possible, higher added value applications, which are inorganic polymer production and blended cement production. The evaluation is based on life cycle assessment and life cycle costing. The study suggests that the environmental and economic performances of the valorization routes depend mainly on the quality and quantity of the final products produced from a certain amount of plasmastone. The materials with the greatest contribution to potential global warming and to the net present value of the valorization scenarios are the process input materials of sodium silicate, sodium hydroxide and cement. The study concludes that the plasmastone valorization via inorganic polymer production yields higher environmental benefits, while the blended cement production provides higher economic profits. Plasmastone valorization via aggregates production does not yield economic or environmental benefits. Given the trade-off between environmental and economic performances, we conclude that the decisions regarding the selection of appropriate valorization routes should be made cautiously to obtain optimal environmental benefits and economic profits. (C) 2015 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000356195000023 Publication Date 2015-03-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.715 Times cited 17 Open Access
  Notes ; The authors would like to acknowledge the funding of this study by the IWT-O&O ELFM project 'Closing the Circle & Enhanced Landfill Mining as part of the Transition to Sustainable Materials Management' and the valuable discussions with Group Machiels (Belgium). ; Approved Most recent IF: 5.715; 2015 IF: 3.844
  Call Number UA @ admin @ c:irua:127533 Serial 6276
Permanent link to this record
 

 
Author Alejo, ellys; Morales, M.C.; Nuñez, V.; Bencs, L.; Van Grieken, R.; van Espen, P.
  Title Monitoring of tropospheric ozone in the ambient air with passive samplers Type A1 Journal article
  Year 2011 Publication Microchemical journal Abbreviated Journal
  Volume (up) 99 Issue 2 Pages 383-387
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Two sampling campaigns in suburban places in the north zone of Santa Clara city, Cuba, have been carried out on a weekly base with the use of Radiello passive diffusion tubes in order to monitor the tropospheric ozone (O3) levels in 2010. The first campaign was scheduled from February to April (cold season) and the second one in August and October (warm season), both of them at two sampling sites, i.e., Farm and School of Art Instructors. After aqueous extraction, the samples were analyzed by UVVIS spectrophotometry. A seasonal trend was observed with the maximum O3 concentrations in the cold season and the minimum levels in the warm season. Samples collected during the cold season showed the highest O3 levels. Higher levels were reached at the Farm site with average values of about 58 ± 12 μg/m3, which exceeded the limit of the Cuban Standard 99:1999. In the warm season, the O3 concentrations were similar for both sites, but lower than those observed in the cold season. The overall, seasonal average value was found to be 24 μg/m3. Despite the higher weekly average temperatures in August, the O3 concentrations during this month showed the lowest values of the whole sampling period, which finding is in agreement with that reported by the Meteorological Institute of Cuba. Mathematical models, based on the Cochrane-Orcutt algorithm, were fitted to the acquired data set to explain the change in the tropospheric ozone concentrations under various meteorological conditions during the two campaigns. The correlation coefficients for both the cold and the warm seasons demonstrated a strong correlation, i.e., 0.779 and 0.951, respectively. The high correlation of wind speed in the model from the first sampling campaign explains the sharp decrease in O3 concentrations at the SAI sampling site from the sixth week of sampling.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000295770700034 Publication Date 2011-06-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:93294 Serial 8277
Permanent link to this record
 

 
Author Grimaldi, G.; Leo, A.; Nigro, A.; Silhanek, A.V.; Verellen, N.; Moshchalkov, V.V.; Milošević, M.V.; Casaburi, A.; Cristiano, R.; Pace, S.
  Title Controlling flux flow dissipation by changing flux pinning in superconducting films Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 100 Issue 20 Pages 202601-202601,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting dissipative state into the normal state by current biasing. We modify the vortex pinning strength either by ion irradiation, by tuning the measuring temperature or by including artificial pinning centers. We measure critical flux flow voltages for all materials and the same effect is observed: switching to low flux flow dissipations at low fields for an intermediate pinning regime. This mechanism offers a way to additionally promote the stability of the superconducting state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718309]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000304265000051 Publication Date 2012-05-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 33 Open Access
  Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:98946 Serial 504
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
  Title Effect of grain boundary on the buckling of graphene nanoribbons Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 100 Issue 10 Pages 101905-101905,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The buckling of graphene nano-ribbons containing a grain boundary is studied using atomistic simulations where free and supported boundary conditions are invoked. We consider the buckling transition of two kinds of grain boundaries with special symmetry. When graphene contains a large angle grain boundary with theta = 21.8 degrees, the buckling strains are larger than those of perfect graphene when the ribbons with free (supported) boundary condition are subjected to compressive tension parallel (perpendicular) to the grain boundary. This is opposite for the results of theta = 32.2 degrees. The shape of the deformations of the buckled graphene nanoribbons depends on the boundary conditions, the presence of the particular used grain boundaries, and the direction of applied in-plane compressive tension. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692573]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000301655500021 Publication Date 2012-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 18 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:97794 Serial 809
Permanent link to this record
 

