|   | 
Details
   web
Records
Author Bafekry, A.; Stampfl, C.; Ghergherehchi, M.
Title Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
Year 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal
Volume (up) Issue Pages 295202 pp
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000532366000001 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 19 Open Access
Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:169523 Serial 6444
Permanent link to this record
 

 
Author Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G.
Title Polyhedral iron oxide coreshell nanoparticles in a biodegradable polymeric matrix : preparation, characterization and application in magnetic particle hyperthermia and drug delivery Type A1 Journal article
Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv
Volume (up) 3 Issue 46 Pages 24367-24377
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polyhedral magnetic iron oxide nanocrystals with multiple facets have been embedded in biocompatible and biodegradable polymeric matrices in order to study their structural, magnetic features and alternating-current (AC) magnetic heating efficiency. The encapsulation of iron oxide nanoparticles into a polymer matrix was confirmed by transmission electron microscopy and further corroborated by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM tomography proved that the iron oxide nanocrystals consist of well-defined polyhedral structures with multiple facets. The magnetic features were found to be in good agreement with the structural and morphological features and are maintained even after encapsulation. Furthermore, the magnetic nanoparticles inside these matrices may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field. The anticancer Taxol drug was encapsulated in these nanoparticles and its physical state and release rate at 37 and 42 °C was studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326745100068 Publication Date 2013-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 19 Open Access
Notes Countatoms; IAP Approved Most recent IF: 3.108; 2013 IF: 3.708
Call Number UA @ lucian @ c:irua:111395 Serial 2671
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Schoeters, B.; Partoens, B.
Title System-size dependent band alignment in lateral two-dimensional heterostructures Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume (up) 3 Issue 3 Pages 025012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic band alignment in semiconductor heterostructures is a key factor for their use in electronic applications. The alignment problem has been intensively studied for bulk systems but is less well understood for low-dimensional heterostructures. In this work we investigate the alignment in two-dimensional lateral heterostructures. First-principles calculations are used to show that the electronic band offset depends crucially on the width and thickness of the heterostructure slab. The particular heterostructures under study consist of thin hydrogenated and fluorinated diamond slabs which are laterally joined together. Two different limits for the band offset are observed. For infinitely wide heterostructures the vacuum potential above the two materials is aligned leading to a large step potential within the heterostructure. For infinitely thick heterostructure slabs, on the other hand, there is no potential step in the heterostructure bulk, but a large potential step in the vacuum region above the heterojunction is observed. The band alignment in finite systems depends on the particular dimensions of the system. These observations are shown to result from an interface dipole at the heterojunction that tends to align the band structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378571400032 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government— department EWI. Approved Most recent IF: 6.937
Call Number c:irua:132792 c:irua:132792 Serial 4055
Permanent link to this record
 

 
Author Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O.
Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
Year 2015 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume (up) 3 Issue 3 Pages 3971-3979
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352870400018 Publication Date 2015-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 19 Open Access
Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696
Call Number UA @ lucian @ c:irua:132575 Serial 4245
Permanent link to this record
 

 
Author Debroye, E.; Yuan, H.; Bladt, E.; Baekelant, W.; Van der Auweraer, M.; Hofkens, J.; Bals, S.; Roeffaers, M.B.J.
Title Facile morphology-controlled synthesis of organolead iodide perovskite nanocrystals using binary capping agents Type A1 Journal article
Year 2017 Publication ChemNanoMat : chemistry of nanomaterials for energy, biology and more Abbreviated Journal Chemnanomat
Volume (up) 3 Issue 3 Pages 223-227
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Controlling the morphology of organolead halide perovskite crystals is crucial to a fundamental understanding of the materials and to tune their properties for device applications. Here, we report a facile solution-based method for morphology-controlled synthesis of rod-like and plate-like organolead halide perovskite nanocrystals using binary capping agents. The morphology control is likely due to an interplay between surface binding kinetics of the two capping agents at different crystal facets. By high-resolution scanning transmission electron microscopy, we show that the obtained nanocrystals are monocrystalline. Moreover, long photoluminescence decay times of the nanocrystals indicate long charge diffusion lengths and low trap/defect densities. Our results pave the way for large-scale solution synthesis of organolead halide perovskite nanocrystals with controlled morphology for future device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399604300003 Publication Date 2017-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-692x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.937 Times cited 19 Open Access OpenAccess
Notes ; We acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, postdoctoral fellowship to E. D. and H. Y.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196) and the ERC project LIGHT (GA307523). S. B. acknowledges financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS). E. B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen). ; ecas_Sara Approved Most recent IF: 2.937
Call Number UA @ lucian @ c:irua:143678UA @ admin @ c:irua:143678 Serial 4656
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Functional silicene and stanene nanoribbons compared to graphene: electronic structure and transport Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume (up) 3 Issue 1 Pages 015001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Since the advent of graphene, other 2D materials have garnered interest; notably the single element materials silicene, germanene, and stanene. Weinvestigate the ballistic current-voltage (I-V) characteristics of armchair silicene and stanene armchair nanoribbons (AXNRs with X = Si, Sn) using a combination of density functional theory and non-equilibrium Green's functions. The impact of out-of-plane electric field and in-plane uniaxial strain on the ribbon geometries, electronic structure, and (I-V)s are considered and contrasted with graphene. Since silicene and stanene are sp(2)/sp(3) buckled layers, the electronic structure can be tuned by an electric field that breaks the sublattice symmetry, an effect absent in graphene. This decreases the current by similar to 50% for Sn, since it has the largest buckling. Uniaxial straining of the ballistic channel affects the AXNR electronic structure in multiple ways: it changes the bandgap and associated effective carrier mass, and creates a local buckling distortion at the lead-channel interface which induces a interface dipole. Due to the increasing sp(3) hybridization character with increasing element mass, large reconstructions rectify the strained systems, an effect absent in sp(2) bonded graphene. This results in a smaller strain effect on the current: a decrease of 20% for Sn at 15% tensile strain compared to a similar to 75% decrease for C.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000373936300021 Publication Date 2016-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:144746 Serial 4658
Permanent link to this record
 

 
Author Sankaran, K.; Clima, S.; Mees, M.; Pourtois, G.
Title Exploring alternative metals to Cu and W for interconnects applications using automated first-principles simulations Type A1 Journal article
Year 2015 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume (up) 4 Issue 4 Pages N3127-N3133
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The bulk properties of elementary metals and copper based binary alloys have been investigated using automated first-principles simulations to evaluate their potential to replace copper and tungsten as interconnecting wires in the coming CMOS technology nodes. The intrinsic properties of the screened candidates based on their cohesive energy and on their electronic properties have been used as a metrics to reflect their resistivity and their sensitivity to electromigration. Using these values, the 'performances' of the alloys have been benchmarked with respect to the Cu and W ones. It turns out that for some systems, alloying Cu with another element leads to a reduced tendency to electromigration. This is however done at the expense of a decrease of the conductivity of the alloy with respect to the bulk metal. (C) 2014 The Electrochemical Society. All rights reserved.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000349547900018 Publication Date 2014-11-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769;2162-8777; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 19 Open Access
Notes Approved Most recent IF: 1.787; 2015 IF: 1.558
Call Number c:irua:125296 Serial 1150
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J.L.; Meledin, A.; Van Tendeloo, G.; Celentano, G.
Title Enhanced 77K vortex-pinning in YBa2Cu3O7−x films with Ba2YTaO6 and mixed Ba2YTaO6 + Ba2YNbO6 nano-columnar inclusions with irreversibility field to 11T Type A1 Journal article
Year 2016 Publication APL materials Abbreviated Journal Apl Mater
Volume (up) 4 Issue 4 Pages 061101
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Pulsed laser deposited thin YBa2Cu3O7−x (YBCO) films with pinning additions of 5at.% Ba2YTaO6 (BYTO) were compared to films with 2.5at.% Ba2YTaO6 + 2.5at.% Ba2YNbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10T (YBCO-BYTO) and 11T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379042400002 Publication Date 2016-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 19 Open Access
Notes This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432 Approved Most recent IF: 4.335
Call Number c:irua:133785 Serial 4077
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Ata, I.; Duche, D.; Gaceur, M.; Koganezawa, T.; Yoshimoto, N.; Simon, J.-J.; Escoubas, L.; Videlot-Ackermann, C.; Margeat, O.; Bals, S.; Bauerle, P.; Ackermann, J.
Title Time evolution studies of dithieno[3,2-b:2 ',3 '-d] pyrrole-based A-D-A oligothiophene bulk heterojunctions during solvent vapor annealing towards optimization of photocurrent generation Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume (up) 5 Issue 5 Pages 1005-1013
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Solvent vapor annealing (SVA) is one of the main techniques to improve the morphology of bulk heterojunction solar cells using oligomeric donors. In this report, we study time evolution of nanoscale morphological changes in bulk heterojunctions based on a well-studied dithienopyrrole-based A-D-A oligothiophene (dithieno[3,2-b: 2',3'-d] pyrrole named here 1) blended with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) to increase photocurrent density by combining scanning transmission electron microscopy and low-energy-loss spectroscopy. Our results show that SVA transforms the morphology of 1 : PC71BM blends by a three-stage mechanism: highly intermixed phases evolve into nanostructured bilayers that correspond to an optimal blend morphology. Additional SVA leads to completely phaseseparated micrometer-sized domains. Optical spacers were used to increase light absorption inside optimized 1 : PC71BM blends leading to solar cells of 7.74% efficiency but a moderate photocurrent density of 12.3 mA cm (-2). Quantum efficiency analyses reveal that photocurrent density is mainly limited by losses inside the donor phase. Indeed, optimized 1 : PC71BM blends consist of large donor-enriched domains not optimal for exciton to photocurrent conversion. Shorter SVA times lead to smaller domains; however they are embedded in large mixed phases suggesting that introduction of stronger molecular packing may help us to better balance phase separation and domain size enabling more efficient bulk heterojunction solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000394430800018 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 19 Open Access Not_Open_Access
Notes ; We acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, Grant number: 287594). The synchrotron radiation experiments were performed at BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2016A1568). We further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142602UA @ admin @ c:irua:142602 Serial 4695
Permanent link to this record
 

 
Author Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J.; Van der Eycken, J.; Detavernier, C.; Van Der Voort, P.
Title Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst Type A1 Journal article
Year 2016 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume (up) 6 Issue 6 Pages 45
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373533300009 Publication Date 2016-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access
Notes Karen Leus acknowledges the financial support from the Ghent University “Bijzonder Onderzoeksfonds” BOF post-doctoral Grant 01P06813T and UGent “Geconcentreeerde Onderzoekacties” GOA Grant 01G00710. Jolien Dendooven and Stuart Turner gratefully acknowledges the “Fonds Wetenschappelijk Onderzoek” FWO Vlaanderen for a post-doctoral scholarship. Christophe Detavernier thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014) for financial support. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the “Belgian Interuniversitaire Attractie Pool-Pôle d'Attraction Interuniversitaire” IAP-PAI network. Approved Most recent IF: 3.553
Call Number c:irua:131902 Serial 4015
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L.
Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume (up) 7 Issue 7 Pages 442
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419186800037 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.553 Times cited 19 Open Access OpenAccess
Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553
Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802
Permanent link to this record
 

 
Author Joao, S.M.; Andelkovic, M.; Covaci, L.; Rappoport, T.G.; Lopes, J.M.V.P.; Ferreira, A.
Title KITE : high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures Type A1 Journal article
Year 2020 Publication Royal Society Open Science Abbreviated Journal Roy Soc Open Sci
Volume (up) 7 Issue 2 Pages 191809-191832
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N similar to 10(10)). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518020200001 Publication Date 2020-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited 19 Open Access OpenAccess
Notes ; T.G.R. and A.F. acknowledge support from the Newton Fund and the Royal Society through the Newton Advanced Fellowship scheme (ref. no. NA150043). M.A. and L.C. acknowledge support from the Trans2DTMD FlagEra project and the VSC (Flemish Supercomputer Center). A.F. acknowledges support from the Royal Society through a University Research Fellowship (ref. nos. UF130385 and URF-R-191021) and an Enhancement Award (ref. no. RGF-EA-180276). T.G.R. acknowledges the support from the Brazilian agencies CNPq and FAPERJ and COMPETE2020, PORTUGAL2020, FEDER and the Portuguese Foundation for Science and Technology (FCT) through project POCI-01-0145-FEDER-028114. S.M.J. is supported by Fundacao para a Ciencia e Tecnologia (FCT) under the grant no. PD/BD/142798/ 2018. S.M.J. and J.M.V.P.L. acknowledge financial support from the FCT, COMPETE 2020 programme in FEDER component (European Union), through projects POCI-01-0145-FEDER028887 and UID/FIS/04650/2013. S.M.J. and J.M.V.P.L. further acknowledge financial support from FCT through national funds, co-financed by COMPETE-FEDER (grant no. M-ERANET2/0002/2016 -UltraGraf) under the Partnership Agreement PT2020. ; Approved Most recent IF: 3.5; 2020 IF: 2.243
Call Number UA @ admin @ c:irua:167751 Serial 6556
Permanent link to this record
 

 
Author van Heurck, C.; Van Tendeloo, G.; Amelinckx, S.
Title The modulated structure in the melilite CA2ZnGe2O7 Type A1 Journal article
Year 1992 Publication Physics and chemistry of minerals Abbreviated Journal Phys Chem Miner
Volume (up) 8 Issue Pages 441-452
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1992HM23200005 Publication Date 2004-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0342-1791;1432-2021; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.538 Times cited 19 Open Access
Notes Approved CHEMISTRY, PHYSICAL 54/144 Q2 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 9/35 Q2 #
Call Number UA @ lucian @ c:irua:4438 Serial 2164
Permanent link to this record
 

 
Author Lackmann, J.-W.; Wende, K.; Verlackt, C.; Golda, J.; Volzke, J.; Kogelheide, F.; Held, J.; Bekeschus, S.; Bogaerts, A.; Schulz-von der Gathen, V.; Stapelmann, K.
Title Chemical fingerprints of cold physical plasmas – an experimental and computational study using cysteine as tracer compound Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume (up) 8 Issue 1 Pages 7736
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432275800035 Publication Date 2018-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 19 Open Access OpenAccess
Notes This work was supported by the German Research Foundation (DFG, grant PAK816 to V.SvdG.), the Federal German Ministry of Education and Research (grant number 03Z22DN12 to K.W. and 03Z22DN11 to S.B.), and the FWO-Flanders (grant number G012413N to A.B.). K.W. likes to thank T. von Woedtke and K.-D. Weltmann for constant support. The authors thank K. Kartaschew for fruitful discussion and G. Bruno for support during mock studies. Approved Most recent IF: 4.259
Call Number PLASMANT @ plasmant @c:irua:151241 Serial 4957
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title Quantum charge density fluctuations and the γ-α phase transition in Ce Type A1 Journal article
Year 1999 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B
Volume (up) 9 Issue Pages 619-634
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000081615500009 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.461 Times cited 19 Open Access
Notes Approved Most recent IF: 1.461; 1999 IF: 1.705
Call Number UA @ lucian @ c:irua:28504 Serial 2774
Permanent link to this record
 

 
Author Alexandrov, A.L.; Schweigert, I.V.; Peeters, F.M.
Title A non-Maxwellian kinetic approach for charging of dust particles in discharge plasmas Type A1 Journal article
Year 2008 Publication New journal of physics Abbreviated Journal New J Phys
Volume (up) 10 Issue Pages 093025,1-093025,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nanoparticle charging in a capacitively coupled radio frequency discharge in argon is studied using a particle in cell Monte Carlo collisions method. The plasma parameters and dust potential were calculated self-consistently for different unmovable dust profiles. A new method for definition of the dust floating potential is proposed, based on the information about electron and ion energy distribution functions, obtained during the kinetic simulations. This approach provides an accurate balance of the electron and ion currents on the dust particle surface and allows us to precisely calculate the dust floating potential. A comparison of the obtained floating potentials with the results of the traditional orbital motion limit (OML) theory shows that in the presence of the ion resonant charge exchange collisions, even when the OML approximation is valid, its results are correct only in the region of a weak electric field, where the ion drift velocity is much smaller than the thermal one. With increasing ion drift velocity, the absolute value of the calculated dust potential becomes significantly smaller than the theory predicts. This is explained by a non-Maxwellian shape of the ion energy distribution function for the case of fast ion drift.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000259615700004 Publication Date 2008-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 19 Open Access
Notes Approved Most recent IF: 3.786; 2008 IF: 3.440
Call Number UA @ lucian @ c:irua:76519 Serial 2348
Permanent link to this record
 

 
Author Gorbanev, Y.; Engelmann, Y.; van’t Veer, K.; Vlasov, E.; Ndayirinde, C.; Yi, Y.; Bals, S.; Bogaerts, A.
Title Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms Type A1 Journal article
Year 2021 Publication Catalysts Abbreviated Journal Catalysts
Volume (up) 11 Issue 10 Pages 1230
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract N2 fixation into NH3 is one of the main processes in the chemical industry. Plasma catalysis is among the environmentally friendly alternatives to the industrial energy-intensive Haber-Bosch process. However, many questions remain open, such as the applicability of the conventional catalytic knowledge to plasma. In this work, we studied the performance of Al2O3-supported Fe, Ru, Co and Cu catalysts in plasma-catalytic NH3 synthesis in a DBD reactor. We investigated the effects of different active metals, and different ratios of the feed gas components, on the concentration and production rate of NH3, and the energy consumption of the plasma system. The results show that the trend of the metal activity (common for thermal catalysis) does not appear in the case of plasma catalysis: here, all metals exhibited similar performance. These findings are in good agreement with our recently published microkinetic model. This highlights the virtual independence of NH3 production on the metal catalyst material, thus validating the model and indicating the potential contribution of radical adsorption and Eley-Rideal reactions to the plasma-catalytic mechanism of NH3 synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000715656300001 Publication Date 2021-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 19 Open Access OpenAccess
Notes Catalisti, Moonshot P2C ; Research Foundation – Flanders, GoF9618n ; European Research Council, 810182 SCOPE 815128 REALNANO ; sygmaSB Approved Most recent IF: 3.082
Call Number EMAT @ emat @c:irua:183279 Serial 6815
Permanent link to this record
 

 
Author Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; Ostrikov, K.K.
Title White paper on the future of plasma science in environment, for gas conversion and agriculture Type A1 Journal article
Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume (up) 16 Issue 1 Pages 1700238
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Climate change, environmental pollution control, and resource utilization efficiency, as well as food security, sustainable agriculture, and water supply are among the main challenges facing society today. Expertise across different academic fields, technologies,anddisciplinesisneededtogeneratenewideastomeetthesechallenges. This “white paper” aims to provide a written summary by describing the main aspects and possibilities of the technology. It shows that plasma science and technology can make significant contributions to address the mentioned issues. The paper also addresses to people in the scientific community (inside and outside plasma science) to give inspiration for further work in these fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000455413600004 Publication Date 2018-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 19 Open Access Not_Open_Access
Notes This paper is a result of the PlasmaShape project, supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 316216. During this project, young scientists and renowned and outstanding scientists collaborated in the development of a political-scientific consensus paper as well as six scientific, strategic white papers. In an unique format core themes such as energy, optics and glass, medicine and hygiene, aerospace and automotive, plastics and textiles, environment and agriculture and their future development were discussed regarding scientific relevance and economic impact. We would like to thank our colleagues from 18 nations from all over the world (Australia, Belgium, Czech Republic, PR China, France, Germany, Great Britain, Italy, Japan, The Netherlands, Poland, Romania, Russia, Slovakia, Slovenia, Sweden, Switzerland, USA) who have participated both workshops of Future in Plasma Science I and II in Greifswald in 2015/2016. The valuable contribution of all participants during the workshops, the intensive cooperation between the project partners, and the comprehensive input of all working groups of Future in Plasma Science was the base for the present paper. Kindly acknowledged is the support of graphical work by C. Desjardins and K. Drescher. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156389 Serial 5146
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
Year 2011 Publication Optics express Abbreviated Journal Opt Express
Volume (up) 19 Issue 17 Pages 15955-15964
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000293894900033 Publication Date 2011-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 19 Open Access
Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587
Call Number UA @ lucian @ c:irua:92428 Serial 2776
Permanent link to this record
 

 
Author Matsubara, M.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Doping anatase TiO2with group V-b and VI-b transition metal atoms: a hybrid functional first-principles study Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume (up) 19 Issue 19 Pages 1945-1952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We investigate the role of transition metal atoms of group V-b (V, Nb, Ta) and VI-b (Cr, Mo, W) as n- or p-type dopants in anatase TiO$2$ using thermodynamic

principles and density functional theory with the Heyd-Scuseria-Ernzerhof HSE06 hybrid functional. The HSE06 functional provides a realistic value for the band gap, which ensures a correct classification of dopants as shallow or deep donors or acceptors. Defect formation energies and thermodynamic transition levels are calculated taking into account the constraints imposed by the stability of TiO$
2$ and the solubility limit of the impurities.

Nb, Ta, W and Mo are identified as shallow donors. Although W provides two electrons, Nb and Ta show a considerable lower formation energy, in particular under O-poor conditions. Mo donates in principle one electron, but under specific conditions can turn into a double donor. V impurities are deep donors and Cr

shows up as an amphoteric defect, thereby acting as an electron trapping center in n-type TiO$_2$ especially under O-rich conditions. A comparison with the available experimental data yields excellent agreement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394426400027 Publication Date 2016-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 19 Open Access OpenAccess
Notes We gratefully acknowledge financial support from the IWTVlaanderenthrough projects G.0191.08 and G.0150.13, and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation. M. M. acknowledges financial support from the GOA project ‘‘XANES meets ELNES’’ of the University of Antwerp. Approved Most recent IF: 4.123
Call Number EMAT @ emat @ c:irua:140835 Serial 4421
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Lee, J.H.; Piamonteze, C.; Spreitzer, M.; Jannis, D.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G.
Title Spatially controlled octahedral rotations and metal-insulator transitions in nickelate superlattices Type A1 Journal article
Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett
Volume (up) 21 Issue 3 Pages 1295-1302
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The properties of correlated oxides can be manipulated by forming short-period superlattices since the layer thicknesses are comparable with the typical length scales of the involved correlations and interface effects. Herein, we studied the metal-insulator transitions (MITs) in tetragonal NdNiO3/SrTiO3 superlattices by controlling the NdNiO3 layer thickness, n in the unit cell, spanning the length scale of the interfacial octahedral coupling. Scanning transmission electron microscopy reveals a crossover from a modulated octahedral superstructure at n = 8 to a uniform nontilt pattern at n = 4, accompanied by a drastically weakened insulating ground state. Upon further reducing n the predominant dimensionality effect continuously raises the MIT temperature, while leaving the antiferromagnetic transition temperature unaltered down to n = 2. Remarkably, the MIT can be enhanced by imposing a sufficiently large strain even with strongly suppressed octahedral rotations. Our results demonstrate the relevance for the control of oxide functionalities at reduced dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000619638600014 Publication Date 2021-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 19 Open Access OpenAccess
Notes This work is supported by the international M-ERA.NET project SIOX (project 4288). J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.S. acknowledges funding from Slovenian Research Agency (Grants J2-9237 and P2-0091). R.J.G. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. This work received support from the ERC CoG MINT (No. 615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in The Netherlands. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823717 -ESTEEM3. Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:176753 Serial 6736
Permanent link to this record
 

 
Author Ray, S.; Kolen'ko, Y.V.; Kovnir, K.A.; Lebedev, O.I.; Turner, S.; Chakraborty, T.; Erni, R.; Watanabe, T.; Van Tendeloo, G.; Yoshimura, M.; Itoh, M.
Title Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals Type A1 Journal article
Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume (up) 23 Issue 2 Pages 025702,1-025702,10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO3. The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site (\mathrm {OH}\mathrm {(O)}
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000298409000011 Publication Date 2011-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 19 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 3.44; 2012 IF: 3.842
Call Number UA @ lucian @ c:irua:93636 Serial 614
Permanent link to this record
 

 
Author Singh, K.; Maignan, A.; Simon, C.; Kumar, S.; Martin, C.; Lebedev, O.; Turner, S.; Van Tendeloo, G.
Title Magnetodielectric CuCr0.5V0.5O2 : an example of a magnetic and dielectric multiglass Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume (up) 24 Issue 22 Pages 226002-226002,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The complex dielectric susceptibility and spin glass properties of polycrystalline CuCr0.5V 0.5O2 delafossite have been investigated. Electron diffraction, high resolution electron microscopy and electron energy loss spectroscopy show that the Cr3+ and V 3+ magnetic cations are randomly distributed on the triangular network of CdI2-type layers. In contrast to CuCrO2, CuCr0.5V 0.5O2 exhibits two distinctive (magnetic and electric) glassy states evidenced by memory effects in electric and magnetic susceptibilities. A large magnetodielectric coupling is observed at low temperature.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000304873300027 Publication Date 2012-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 19 Open Access
Notes Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:98380 Serial 1916
Permanent link to this record
 

 
Author Spyrou, K.; Potsi, G.; Diamanti, E.K.; Ke, X.; Serestatidou, E.; Verginadis, I.I.; Velalopoulou, A.P.; Evangelou, A.M.; Deligiannakis, Y.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.;
Title Towards Novel Multifunctional Pillared Nanostructures: Effective Intercalation of Adamantylamine in Graphene Oxide and Smectite Clays Type A1 Journal article
Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume (up) 24 Issue 37 Pages 5841-5850
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multifunctional pillared materials are synthesized by the intercalation of cage-shaped adamantylamine (ADMA) molecules into the interlayer space of graphite oxide (GO) and aluminosilicate clays. The physicochemical and structural properties of these hybrids, determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman and X-ray photoemission (XPS) spectroscopies and transmission electron microscopy (TEM) show that they can serve as tunable hydrophobic/hydrophilic and stereospecific nanotemplates. Thus, in ADMA-pillared clay hybrids, the phyllomorphous clay provides a hydrophilic nanoenvironment where the local hydrophobicity is modulated by the presence of ADMA moieties. On the other hand, in the ADMA-GO hybrid, both the aromatic rings of GO sheets and the ADMA molecules define a hydrophobic nanoenvironment where sp(3)-oxo moieties (epoxy, hydroxyl and carboxyl groups), present on GO, modulate hydrophilicity. As test applications, these pillared nanostructures are capable of selective/stereospecific trapping of small chlorophenols or can act as cytotoxic agents.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000342794500008 Publication Date 2014-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 19 Open Access
Notes Approved Most recent IF: 12.124; 2014 IF: 11.805
Call Number UA @ lucian @ c:irua:121085 Serial 3686
Permanent link to this record
 

 
Author Gorlé, C.; Larsson, J.; Emory, M.; Iaccarino, G.
Title The deviation from parallel shear flow as an indicator of linear eddy-viscosity model inaccuracy Type A1 Journal article
Year 2014 Publication Physics of fluids Abbreviated Journal Phys Fluids
Volume (up) 26 Issue 5 Pages 051702
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A marker function designed to indicate in which regions of a generic flow field the results from linear eddy-viscosity turbulence models are plausibly inaccurate is introduced. The marker is defined to identify regions that deviate from parallel shear flow. For two different flow fields it is shown that these regions largely coincide with regions where the prediction of the Reynolds stress divergence is inaccurate. The marker therefore offers a guideline for interpreting results obtained from Reynolds-averaged Navier-Stokes simulations and provides a basis for the further development of turbulence model-form uncertainty quantification methods. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000337103900002 Publication Date 2014-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-6631;1089-7666; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.232 Times cited 19 Open Access
Notes Approved Most recent IF: 2.232; 2014 IF: 2.031
Call Number UA @ lucian @ c:irua:118385 Serial 684
Permanent link to this record
 

 
Author Woo, S.Y.; Gauquelin, N.; Nguyen, H.P.T.; Mi, Z.; Botton, G.A.
Title Interplay of strain and indium incorporation in InGaN/GaN dot-in-a-wire nanostructures by scanning transmission electron microscopy Type A1 Journal article
Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume (up) 26 Issue 26 Pages 344002
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interplay between strain and composition is at the basis of heterostructure design to engineer new properties. The influence of the strain distribution on the incorporation of indium during the formation of multiple InGaN/GaN quantum dots (QDs) in nanowire (NW) heterostructures has been investigated, using the combined techniques of geometric phase analysis of atomic-resolution images and quantitative elemental mapping from core-loss electron energy-loss spectroscopy within scanning transmission electron microscopy. The variation in In-content between successive QDs within individual NWs shows a dependence on the magnitude of compressive strain along the growth direction within the underlying GaN barrier layer, which affects the incorporation of In-atoms to minimize the local effective strain energy. Observations suggest that the interfacial misfit between InGaN/GaN within the embedded QDs is mitigated by strain partitioning into both materials, and results in normal stresses inflicted by the presence of the surrounding GaN shell. These experimental measurements are linked to the local piezoelectric polarization fields for individual QDs, and are discussed in terms of the photoluminescence from an ensemble of NWs.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000359079500003 Publication Date 2015-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 19 Open Access
Notes Approved Most recent IF: 3.44; 2015 IF: 3.821
Call Number UA @ lucian @ c:irua:136278 Serial 4504
Permanent link to this record
 

 
Author Vernimmen, J.; Guidotti, M.; Silvestre-Albero, J.; Jardim, E.O.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Psaro, R.; Rodríguez-Reinoso, F.; Meynen, V.; Cool, P.
Title Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene Type A1 Journal article
Year 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
Volume (up) 27 Issue 7 Pages 3618-3625
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000288970900054 Publication Date 2011-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.833 Times cited 19 Open Access
Notes Approved Most recent IF: 3.833; 2011 IF: 4.186
Call Number UA @ lucian @ c:irua:88366 Serial 1557
Permanent link to this record
 

 
Author Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C.
Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume (up) 27 Issue 2 Pages 024001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000424520100001 Publication Date 2018-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 19 Open Access OpenAccess
Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Maneval, J.P.; Peeters, F.M.
Title Effect of pinning on the response of superconducting strips to an external pulsed current Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume (up) 28 Issue 28 Pages 025004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the anisotropic time-dependent Ginzburg-Landau theory we study the effect of ordered and disordered pinning on the time response of superconducting strips to an external current that switched on abruptly. The pinning centers result in a considerable delay of the response time of the system to such abrupt switching on of the current, whereas the output voltage is always larger when pinning is present. The resistive state in both cases are characterized either by dynamically stable phase-slip centers/lines or expanding in-time hot-spots, which are the main mechanisms for dissipation in current-carrying superconductors. We find that hot-spots are always initiated by the phase-slip state. However, the range of the applied current for the phase-slip state increases significantly when pinning is introduced. Qualitative changes are observed in the dynamics of the superconducting condensate in the presence of pinning.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000351046300010 Publication Date 2014-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 19 Open Access
Notes ; This work was supported by EU Marie Curie (Project No: 253057), the Flemish Science Foundation (FWO-Vl) and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:125491 Serial 829
Permanent link to this record
 

 
Author Scarabelli, L.; Schumacher, M.; Jimenez de Aberasturi, D.; Merkl, J.‐P.; Henriksen‐Lacey, M.; Milagres de Oliveira, T.; Janschel, M.; Schmidtke, C.; Bals, S.; Weller, H.; Liz‐Marzán, L.M.
Title Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume (up) 29 Issue 29 Pages 1809071
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The implementation of plasmonic nanoparticles in vivo remains hindered by important limitations such as biocompatibility, solubility in biological fluids, and physiological stability. A general and versatile protocol is presented, based on seeded emulsion polymerization, for the controlled encapsulation of gold and silver nanoparticles. This procedure enables the encapsulation of single nanoparticles as well as nanoparticle clusters inside a protecting polymer shell. Specifically, the efficient coating of nanoparticles of both metals is demonstrated, with final dimensions ranging between 50 and 200 nm, i.e., sizes of interest for bio-applications. Such hybrid nanocomposites display extraordinary stability in high ionic strength and oxidizing environments, along with high cellular uptake, and low cytotoxicity. Overall, the prepared nanostructures are promising candidates for plasmonic applications under biologically relevant conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000467109100024 Publication Date 2019-02-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 19 Open Access OpenAccess
Notes L.S. and M.S. contributed equally to this work. This work was supported by the Spanish MINECO (Grant MAT2017-86659-R), by the German Research Foundation (DFG, Grant LA 2901/1-1) and by the European Research Council (Grant 335078 COLOURATOM to S.B). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M). L.S. acknowledges funding from the American-Italian Cancer Foundation through a Post-Doctoral Research Fellowship. D.J.d.A. thanks MINECO for a Juan de la Cierva fellowship (IJCI-2015-24264). J.P.M. was financed by Verband der Chemischen Industrie e.V. (VCI). The authors thank Dr. Artur Feld, Dr. Andreas Kornowski and Stefan Werner (Institute of Physical Chemistry, University of Hamburg) for their support. Approved Most recent IF: 12.124
Call Number EMAT @ emat @UA @ admin @ c:irua:160710 Serial 5190
Permanent link to this record