toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal Article
  Year 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001129424500001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124  
  Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979  
Permanent link to this record
 

 
Author Wittner, N.; Slezsák, J.; Broos, W.; Geerts, J.; Gergely, S.; Vlaeminck, S.E.; Cornet, I. pdf  url
doi  openurl
  Title Rapid lignin quantification for fungal wood pretreatment by ATR-FTIR spectroscopy Type A1 Journal article
  Year 2023 Publication Spectrochimica acta: part A: molecular and biomolecular spectroscopy Abbreviated Journal  
  Volume (up) Issue Pages 121912  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner. Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9%–27.1%). After variable selection and normalization, a PLSR model with a high coefficient of determination (  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985309100010 Publication Date 2022-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-1425 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.4; 2023 IF: 2.536  
  Call Number UA @ admin @ c:irua:190328 Serial 7201  
Permanent link to this record
 

 
Author De Backer, A.; Bals, S.; Van Aert, S. pdf  url
doi  openurl
  Title A decade of atom-counting in STEM: From the first results toward reliable 3D atomic models from a single projection Type A1 Journal article
  Year 2023 Publication Ultramicroscopy Abbreviated Journal  
  Volume (up) Issue Pages 113702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Quantitative structure determination is needed in order to study and understand nanomaterials at the atomic scale. Materials characterisation resulting in precise structural information is a crucial point to understand the structure–property relation of materials. Counting the number of atoms and retrieving the 3D atomic structure of nanoparticles plays an important role here. In this paper, an overview will be given of the atom-counting methodology and its applications over the past decade. The procedure to count the number of atoms will be discussed in detail and it will be shown how the performance of the method can be further improved. Furthermore, advances toward mixed element nanostructures, 3D atomic modelling based on the atom-counting results, and quantifying the nanoparticle dynamics will be highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953765800001 Publication Date 2023-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 3 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert, Grant 815128 REALNANO to S. Bals, and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N, and EOS 30489208) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF) . The authors also thank the colleagues who have contributed to this work over the years, including T. Altantzis, E. Arslan Irmak, K.J. Batenburg, E. Bladt, A. De wael, R. Erni, C. Faes, B. Goris, L. Jones, L.M. Liz-Marzán, I. Lobato, G.T. Martinez, P.D. Nellist, M.D. Rosell, A. Rosenauer, K.H.W. van den Bos, A. Varambhia, and Z. Zhang.; esteem3reported; esteem3JRA Approved Most recent IF: 2.2; 2023 IF: 2.843  
  Call Number EMAT @ emat @c:irua:195896 Serial 7236  
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Lin, A.; Canal, C. url  doi
openurl 
  Title Current State of Cold Atmospheric Plasma and Cancer‐Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels Type A1 Journal article
  Year 2023 Publication Advanced Science Abbreviated Journal Adv Sci  
  Volume (up) Issue Pages 2205803  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention

as a well-tolerated cancer treatment that can enhance anti-tumor immune

responses, which are important for durable therapeutic effects. This review

offers a comprehensive and critical summary on the current understanding of

mechanisms in which CAP can assist anti-tumor immunity: induction of

immunogenic cell death, oxidative post-translational modifications of the

tumor and its microenvironment, epigenetic regulation of aberrant gene

expression, and enhancement of immune cell functions. This should provide

a rationale for the effective and meaningful clinical implementation of CAP. As

discussed here, despite its potential, CAP faces different clinical limitations

associated with the current CAP treatment modalities: direct exposure of

cancerous cells to plasma, and indirect treatment through injection of

plasma-treated liquids in the tumor. To this end, a novel modality is proposed:

plasma-treated hydrogels (PTHs) that can not only help overcome some of the

clinical limitations but also offer a convenient platform for combining CAP

with existing drugs to improve therapeutic responses and contribute to the

clinical translation of CAP. Finally, by integrating expertise in biomaterials and

plasma medicine, practical considerations and prospective for the

development of PTHs are offered.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918224200001 Publication Date 2023-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes European Research Council, 714793 ; Fonds Wetenschappelijk Onderzoek, 12S9221N G044420N ; Ministerio de Economía y Competitividad, PID2019‐103892RB‐I00/AEI/10.13039/501100011033 ; Approved Most recent IF: 15.1; 2023 IF: 9.034  
  Call Number PLASMANT @ plasmant @c:irua:193166 Serial 7238  
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P. url  doi
openurl 
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells Type A1 Journal article
  Year 2023 Publication Small Abbreviated Journal  
  Volume (up) Issue Pages 2206712  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but the achievement of finite 3D structures with a controlled morphology through this assembly mode is still rare. Here we used a spherical peptide-gold superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution, leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914725800001 Publication Date 2023-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.3 Times cited 1 Open Access OpenAccess  
  Notes European Research Council, ERC‐2017‐PoC MINIRES 789815 ERC‐2012‐StG_20111012 FOLDHALO 307108 815128 ; Approved Most recent IF: 13.3; 2023 IF: 8.643  
  Call Number EMAT @ emat @c:irua:194299 Serial 7247  
Permanent link to this record
 

 
Author Daele, K.V.; Arenas‐Esteban, D.; Choukroun, D.; Hoekx, S.; Rossen, A.; Daems, N.; Pant, D.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Enhanced Pomegranate‐Structured SnO2Electrocatalysts for the Electrochemical CO2Reduction to Formate Type A1 Journal article
  Year 2023 Publication ChemElectroChem Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86% towards formate and an operating potential of -0.72 V and -0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered FE of 85%, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80% FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000936694800001 Publication Date 2023-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes European Regional Development Fund, E2C 2S03-019 ; Approved Most recent IF: 4; 2023 IF: 4.136  
  Call Number EMAT @ emat @c:irua:195228 Serial 7249  
Permanent link to this record
 

 
Author van der Sluijs, M.M.; Salzmann, B.B.V.; Arenas Esteban, D.; Li, C.; Jannis, D.; Brafine, L.C.; Laning, T.D.; Reinders, J.W.C.; Hijmans, N.S.A.; Moes, J.R.; Verbeeck, J.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates towards mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000959572100001 Publication Date 2023-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 2 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 731019 ; H2020 European Research Council, 692691 815128 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 715.016.002 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number EMAT @ emat @c:irua:195894 Serial 7255  
Permanent link to this record
 

 
Author de la Encarnación, C.; Jungwirth, F.; Vila-Liarte, D.; Renero-Lecuna, C.; Kavak, S.; Orue, I.; Wilhelm, C.; Bals, S.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Hybrid core–shell nanoparticles for cell-specific magnetic separation and photothermal heating Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations – upon targeting by antibody functionalization – as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968908400001 Publication Date 2023-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes Ministerio de Ciencia e Innovación, PID2019-108854RA-I00 ; H2020 European Research Council, ERC AdG 787510, 4DBIOSERS ERC CoG 815128, REALNANO ; Fonds Wetenschappelijk Onderzoek, PhD research grant 1181122N ; Approved Most recent IF: 7; 2023 IF: 4.543  
  Call Number EMAT @ emat @c:irua:195879 Serial 7261  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume (up) Issue Pages 142953-29  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986051300001 Publication Date 2023-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:195603 Serial 7264  
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume (up) Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000964269500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number UA @ admin @ c:irua:194897 Serial 7269  
Permanent link to this record
 

 
Author Van Alphen, S. url  openurl
  Title Modelling plasma reactors for sustainable CO2 conversion and N2 fixation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages 202 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract 200 years ago, humanity started the industrial revolution by discovering fossil fuels, which lead to unprecedented technological advancements. However it has become alarmingly clear that the major environmental concerns associated with fossil fuels require a short-term transition from a carbon-based energy economy to a sustainable one based on green electricity. A key step concerning this transition exists in developing electricity-driven alternatives for chemical processes that rely on fossil fuels as a raw material. A technology that is gaining increasing interest to achieve this, is plasma technology. Using plasmas to induce chemical reactions by selectively heating electrons in a gas has already delivered promising results for gas conversion applications like CO2 conversion and N2 fixation, but plasma reactors still require optimization to be considered industrially competitive to existing fossil fuel-based processes and emerging other electricity-based technologies. In this thesis I develop computational models to describe plasma reactors and identify key mechanisms in three different plasma reactors for three different gas conversion applications, i.e. N2 fixation, combined CO2-CH4 conversion and CO2 splitting. I first developed models to describe a new rotating gliding arc (GA) reactor operating in two arc modes, which, as revealed by my model, are characterized by distinct plasma chemistry pathways. Subsequently, my colleague and I study the quenching effect of an effusion nozzle to this rotating GA reactor, reaching the best results to date for N2 fixation into NOx at atmospheric pressure, i.e., NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol. Afterwards, I investigate the possible improvement of N2 admixtures in plasma-based CO2 and CH4 conversion, as significant amounts of N2 are often found in industrial CO2 waste streams, and gas separations are financially costly. Through combining my models with the experiment from a fellow PhD student, we reveal that moderate amounts of N2 (i.e. around 20%) increase both the electron density and the gas temperature to yield an overall energy cost reduction of 21%. Finally, I model quenching nozzles for plasma-based CO2 conversion in a microwave reactor, to explain the enhancements in CO2 conversion that were demonstrated in experiments. Through computational modelling I reveal that the nozzle introduces fast gas quenching resulting in the suppression of recombination reactions, which have more impact at low flow rates, where recombination is the most limiting factor in the conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194811 Serial 7270  
Permanent link to this record
 

 
Author Kovács, A. url  openurl
  Title A structured methodology for natural deep eutectic solvent selection and formulation for enzymatic reactions Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages viii, 216 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Natural deep eutectic solvents (NADES) show great promise as media for enzymatic reactions in areas where (bio)compatibility with natural or medicinal products is a must. While in theory they can be tailored to the intended reaction to ensure optimized yields, the knowledge to date is predominantly empirical, with some mechanistic reports providing a fragmented view at best. Therefore, it is not easy to explain experimental observations, let alone make predictions. The aim of this study was to develop a structured, holistic understanding of the effects of NADES media on enzymatic reactions, distinguishing between effects on solubility, solvation, viscosity, inhibition and denaturation. Experimental and computational chemistry methods were combined to separately study the interactions between enzyme, substrate, and NADES as reaction media. The initial enzyme activity and the final conversion of vinyl laurate transesterification by immobilized Candida antarctica lipase were studied experimentally. The direct effect of NADES on the same enzyme was modeled by molecular dynamics simulation. The effect of solubility was studied by both experimental and computational methods. To predict the solubility and viscosity of NADES, data-driven models were developed by combining group contribution and machine learning methods, based on the accumulated experimental knowledge on NADES found in the literature. Finally, the composed relationships and prediction models were applied to the practical example of deacetylation of mannosylerythritol lipids (MELs). The experimental findings show that the chosen NADES system has a significant effect on both the apparent initial activity and the final conversion. However, in the simulations, the enzyme retains its original structure; moreover, NADES has an additional stabilizing effect on the enzyme. In addition, changes in the molar ratio of the compounds in NADES do not show a significant effect on the stability of the enzyme. These results indicate that the main effect of NADES on the reaction is mainly related to the substrate-solvent interactions (solvation energy) and the viscosity of the system. On the other hand, the experimental results only confirmed the significance of solvation, viscosity did not show a clear correlation with the studied reaction parameters. The machine learning models built for solubility and viscosity gave quantitative predictions of these properties. The accumulated knowledge was used to optimize the yield in the deacetylation reaction of MELs. The combination of these methods provides fundamental knowledge about the effect of NADES on biocatalysis, but the results are also applicable to other uses of NADES.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:194886 Serial 7276  
Permanent link to this record
 

 
Author De Backer, J. url  openurl
  Title The versatile nature of cytoglobin, the Swiss army knife among globins, with a preference for oxidative stress Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages XVIII, 232 p.  
  Keywords Doctoral thesis; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Proteinscience, proteomics and epigenetic signaling (PPES)  
  Abstract Since its discovery 20 years ago, many studies have been performed to gain insight into the functional role of cytoglobin (Cygb). However, Cygb has been proven to be a promiscuous protein. Yet, there is a consensus that Cygb is a cytoprotective protein involved in redox homeostasis. CYGB is a ubiquitously expressed hexacoordinated globin that is highly expressed in melanocytes and is often found to be downregulated during melanocyte-to-melanoma transition. In Chapter III, we investigated the molecular mechanism through which CYGB could be involved in redox regulation. Here, we showed that CYGB contains two redox-sensitive cysteine residues and that the formation of an intramolecular disulfide bridge resulted in the heme group becoming more accessible to external ligands. This supports the hypothesis that Cys38 and Cys83 serve as sensitive redox sensors. In Chapter IV we showed that CYGB mRNA and protein levels were elevated upon exposure to hypoxia. Interestingly, this upregulation was most likely HIF-2α-dependent. We propose that in melanoma, HIF-2α, rather than HIF-1α, positively regulates CYGB under hypoxic conditions in a cell type specific way. In Chapter V, the cytotoxic effect of indirect NTP treatment in two melanoma cell lines with divergent endogenous CYGB expression levels was investigated. We confirmed that NTP endows cytotoxicity that induces cell death through apoptosis and that this was mediated through the production of ROS. Moreover, we showed that CYGB protects melanoma cells from ROS-induced apoptosis by the scavenging of ROS. Interestingly, CYGB expression influenced the expression of NRF2 and HO-1. We identified the lncRNA MEG3 as a possible mechanism through which NRF2 expression and its downstream target HO-1 can be regulated by CYGB. In chapter VI, increased basal ROS levels and higher degree of lipid peroxidation upon RSL3 treatment contributed to the increased sensitivity of CYGB knockdown G361 cells to ferroptosis. Furthermore, transcriptome analysis demonstrates the enrichment of multiple cancer malignancy pathways upon CYGB knockdown, supporting a tumor-suppressive role for CYGB. Remarkably, CYGB expression regulation was identified as a critical determinant of the ferroptosis–pyroptosis therapy response. This suggests that CYGB is involved in the regulation of multiple modes of programmed cell death. FInally, we sought to delineate the RONS that are responsible for plasma-induced ICD. Our results highlight the importance of the short-lived species. Furthermore, we are first to demonstrate that NTP-created vaccine is safely prepared and offers complete protection. Moreover, we provide conclusive evidence that direct application of NTP induces ICD in melanoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:193568 Serial 7277  
Permanent link to this record
 

 
Author Gonzalez, V.; Fazlic, I.; Cotte, M.; Vanmeert, F.; Gestels, A.; De Meyer, S.; Broers, F.; Hermans, J.; van Loon, A.; Janssens, K.; Noble, P.; Keune, K. url  doi
openurl 
  Title Lead(II) formate in Rembrandt's Night Watch : detection and distribution from the macro- to the micro-scale Type A1 Journal article
  Year 2023 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume (up) Issue Pages 1-9  
  Keywords A1 Journal article; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)(2), in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17(th) century recipes. Synchrotron radiation based micro-XRPD (SR-mu-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000920584500001 Publication Date 2023-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6; 2023 IF: 11.994  
  Call Number UA @ admin @ c:irua:194279 Serial 7318  
Permanent link to this record
 

 
Author Borah, R.; Ag, K.R.; Minja, A.C.; Verbruggen, S.W. pdf  url
doi  openurl
  Title A review on self‐assembly of colloidal nanoparticles into clusters, patterns, and films : emerging synthesis techniques and applications Type A1 Journal article
  Year 2023 Publication Small methods Abbreviated Journal  
  Volume (up) Issue Pages 1-32  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000940393200001 Publication Date 2023-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:194597 Serial 7336  
Permanent link to this record
 

 
Author Khan, S.U. openurl 
  Title Singlet oxygen-based photoelectrocatalysis : from photosensitizer structures to plasmonic enhancement Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages 182 p.  
  Keywords Doctoral thesis; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Singlet molecular oxygen (1O2) has continuously attracted researchers' interest because of its involvement in various processes, such as in photodynamic reactions in biological and chemical systems. 1O2 is an effective electrophile and potent oxidizing agent and can be easily generated by photosensitization via the illumination of organic dyes with visible light. As described in Chapter 1, 1O2 has gained prominence in various applications such as wastewater treatment, photodynamic therapy of cancer, organic synthesis, and recently developed 1O2-based photoelectrochemical (PEC) sensing of phenolic compounds. Phenolic compounds are a potential source of contaminants that originates from industrial effluents and waste products of chemical and pharmaceutical industries. These phenolic compounds pose severe threats to humans and aquatic life after reaching the environment. Therefore, it is imperative to develop photoactive materials that efficiently generate 1O2 and oxidize phenolic compounds and antibiotics. The existing 1O2 generating photosensitizers (PSs) include porphyrins, phthalocyanines (Pcs), subphthalocyanines (SubPcs), and other dyes such as derivatives of xanthene (e.g., Rose Bengal (RB)), and fluorinated boron-dipyrromethene (BODIPYs), and phenothiazinium dyes (e. g. Methylene Blue (MB)) which display long-lived triplet excited state and can be used in 1O2-based applications. This thesis focuses on preparing efficient hybrid materials based on newly synthesized Pcs, different surface area titanium dioxide (TiO2) and plasmonic gold nanoparticles (AuNPs) for their use in the PEC detection of phenolic compounds. The first focus was on developing a fast amperometric method to test the photo-electrocatalytic activity of 1O2 producing PSs dissolved in MeOH based on the redox cycling of an electroactive phenolic compound, hydroquinone (HQ) (Chapter 2). This method of testing PSs does not require the accumulation of a reaction product since the amperometric signal develops near instantly when the light is on, which enables dynamic monitoring of a PSs activity at varying conditions in a single experiment. This method was crucial to measure high 1O2 quantum yield and low yield in the same experimental conditions. Moreover, the obtained results revealed a range of working parameters affecting the PEC activity of PSs. The next goal was to immobilize tert-butyl substituted aluminum Pc (t-BuPcAlCl) on the solid support, which showed a high 1O2 quantum yield. However, before immobilizing Pc on a solid support such as TiO2, it is essential to know the electronic energy level of Pcs for the possible electron transfers from Pcs to TiO2. Therefore, Chapter 3 explored the (spectro)electrochemical properties of t-BuPcAlCl Pc. Next, in Chapter 4, t-BuPcAlCl Pc and other tert-butyl substituted Pcs with Zn central metal, t-BuPcZn, and its metal-free derivative t-BuPcH2 were immobilized on different surface area TiO2. The PEC activity of immobilized Pcs on TiO2 toward different phenols and antibiotics was studied, and the action mechanism was revealed and compared with sterically hindered fluorinated Pc F64PcZn. In the final part of this thesis plasmonic AuNPs were introduced combined with trimethylsilane-protected acetylene functionalized ZnPc (TMSZnPc) to study the synergistic effect that boosts the overall activity toward the detection of phenols under visible light illumination (Chapter 5) . The TMSZnPc was coupled with AuNPs via a click chemistry approach. The 1O2 quantum yield of TMSZnPc improved significantly after conjugating with AuNPs, and, subsequently, the PEC activity for detecting HQ. The theoretical and experimental investigation demonstrated that the plasmonic enhancement of TMSZnPc is driven by the near-field mechanism. This shows the importance of plasmonic AuNPs with other photoactive species for their use in 1O2-based applications. The fundamental knowledge obtained in this doctoral study will ultimately deepen the understanding of developing 1O2-based PEC sensors for detecting phenolic compounds and pharmaceuticals in the wastewater stream, helping to choose efficient materials and, in the last instance, a more sustainable future especially access to clean water for everyone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:193342 Serial 7337  
Permanent link to this record
 

 
Author Yang, C.-Q.; Zhi, R.; Rothmann, M.U.; Xu, Y.-Y.; Li, L.-Q.; Hu, Z.-Y.; Pang, S.; Cheng, Y.-B.; Van Tendeloo, G.; Li, W. pdf  doi
openurl 
  Title Unveiling the intrinsic structure and intragrain defects of organic-inorganic hybrid perovskites by ultralow dose transmission electron microscopy Type A1 Journal article
  Year 2023 Publication Advanced materials Abbreviated Journal  
  Volume (up) Issue Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is a powerful tool for unveiling the structural, compositional, and electronic properties of organic-inorganic hybrid perovskites (OIHPs) at the atomic to micrometer length scales. However, the structural and compositional instability of OIHPs under electron beam radiation results in misunderstandings of the microscopic structure-property-performance relationship in OIHP devices. Here, ultralow dose TEM is utilized to identify the mechanism of the electron-beam-induced changes in OHIPs and clarify the cumulative electron dose thresholds (critical dose) of different commercially interesting state-of-the-art OIHPs, including methylammonium lead iodide (MAPbI(3)), formamidinium lead iodide (FAPbI(3)), FA(0.83)Cs(0.17)PbI(3), FA(0.15)Cs(0.85)PbI(3), and MAPb(0.5)Sn(0.5)I(3). The critical dose is related to the composition of the OIHPs, with FA(0.15)Cs(0.85)PbI(3) having the highest critical dose of approximate to 84 e angstrom(-2) and FA(0.83)Cs(0.17)PbI(3) having the lowest critical dose of approximate to 4.2 e angstrom(-2). The electron beam irradiation results in the formation of a superstructure with ordered I and FA vacancies along (c), as identified from the three major crystal axes in cubic FAPbI(3), (c), (c), and (c). The intragrain planar defects in FAPbI(3) are stable, while an obvious modification is observed in FA(0.83)Cs(0.17)PbI(3) under continuous electron beam exposure. This information can serve as a guide for ensuring a reliable understanding of the microstructure of OIHP optoelectronic devices by TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000950461600001 Publication Date 2023-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 29.4; 2023 IF: 19.791  
  Call Number UA @ admin @ c:irua:195116 Serial 7349  
Permanent link to this record
 

 
Author Admasu, W.F.; Van Passel, S.; Minale, A.S.; Tsegaye, E.A.; Nyssen, J. pdf  url
doi  openurl
  Title Nexus between land development and the value of ecosystem services in Ethiopia : a contingent valuation study Type A1 Journal article
  Year 2023 Publication Environment, development and sustainability Abbreviated Journal  
  Volume (up) Issue Pages 1-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract In Ethiopia, the state owns all lands within the territory of the country. Cities are incorporating large parcels of land from their surrounding rural agricultural areas through land expropriation. However, these land developments do not consider the nonmarket value of ecosystem services (ES), which is causing a deterioration of the existing ES and reduction on the potential supply of ES from agricultural land. The aim of this study was to estimate the monetary value of nonmarketable ES from the agricultural land using a double-bounded dichotomous choice contingent valuation method. A survey of 524 smallholder farmers was conducted. In the survey, respondents were asked to state their willingness to pay for the improvement of some of the nonmarketable ES: erosion control, air and climate regulation, water regulation, and soil fertility. The estimation was carried out using a bivariate probit model. The results revealed that farmers are willing to pay on average 276 ETB (7.9 USD) per hectare per year for a period of 10 years. We found that individual characteristics such as age, family size, and a recent land expropriation experience adversely affect the willingness to pay by the farmers. On the other hand, individuals with higher income and larger land size are willing to pay more. In general, the study indicated that the nonmarket ES, which are affected by the land expropriation for urban expansion, are valuable for the farmers. Therefore, we recommend that the government consider the value of nonmarketable ES in its land use decisions and hence achieve sustainable land development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000907898700002 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x; 1573-2975 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access Not_Open_Access: Available from 05.01.2024  
  Notes Approved Most recent IF: 4.9; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:193432 Serial 7363  
Permanent link to this record
 

 
Author Yang, T. openurl 
  Title Characterization of Laves phase structural evolution and regulation of its precipitation behavior in Al-Zn-Mg based alloys Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages ii, 106 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Al-Zn-Mg-based high strength alloys are widely used in aerospace applications due to their low density and excellent mechanical properties. A systematic study of the structural evolution of the nano-precipitation phase and its growth mechanism is an important guide for the design of new high-strength alloys. In this work, the Laves structure precipitates in Al-Zn-Mg(-Cu/Y) alloy was systematically characterized. Based on the structure evolution, the structure of submicron Laves particles and quasicrystalline particles in the alloy at microscale, as well as the regulation of the precipitation behavior after adding Y at nanoscale were further investigated. The main innovative results are summarized as follows: (1) Investigation on coexistence of defect structures in Laves structural nanoprecipitates. Three types of Laves structures can coexist within the η-MgZn2 precipitates: C14, C15 and C36, and the Laves structure transition sequence of C14→C36→C15 in this system was determined. Meanwhile, it was found that there are diverse defect structures in the MgZn2 phase, including stacking faults, planar defects and five-fold domain structures, which have significant effects on relieving the internal stress/strain of the precipitates. (2) Investigation on multiple phase transition of Laves structural nanoprecipitates from C14 to C36 and from C14 to quasicrystal clusters. It is found that C14 precipitates can be completely transformed into the C36 precipitates. And it is also found that the C14 Laves phase structure can also transform into quasicrystalline clusters. These investigations on various phase transition mechanisms among Laves phases provide theoretical support for the microstructural characterization of materials containing multi-scale Laves phases. (3) Characterization of Laves and quasicrystal structural particles in submicron scale. Submicron-scale quasicrystal particles were obtained in conventional casting Al-Zn-Mg-Cu alloys for the first time. Industrial impurity elements Fe and Ni can induce the formation of quasicrystalline particles. When there is no Fe/Ni enriched in particles, the structure is characterized as C15-Laves phase. When Fe/Ni is as quasicrystalline core, a stable core-shell quasicrystalline structure with Al-Fe-Ni nucleus and Mg-Cu-Zn shell can be formed. (4) Investigation on the regulation of nanoscale Laves precipitates’ growth. To regulate the defect structure of the precipitates, rare earth element Y was added in Al-Zn-Mg alloys and its influence on the precipitation behavior was investigated. The addition of Y element can dynamically combine with different alloying elements during aging process, which can refine the size of precipitate and further improve the nucleation rate and precipitation rate of the precipitates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196404 Serial 7631  
Permanent link to this record
 

 
Author Voordeckers, D. openurl 
  Title Design to breathe : understanding and altering wind patterns in street canyons to reduce human exposure to air pollution Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages xxii, 303 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Air pollution is proclaimed by the World Health Organiaation (WHO) as the biggest environmental threat to human health. Street canyons, or urban roads flanked by a continuous row of high buildings on both sides, are perceived as typical bottleneck areas for air quality due to their lack of natural ventilation. This doctoral thesis aims to integrate expert knowledge on in-canyon flow fields and pollution dispersion in street canyons from the specialized field of (bio)engineering into the field of urban planning and vice versa. In Chapter 1, a Geospatial Information System (GIS) method was developed to detect exposure zones and hotspot street canyons. A critical combination between aspect ratio (AR > 0.65) and traffic volume (TVmax > 300) was detected and subsequently used to detect hotspot street canyons in three major European cities (Antwerp, London and Paris). Chapter 2 focusses on acquiring in-depth knowledge on flow and concentration fields in street canyons by conducting an extensive literature review on over 200 studies and translates this knowledge into nineteen guidelines and eleven spatial tools, comprised in a toolbox for urban planning. Subsequently, computational fluid dynamics (CFD) was used into a research trough design process (Chapter 4) to illustrate how the design tools can be applied to a specific case study (Belgiëlei, Antwerp). Alternations to traffic lanes (traffic lane reduction and lateral displacement) combined with low boundary walls (LBWs), were found to reduce NO2 levels in the entire pedestrian area up to – 3.6 % and peak pollutions were reduced by -8 %. A maximum NO2 reduction was reached by combining a traffic lane displacement with hedges, adjustments to the tree planting pattern and an increased ground-level permeability, leading to reductions up to – 4.5 % in the pedestrian areas. In conclusion, urban design was found to be a valuable tool to enhance the effect of emission reduction strategies and draw in-canyon concentrations closer to the value of the background concentration. However, the background concentration seemed to dominate the efficiency of the urban design interventions and therefore, additional measures should be taken to reduce background pollution levels. This dissertation aims to contribute to the awareness of air pollution in street canyons, as well as support local governments in taking action by delivering spatial tools and guidelines applicable for urban planning and represents a framework for the dissemination of expert information on air quality in street canyons to the field of urban planning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:196399 Serial 7767  
Permanent link to this record
 

 
Author Gauquelin, N.; Forte, F.; Jannis, D.; Fittipaldi, R.; Autieri, C.; Cuono, G.; Granata, V.; Lettieri, M.; Noce, C.; Miletto-Granozio, F.; Vecchione, A.; Verbeeck, J.; Cuoco, M. pdf  url
doi  openurl
  Title Pattern Formation by Electric-Field Quench in a Mott Crystal Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The control of Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2 RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron

microscopy. The nanotexture depends on the orientation of the electric field, it is non-volatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of non-volatile electronics based on voltage-controlled nanometric phases.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001012061600001 Publication Date 2023-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 2 Open Access OpenAccess  
  Notes This project has received funding from the European Union’s Horizon 2020 research and innova- tion programme under grant agreement No 823717 – ESTEEM3. The Merlin camera used in the experiment received funding from the FWO-Hercules fund G0H4316N ’Direct electron detector 15for soft matter TEM’. C. A. and G. C. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. and G. C. acknowledge the access to the computing facil- ities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. GB84-0, GB84-1 and GB84-7 and GB84-7 and Poznan Supercomputing and Networking Center Grant No. 609.. C. A. and G. C. acknowledge the CINECA award under the ISCRA initiative IsC85 “TOP- MOST” Grant, for the availability of high-performance computing resources and support. We acknoweldge A. Guarino and C. Elia for providing support about the electrical characterization of the sample. M.C., R.F., and A.V. acknowledge support from the EU’s Horizon 2020213 research and innovation program under Grant Agreement No. 964398 (SUPERGATE). Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number EMAT @ emat @c:irua:196970 Serial 8789  
Permanent link to this record
 

 
Author Tampieri, F.; Espona-Noguera, A.; Labay, C.; Ginebra, M.-P.; Yusupov, M.; Bogaerts, A.; Canal, C. pdf  url
doi  openurl
  Title Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Type A1 Journal Article
  Year 2023 Publication Biomaterials Science Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets. The direct effects of the plasma treatment on the structure of biopolymers in water solution, as well as the chemical mechanisms responsible for the enhanced generation of RONS, are not yet fully understood. In this study, we aim at filling this gap by investigating, on the one hand, the nature and extent of the modifications induced by plasma treatment in alginate solutions, and, on the other hand, at using this information to explain the mechanisms responsible for the enhanced generation of reactive species as a consequence of the treatment. The approach we use is twofold: (i) investigating the effects of plasma treatment on alginate solutions, by size exclusion chromatography, rheology and scanning electron microscopy and (ii) study of a molecular model (glucuronate) sharing its chemical structure, by chromatography coupled with mass spectrometry and by molecular dynamics simulations. Our results point out the active role of the biopolymer chemistry during direct plasma treatment. Short-lived reactive species, such as OH radicals and O atoms, can modify the polymer structure, affecting its functional groups and causing partial fragmentation. Some of these chemical modifications, like the generation of organic peroxide, are likely responsible for the secondary generation of long-lived reactive species such as hydrogen peroxide and nitrite ions. This is relevant in view of using biocompatible hydrogels as vehicles for storage and delivery reactive species for targeted therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000973699000001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-4830 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access Not_Open_Access  
  Notes Agència de Gestió d’Ajuts Universitaris i de Recerca, SGR2022-1368 ; H2020 European Research Council, 714793 ; European Cooperation in Science and Technology, CA19110 CA20114 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; We thank Gonzalo Rodríguez Cañada and Xavier Solé-Martí (Universitat Politècnica de Catalunya) for help in collecting some of the experimental data and for the useful discussions. This work has been primarily funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 714793). The authors acknowledge MINECO for PID2019103892RB-I00/AEI/10.13039/501100011033 project (CC). The authors belong to SGR2022-1368 (FT, AEN, CL, MPG, CC) and acknowledge Generalitat de Catalunya for the ICREA Academia Award for Excellence in Research of CC. We thank also COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Approved Most recent IF: 6.6; 2023 IF: 4.21  
  Call Number PLASMANT @ plasmant @c:irua:196773 Serial 8794  
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S. pdf  url
doi  openurl
  Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume (up) Issue Pages 1916-1921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001006191600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:197004 Serial 8795  
Permanent link to this record
 

 
Author Sa, J.; Hu, N.; Heyvaert, W.; Van Gordon, K.; Li, H.; Wang, L.; Bals, S.; Liz-Marzán, L.M.; Ni, W. pdf  url
doi  openurl
  Title Spontaneous Chirality Evolved at the Au–Ag Interface in Plasmonic Nanorods Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal Chem. Mater.  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chiral ligands are considered a required ingredient during the synthesis of dissymmetric plasmonic metal nanocrystals. The mechanism behind the generation of chiral structures involves the formation of high Miller index chiral facets, induced by the adsorption of such chiral ligands. We found however that, chirality can also evolve spontaneously, without the involvement of any chiral ligands, during the co-deposition of Au and Ag on Au nanorods. When using a specific Au/Ag ratio, phase segregation of the two metals leads to an interface within the obtained AuAg shell, which can be exposed by removing the Ag component via oxidative etching. Although a close-to-racemic mixture of chiral Au nanorods with right and left handedness is found in solution, electron tomography analysis evidences left- and righthanded helicities, both at the Au-Ag interface and at the exposed surface of Au NRs after Ag etching. The helicity profile of the NRs indicates dominating inclination angles in a range from 30° to 60°. Single-particle optical characterization also reveals random handedness in the plasmonic response of individual nanorods. We hypothesize that, the origin of chirality is related with symmetry breaking during the co-deposition of Au and Ag, through an initial perturbation in a small region on the Au-Ag interface that eventually leads to chiral segregation throughout the nanocrystal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052093300001 Publication Date 2023-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 22074102). LMLM acknowledges funding from 26 MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020- 117779RB-I00). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3.; Ministerio de Ciencia e Innovaci?n, PID2020-117779RB-I00 ; H2020 Research Infrastructures, 823717 ; European Social Fund, PID2020-117779RB-I00 ; National Natural Science Foundation of China, 22074102 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number EMAT @ emat @c:irua:198151 Serial 8810  
Permanent link to this record
 

 
Author Conti, S.; Chaves, A.; Pandey, T.; Covaci, L.; Peeters, F.M.; Neilson, D.; Milošević, M.V. url  doi
openurl 
  Title Flattening conduction and valence bands for interlayer excitons in a moire MoS₂/WSe₂ heterobilayer Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume (up) Issue Pages 1-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We explore the flatness of conduction and valence bands of interlayer excitons in MoS2/WSe2 van der Waals heterobilayers, tuned by interlayer twist angle, pressure, and external electric field. We employ an efficient continuum model where the moire pattern from lattice mismatch and/or twisting is represented by an equivalent mesoscopic periodic potential. We demonstrate that the mismatch moire potential is too weak to produce significant flattening. Moreover, we draw attention to the fact that the quasi-particle effective masses around the Gamma-point and the band flattening are reduced with twisting. As an alternative approach, we show (i) that reducing the interlayer distance by uniform vertical pressure can significantly increase the effective mass of the moire hole, and (ii) that the moire depth and its band flattening effects are strongly enhanced by accessible electric gating fields perpendicular to the heterobilayer, with resulting electron and hole effective masses increased by more than an order of magnitude – leading to record-flat bands. These findings impose boundaries on the commonly generalized benefits of moire twistronics, while also revealing alternative feasible routes to achieve truly flat electron and hole bands to carry us to strongly correlated excitonic phenomena on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001047512300001 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access: Available from 25.01.2024  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:198290 Serial 8819  
Permanent link to this record
 

 
Author Vizarim, N.P. url  openurl
  Title Dynamic behavior of Skyrmions under the influence of periodic pinning in chiral magnetic infinite thin films Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages 212 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract The miniaturization of transistors for application in new processors and logic devices poses a significant challenge in the field of materials. Spintronics, which relies on controlled movement of magnetic nanostructures, offers a promising solution. Among the candidates, magnetic skyrmions are considered one of the most promising. These chiral spin structures, characterized by topological protection and enhanced stability compared to vortices or magnetic bubbles, have been extensively studied. To advance in the control of skyrmion motion, essential for practical applications, we investigated their dynamic behavior in a two-dimensional chiral magnet at zero temperature. Our study focused on the influence of periodic arrays of pinning centers. The simulations considered skyrmions as point-like particles considering the following interactions: skyrmion-skyrmion interactions, interactions with pinning center arrays, a current of polarized spins, and the Magnus force. We conducted calculations for scenarios involving a single skyrmion as well as different skyrmion density values in the material. The aim was to explore possibilities for controlled skyrmion motion, investigate different dynamic regimes, and examine collective effects. The results demonstrate that by adjusting the size, strength, and density of the pinning centers, we can effectively control the motion of individual skyrmions and manage the flow of multiple skyrmions. Furthermore, we discovered that periodic arrays of pinning centers can facilitate topological selection when different species of skyrmions with distinct Magnus components are present. Employing alternating currents, we observed the significant role of the ratchet effect in the skyrmion dynamics. By fine-tuning the amplitudes of the alternating currents, we achieved direct and controlled motion of skyrmions in specific directions. These findings hold potential for advancing our understanding of skyrmion dynamics and can inspire future technological applications involving these quasi-particles. Overall, we anticipate that our results will be valuable to the scientific community, contributing to a deeper comprehension of skyrmion dynamics and paving the way for future technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198101 Serial 8852  
Permanent link to this record
 

 
Author Chen, Q.; Skorikov, A.; van der Hoeven, J.E.S.; van Blaaderen, A.; Albrecht, W.; Perez-Garza, H.H.; Bals, S. pdf  doi
openurl 
  Title Estimation of temperature homogeneity in MEMS-based heating nanochips via quantitative HAADF-STEM tomography Type A1 Journal article
  Year 2023 Publication Particle and particle systems characterization Abbreviated Journal  
  Volume (up) 41 Issue 2 Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sample holders for transmission electron microscopy (TEM) based on micro-electro-mechanical systems (MEMS) have recently become popular for investigating the behavior of nanomaterials under in situ or environmental conditions. The accuracy and reproducibility of these in situ holders are essential to ensure the reliability of experimental results. In addition, the uniformity of an applied temperature trigger across the MEMS chip is a crucial parameter. In this work, it is measured the temperature homogeneity of MEMS-based heating sample supports by locally analyzing the dynamics of heat-induced alloying of Au@Ag nanoparticles located in different regions of the support through quantitative fast high-angle annular dark-field scanning TEM tomography. These results demonstrate the superior temperature homogeneity of a microheater design based on a heating element shaped as a circular spiral with a width decreasing outwards compared to a double spiral-shaped designed microheater. The proposed approach to measure the local temperature homogeneity based on the thermal properties of bimetallic nanoparticles will support the future development of MEMS-based heating supports with improved thermal properties and in situ studies where high precision in the temperature at a certain position is required. This schematic delineates an approach to quantifying potential localized temperature deviation within a nanochip. Employing two comparable nanoparticles as thermal probes in discrete nanochip regions, the alloying kinetics of these nanoparticles are monitorable using in situ quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography, thus enabling the precise estimation of local temperature deviations.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060394600001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access Not_Open_Access  
  Notes This project was funded from the European Commission and The Marie Sklodowska-Curie Innovative Training Network MUMMERING (Grant Agreement no. 765604) Approved Most recent IF: 2.7; 2023 IF: 4.474  
  Call Number UA @ admin @ c:irua:199219 Serial 8863  
Permanent link to this record
 

 
Author Wang, L.; Shi, P.; Chen, L.; Gielis, J.; Niklas, K.J. pdf  url
doi  openurl
  Title Evidence that Chinese white olive (Canarium album(Lour.) DC.) fruits are solids of revolution Type A1 Journal article
  Year 2023 Publication Botany letters Abbreviated Journal  
  Volume (up) Issue Pages 1-7  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Although many fruit geometries resemble a solid of revolution, this assumption has rarely been rigorously examined. To test this assumption, 574 fruits of Canarium album (Lour.) DC. which appear to have an ellipsoidal shape, were examined to determine the validity of a general avian-based egg-shape equation, referred to as the explicit Preston equation (EPE). The assumption that the C. album fruit geometry is a solid of revolution is tested by applying the volume formula for a solid of revolution using the EPE. The goodness of fit of the EPE was assessed using the adjusted root-mean-square error (RMSEadj). The relationship between the observed volume (Vobs) of each fruit, as measured by water displacement in a graduated cylinder, and the predicted volumes (Vpre) based on the EPE was also evaluated using the equation Vpre = slope * Vobs. All the RMSEadj values were smaller than 0.05, which demonstrated the validity of the EPE based on C. album fruit profiles. The 95% confidence interval of the slope of Vpre vs. Vobs included 1.0, indicating that there was no significant difference between Vpre and Vobs. The data confirm that C. album fruits are solids of revolution. This study provides a new approach for calculating the volume and surface area of geometrically similar fruits, which can be extended to other species with similar fruit geometries to further explore the ontogeny and evolution of angiosperm reproductive organs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033135400001 Publication Date 2023-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 24.01.2024  
  Notes Approved Most recent IF: 1.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:198001 Serial 8864  
Permanent link to this record
 