 
Author Malakho, A.; Fargin, E.; Lahaye, M.; Lazoryak, B.; Morozov, V.; Van Tendeloo, G.; Rodriguez, V.; Adamietz, F.
  Title Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume (up) 100 Issue 6 Pages 063103,1-5
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Glass ceramic composites were prepared by bulk crystallization of NaNbO3 in sodium niobium borate glasses. A homogeneous bulk crystallization of the NaNbO3 phase takes place during heat treatments that produces visible-near infrared transparent materials with similar to 30 nm NaNbO3 nanocrystallites. Upon thermal poling, a strong Na+ depleted nonlinear optical thin layer is observed at the anode side that should induce a large internal static electric field. In addition, the chi((2)) response of the poled glass ceramic composites increases from 0.2 up to 1.9 pm/V with the rate of crystallization. Two mechanisms may be considered: a pure structural chi((2)) process connected with the occurrence of a spontaneous ferroelectric polarization or an increase of the chi((3)) response of the nanocrystallites that enhances the electric field induced second harmonic generation process. (c) 2006 American Institute of Physics.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000240876600003 Publication Date 2006-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 13 Open Access
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316
  Call Number UA @ lucian @ c:irua:61005 Serial 1063
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Degraeve, R.; Mees, M.; Sankaran, K.; Govoreanu, B.; Jurczak, M.; De Gendt, S.; Pourtois, G.
  Title First-principles simulation of oxygen diffusion in HfOx : role in the resistive switching mechanism Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 100 Issue 13 Pages 133102-133102,4
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Transition metal oxide-based resistor random access memory (RRAM) takes advantage of oxygen-related defects in its principle of operation. Since the change in resistivity of the material is controlled by the oxygen deficiency level, it is of major importance to quantify the kinetics of the oxygen diffusion, key factor for oxide stoichiometry. Ab initio accelerated molecular dynamics techniques are employed to investigate the oxygen diffusivity in amorphous hafnia (HfOx, x = 1.97, 1.0, 0.5). The computed kinetics is in agreement with experimental measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697690]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000302230800060 Publication Date 2012-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 63 Open Access
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:97786 Serial 1214
Permanent link to this record
 

 
Author Chen, Y.Y.; Pourtois, G.; Adelmann, C.; Goux, L.; Govoreanu, B.; Degreave, R.; Jurczak, M.; Kittl, J.A.; Groeseneken, G.; Wouters, D.J.
  Title Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 100 Issue 11 Pages 113513-113513,4
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this letter, CMOS-compatible Ni/HfO2/TiN resistive random access memory stacks demonstrated attractive unipolar switching properties, showing >10(3) endurance and long retention at 150 degrees C. The Ni bottom electrode (BE) improved the switching yield over the NiSiPt BE. To better understand the unipolar forming mechanism, ab initio simulation and time of flight-secondary ion mass spectroscopy were utilized. Compared to the NiSiPt BE, Ni BE gives larger Ni diffusion in the HfO2 and lower formation enthalpy of Ni2+ species during electrical forming. Both the electrical and physical results supported a Ni-injection mechanism for the filament formation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695078]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000302204900091 Publication Date 2012-03-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 29 Open Access
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:98295 Serial 1674
Permanent link to this record
 

 
Author Brück, S.; Paul, M.; Tian, H.; Müller, A.; Kufer, D.; Praetorius, C.; Fauth, K.; Audehm, P.; Goering, E.; Verbeeck, J.; Van Tendeloo, G.; Sing, M.; Claessen, R.;
  Title Magnetic and electronic properties of the interface between half metallic Fe3O4 and semiconducting ZnO Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 100 Issue 8 Pages 081603-081603,4
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We have investigated the magnetic depth profile of an epitaxial Fe3O4 thin film grown directly on a semiconducting ZnO substrate by soft x-ray resonant magnetic reflectometry (XRMR) and electron energy loss spectroscopy (EELS). Consistent chemical profiles at the interface between ZnO and Fe3O4 are found from both methods. Valence selective EELS and XRMR reveal independently that the first monolayer of Fe at the interface between ZnO and Fe3O4 contains only Fe3+ ions. Besides this narrow 2.5 Å interface layer, Fe3O4 shows magnetic bulk properties throughout the whole film making highly efficient spin injection in this system feasible.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000300711200014 Publication Date 2012-02-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 12 Open Access
  Notes The authors thank E. Pellegrin for helpful comments and S. Macke for help with the software REMAGX. S.B. acknowledges financial support by the HZB, Berlin, and the Australian Government via Grant No. RM08550. H.T. acknowledges funding from GOA project “XANES meets ELNES,” J.V. and G.V.T. acknowledge funding from the European Research Council under Grant No. 46791-COUN-TATOMS. The authors acknowledge financial support by the DFG through Forschergruppe FOR 1162. Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:95041UA @ admin @ c:irua:95041 Serial 1860
Permanent link to this record
 

 
Author Barbier, M.; Papp, G.; Peeters, F.M.
  Title Snake states and Klein tunneling in a graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume (up) 100 Issue 16 Pages 163121-163121,3
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The Hall (R-H) and bend (R-B) resistances of a graphene Hall bar structure containing a pn-junction are calculated when in the ballistic regime. The simulations are done using the billiard model. Introducing a pn-junction-dividing the Hall bar geometry in two regions-leads to two distinct regimes exhibiting very different physics: (1) both regions are of n-type and (2) one region is n-type and the other p-type. In regime (1), a “Hall plateau”-an enhancement of the resistance-appears for R-H. On the other hand, in regime (2), we found a negative R-H, which approaches zero for large B. The bend resistance is highly asymmetric in regime (2) and the resistance increases with increasing magnetic field B in one direction while it reduces to zero in the other direction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704667]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000303128500064 Publication Date 2012-04-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 20 Open Access
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-EuroGRAPHENE project CONGRAN. ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:99129 Serial 3047
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: