|
Record |
Links |
|
Author |
Brück, S.; Paul, M.; Tian, H.; Müller, A.; Kufer, D.; Praetorius, C.; Fauth, K.; Audehm, P.; Goering, E.; Verbeeck, J.; Van Tendeloo, G.; Sing, M.; Claessen, R.; |
|
|
Title |
Magnetic and electronic properties of the interface between half metallic Fe3O4 and semiconducting ZnO |
Type |
A1 Journal article |
|
Year |
2012 |
Publication |
Applied physics letters |
Abbreviated Journal |
Appl Phys Lett |
|
|
Volume |
100 |
Issue |
8 |
Pages |
081603-081603,4 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
We have investigated the magnetic depth profile of an epitaxial Fe3O4 thin film grown directly on a semiconducting ZnO substrate by soft x-ray resonant magnetic reflectometry (XRMR) and electron energy loss spectroscopy (EELS). Consistent chemical profiles at the interface between ZnO and Fe3O4 are found from both methods. Valence selective EELS and XRMR reveal independently that the first monolayer of Fe at the interface between ZnO and Fe3O4 contains only Fe3+ ions. Besides this narrow 2.5 Å interface layer, Fe3O4 shows magnetic bulk properties throughout the whole film making highly efficient spin injection in this system feasible. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000300711200014 |
Publication Date |
2012-02-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0003-6951; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.411 |
Times cited |
12 |
Open Access |
|
|
|
Notes |
The authors thank E. Pellegrin for helpful comments and S. Macke for help with the software REMAGX. S.B. acknowledges financial support by the HZB, Berlin, and the Australian Government via Grant No. RM08550. H.T. acknowledges funding from GOA project “XANES meets ELNES,” J.V. and G.V.T. acknowledge funding from the European Research Council under Grant No. 46791-COUN-TATOMS. The authors acknowledge financial support by the DFG through Forschergruppe FOR 1162. |
Approved |
Most recent IF: 3.411; 2012 IF: 3.794 |
|
|
Call Number |
UA @ lucian @ c:irua:95041UA @ admin @ c:irua:95041 |
Serial |
1860 |
|
Permanent link to this record |