 
Author Hassani, H. url  openurl
  Title First-principles study of polarons in WO₃ Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages 181 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract Polarons are quasiparticles emerging in materials from the interaction of extra charge carriers with the surrounding atomic lattice. They appear in a wide va- riety of compounds and can have a profound impact on their properties, making the concept of a polaron a central and ubiquitous topic in material science. Al- though the concept is known for about 75 years, the origin of polarons is not yet fully elucidated. This thesis focuses on WO 3 as a well-known prototypical system for studying polarons, which inherent polaronic nature is linked to its remark- able electrical and chromic properties. The primary objective of this research is to provide a comprehensive atomistic description and understanding of polaron formation in WO 3 using first-principles density functional theory (DFT) calcula- tions. Additionally, the investigation explores the interactions between polarons and the possibility of bipolaron formation. Following a systematic strategy, we first extensively analyze the dielectric and lattice dynamical properties of WO 3 in both the room-temperature P 2 1 /n and ground-state P 2 1 /c phases. Our specific focus is on characterizing the zone-center phonons, which serve as the founda- tion for identifying the phonon modes involved in the polaron formation and charge localization process. Subsequently, we examine the impact of structural distortions on the electronic structure of WO 3 to elucidate the interplay between structural distortions and electronic properties, thereby laying the groundwork for understanding electron-phonon couplings. By incorporating these critical fac- tors, we address our primary research goals. The most common explanation for the polaron formation is associated with the electrostatic screening of the extra charge by the polarizable lattice. Here, we show that, even in ionic crystals, this is not necessarily the case. We demonstrate that polarons in this compound arise primarily from non-polar atomic distortions. We then unveil that this unexpected behavior originates from the undoing of distortive atomic motions, which lowers the bandgap. As such, we coin the name of anti-distortive polaron and validate its appearance through a simple quantum-dot model, in which charge localization is the result of balancing structural, electronic, and confinement energy costs. Then, we also study the polaron-polaron interaction and present the formation of the antiferromagnetic W 4+ bipolaronic state with relatively large formation energy. Our analysis of the W 4+ bipolaronic distortions on the global structure reveals the same behavior as in experiments where the highly distorted monoclinic phase transforms into a tetragonal phase as a function of doping. Additionally, leveraging our previous findings on asymmetric polaronic distortion and examin- ing different merging orientations, we stabilize the antiferromagnetic W 5+ -W 5+ bipolaronic state with an energy lower than the W 4+ state. This thesis clari- fies the formation of unusual medium-size 2D polarons and bipolarons in WO3,which might be relevant to the whole family of ABO 3 perovskites, to which WO 3 is closely related. The simplicity of the concept provides also obvious guidelines for tracking similar behavior in other families of compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198169 Serial 8868  
Permanent link to this record
 

 
Author Wittner, N. url  openurl
  Title Improving and characterising solid-state fungal pretreatment by Phanerochaete chrysosporium for sugar production from poplar wood Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume (up) Issue Pages 206 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)  
  Abstract Pretreatment is a critical step in the conversion of lignocellulose into biofuels and biochemicals. During pretreatment, the recalcitrance of lignocellulose is reduced, e.g. by removing lignin, thereby making the carbohydrates more accessible for enzymatic saccharification. Fungal delignification by white-rot fungi is a biotechnological alternative to chemical/physicochemical methods, which is carried out in solid-state fermentation with mild reaction conditions and without the formation of microbial inhibitors. However, fungal pretreatment presents some challenges, such as long pretreatment time, non-selective and low delignification, low enzymatic digestibility and feedstock sterilisation requirement, making its commercial implementation challenging compared to conventional methods. This study investigates the possibility of improving and characterising the solid-state fungal pretreatment of poplar wood by Phanerochaete chrysosporium. The individual and combined effects of MnSO4 and CuSO4 supplements on the delignification of sterilised wood are investigated using response surface methodology to improve the degree and selectivity of fungal delignification. Spore-inoculated solid-state fermentations are carried out for 4 weeks in sterile vented bottles. The mechanism of the concerted action of the metal ions on lignin degradation is then elucidated by relating fungal growth and ligninolytic enzyme activities to lignocellulose degradation as a function of pretreatment time. The optimised metal-supplemented system is then applied to the pretreatment of non-sterilised wood using different inoculation techniques (spores and pre-colonised substrate), nutrients (metal ions with or without glucose and sodium nitrate) and cultivation environments (sterile aerated bottles and open trays). The fermentations are then characterised using infrared spectroscopy, in particular NIR and ATR-FTIR spectroscopy, with the aim of developing rapid lignin quantification methods as an alternative to conventional wet chemical methods. Finally, the feasibility of producing fermentable sugars from sterilised and non-sterilised poplar wood using fungal pretreatment is evaluated through a techno-economic analysis. Supplementing the pretreatment system with 2.01 µmol CuSO4 and 0.77 µmol MnSO4 g-1 wood resulted in 1.9-fold higher lignin degradation, 2.3-fold higher delignification selectivity value and 2.9-fold higher glucose yield. The improved delignification could be explained by the concerted action of Mn2+ and Cu2+ ions, with Mn2+ ions inducing and Cu2+ prolonging manganese peroxidase production responsible for delignification. Fungal pretreatment at non-sterile conditions was obtained using trays in a simple solid-state fermentation set-up without sterile aeration. A 1:3 ratio of pre-colonised and untreated wood was applied for inoculation and only Cu2+, Mn2+ and sodium nitrate as supplements. Remarkably, this technology resulted in a comparably high glucose yield (28.51 ± 0.28%) to the traditional method using sterilised wood, sterile aeration and spores as inoculum, while reducing the amount of wood to be sterilised by 71.2%. Infrared spectroscopy-based methods with high coefficients of determination (R_CV  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:197185 Serial 8883  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: