|   | 
Details
   web
Records
Author Moro, G.; Campos, R.; Daems, E.; Moretto, L.M.; De Wael, K.
Title Haem-mediated albumin biosensing : towards voltammetric detection of PFOA Type A1 Journal article
Year 2023 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 152 Issue Pages 108428-7
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract The haem group is a promising redox probe for the design of albumin-based voltammetric sensors. Among the endogenous ligands carried by human serum albumin (hSA), haem is characterised by a reversible redox behaviour and its binding kinetics strongly depend on hSA’s conformation, which, in turn, depends on the presence of other ligands. In this work, the potential applicability of haem, especially hemin, as a redox probe was first tested in a proof-of-concept study using perfluorooctanoic acid (PFOA) as model analyte. PFOA is known to bind hSA by occupying Sudlow’s I site (FA7) which is spatially related to the haem-binding site (FA1). The latter undergoes a conformational change, which is expected to affect hemin’s binding kinetics. To verify this hypothesis, hemin:albumin complexes in the presence/absence of PFOA were first screened by UV–Vis spectroscopy. Once the complex formation was verified, haem was further characterised via electrochemical methods to estimate its electron transfer kinetics. The hemin:albumin:PFOA system was studied in solution, with the aim of describing the multiple equilibria at stake and designing an electrochemical assay for PFOA monitoring. This latter could be integrated with protein-based bioremediation approaches for the treatment of per- and polyfluoroalkyl substances polluted waters. Overall, our preliminary results show how hemin can be applied as a redox probe in albumin-based voltammetric sensing strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971630400001 Publication Date 2023-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5; 2023 IF: 3.346
Call Number UA @ admin @ c:irua:195069 Serial 8876
Permanent link to this record
 

 
Author Benedet, M.; Andrea Rizzi, G.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Maccato, C.; Barreca, D.
Title Functionalization of graphitic carbon nitride systems by cobalt and cobalt-iron oxides boosts solar water oxidation performances Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 618 Issue Pages 156652
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The ever-increasing energy demand from the world population has made the intensive use of fossil fuels an overarching threat to global environment and human health. An appealing alternative is offered by sunlight-assisted photoelectrochemical water splitting to yield carbon-free hydrogen fuel, but kinetic limitations associated to the oxygen evolution reaction (OER) render the development of cost-effective, eco-friendly and stable electrocatalysts an imperative issue. In the present work, OER catalysts based on graphitic carbon nitride (g-C3N4) were deposited on conducting glass substrates by a simple decantation procedure, followed by functionalization with low amounts of nanostructured CoO and CoFe2O4 by radio frequency (RF)-sputtering, and final annealing under inert atmosphere. A combination of advanced characterization tools was used to investigate the interplay between material features and electrochemical performances. The obtained results highlighted the formation of a p-n junction for the g-C3N4-CoO system, whereas a Z-scheme junction accounted for the remarkable performance enhancement yielded by g-C3N4-CoFe2O4. The intimate contact between the system components also afforded an improved electrocatalyst stability in comparison to various bare and functionalized g-C3N4-based systems. These findings emphasize the importance of tailoring g-C3N4 chemico-physical properties through the dispersion of complementary catalysts to fully exploit its applicative potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950654300001 Publication Date 2023-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 11 Open Access OpenAccess
Notes The authors gratefully acknowledge financial support from CNR (Progetti di Ricerca @CNR – avviso 2020 – ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO – NANOMAT, INSTM21PDBARMAC – ATENA) and the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. The FWO-Hercules fund G0H4316N 'Direct electron detector for soft matter TEM' is also acknowledged. Many thanks are due to Prof. Luca Gavioli (Università Cattolica del Sacro Cuore, Brescia, Italy) and Dr. Riccardo Lorenzin (Department of Chemical Sciences, Padova University, Italy) for their invaluable technical support.; esteem3reported; esteem3TA Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number EMAT @ emat @c:irua:196150 Serial 7376
Permanent link to this record
 

 
Author Nematollahi, P.
Title Selectivity of Mo-NC sites for electrocatalytic N₂ reduction : a function of the single atom position on the surface and local carbon topologies Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 612 Issue Pages 155908-155909
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Transition metal (TM) doped two-dimensional single-atom catalysts are known as a promising class of catalysts for electrocatalytic gas conversion. However, the detailed mechanisms that occur at the surface of these catalysts are still unknown. In the present work, we simulate three Mo-doped nitrogenated graphene structures. In each catalyst, the position of the Mo active site and the corresponding local carbon topologies are different, i.e. MoN4C10 with in-plane Mo atom, MoN4C8 in which Mo atom bridges two adjacent armchair-like graphitic edges, and MoN2C3 in which Mo is doped at the edge of the graphene sheet. Using Density Functional Theory (DFT) calculations we discuss the electrocatalytic activity of Mosingle bondNsingle bondC structures for nitrogen reduction reaction (NRR) with a focus on unraveling the corresponding mechanisms concerning different Mo site positions and C topologies. Our results indicate that the position of the active site centers has a great effect on its electrocatalytic behavior. The gas phase N2 efficiently reduces to ammonia on MoN4C8 via the distal mechanism with an onset potential of −0.51 V. We confirm that the proposed pyridinic structure, MoN4C8, can catalyze NRR effectively with a low overpotential of 0.35 V.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000901469900003 Publication Date 2022-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number UA @ admin @ c:irua:192430 Serial 7275
Permanent link to this record
 

 
Author Li, C.-F.; Chen, L.-D.; Wu, L.; Liu, Y.; Hu, Z.-Y.; Cui, W.-J.; Dong, W.-D.; Liu, X.; Yu, W.-B.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title Directly revealing the structure-property correlation in Na+-doped cathode materials Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 612 Issue Pages 155810-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The introduction of Na+ is considered as an effective way to improve the performance of Ni-rich cathode materials. However, the direct structure-property correlation for Na+ doped NCM-based cathode materials remain unclear, due to the difficulty of local and accurate structural characterization for light elements such as Li and Na. Moreover, there is the complexity of the modeling for the whole Li ion battery (LIB) system. To tackle the above-mentioned issues, we prepared Na+-doped LiNi0.6Co0.2Mn0.2O2 (Na-NCM622) material. The crystal structure change and the lattice distortion with picometers precision of the Na+-doped material is revealed by Cs-corrected scanning transmission electron microscopy (STEM). Density functional theory (DFT) and the recently proposed electrochemical model, i.e., modified Planck-Nernst-Poisson coupled Frumkin-Butler-Volmer (MPNP-FBV), has been applied to reveal correlations between the activation energy and the charge transfer resistance at multiscale. It is shown that Na+ doping can reduce the activation energy barrier from. G = 1.10 eV to 1.05 eV, resulting in a reduction of the interfacial resistance from 297 O to 134 Omega. Consequently, the Na-NCM622 cathode delivers a superior capacity retention of 90.8 % (159 mAh.g(-1)) after 100 cycles compared to the pristine NCM622 (67.5 %, 108 mAh.g(-1)). Our results demonstrate that the kinetics of Li+ diffusion and the electrochemical reaction can be enhanced by Na+ doping the cathode material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000892940300001 Publication Date 2022-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number UA @ admin @ c:irua:192758 Serial 7296
Permanent link to this record
 

 
Author Vasilakou, K.; Nimmegeers, P.; Thomassen, G.; Billen, P.; Van Passel, S.
Title Assessing the future of second-generation bioethanol by 2030 : a techno-economic assessment integrating technology learning curves Type A1 Journal article
Year 2023 Publication Applied energy Abbreviated Journal
Volume 344 Issue Pages 121263-15
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Lignocellulosic biomass is the most abundant source of renewable biomass and is seen as a high-potential replacement for petroleum-based resources. The conversion technologies to advanced biofuels are still at a low maturity level, thus allowing for future cost reductions through technological learning. This fact is barely considered in state-of-the-art techno-economic assessments and a structured approach to account for technological learning in techno-economic assessments is needed. In this study, a framework for techno-economic assessments of advanced biofuels, integrating learning curves, is proposed. As a validation of this framework, the economic feasibility of the valorization of corn stover for the production of second-generation bioethanol in Belgium is studied. Process flowsheet simulations in Aspen Plus are developed, with an emphasis on the comparison of four different pretreatment technologies and two plant capacities at 156 dry kt biomass/y and 667 dry kt/y. The dilute acid pretreatment model of the large-scale biorefinery required the lowest minimum learning rate to reach an economically feasible biorefinery by 2030, being 3.9%, almost half as the one calculated for the smaller scale plant. This learning rate seems to be achievable based on learning rates commonly estimated in literature. We conclude that there is a potential for advanced ethanol production in Belgium under the current state of technology for large-scale biorefineries, which require additional biomass imports, when accounting for future cost reductions through learning
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001007488700001 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-2619 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:196509 Serial 9186
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798
Permanent link to this record
 

 
Author Oliveira, M.C.; Cordeiro, R.M.; Bogaerts, A.
Title Effect of lipid oxidation on the channel properties of Cx26 hemichannels : a molecular dynamics study Type A1 Journal article
Year 2023 Publication Archives of biochemistry and biophysics Abbreviated Journal
Volume 746 Issue Pages 109741-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Intercellular communication plays a crucial role in cancer, as well as other diseases, such as inflammation, tissue degeneration, and neurological disorders. One of the proteins responsible for this, are connexins (Cxs), which come together to form a hemichannel. When two hemichannels of opposite cells interact with each other, they form a gap junction (GJ) channel, connecting the intracellular space of these cells. They allow the passage of ions, reactive oxygen and nitrogen species (RONS), and signaling molecules from the interior of one cell to another cell, thus playing an essential role in cell growth, differentiation, and homeostasis. The importance of GJs for disease induction and therapy development is becoming more appreciated, especially in the context of oncology. Studies have shown that one of the mechanisms to control the formation and disruption of GJs is mediated by lipid oxidation pathways, but the underlying mechanisms are not well understood. In this study, we performed atomistic molecular dynamics simulations to evaluate how lipid oxidation influences the channel properties of Cx26 hemichannels, such as channel gating and permeability. Our results demonstrate that the Cx26 hemichannel is more compact in the presence of oxidized lipids, decreasing its pore diameter at the extracellular side and increasing it at the amino terminus domains, respectively. The permeability of the Cx26 hemichannel for water and RONS molecules is higher in the presence of oxidized lipids. The latter may facilitate the intracellular accumulation of RONS, possibly increasing oxidative stress in cells. A better understanding of this process will help to enhance the efficacy of oxidative stress-based cancer treatments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079100300001 Publication Date 2023-09-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861; 1096-0384 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access
Notes Approved Most recent IF: 3.9; 2023 IF: 3.165
Call Number UA @ admin @ c:irua:200282 Serial 9028
Permanent link to this record
 

 
Author Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M.; Chen, Q.
Title Electronic properties of 2H-stacking bilayer MoS₂ measured by terahertz time-domain spectroscopy Type A1 Journal article
Year 2023 Publication Frontiers of physics Abbreviated Journal
Volume 18 Issue 5 Pages 53303-53311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moire superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991955300002 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.5; 2023 IF: 2.579
Call Number UA @ admin @ c:irua:197398 Serial 8818
Permanent link to this record
 

 
Author Bogaerts, A.
Title Special Issue on “Dielectric Barrier Discharges and their Applications” in Commemoration of the 20th Anniversary of Dr. Ulrich Kogelschatz’s Work Type A1 Journal Article
Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process
Volume 43 Issue 6 Pages 1281-1285
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract n/a
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110371000001 Publication Date 2023-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.6 Times cited Open Access Not_Open_Access
Notes n/a Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:201387 Serial 8969
Permanent link to this record
 

 
Author Lin, A.; Gromov, M.; Nikiforov, A.; Smits, E.; Bogaerts, A.
Title Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces Type A1 Journal Article
Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process
Volume 43 Issue 6 Pages 1587-1612
Keywords A1 Journal Article; Non-thermal plasma · Plasma medicine · Dielectric barrier discharge · Plasma diagnostics · Plasma surface interaction · In situ plasma monitoring; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract technologies have been expanding, and one of the most exciting and rapidly growing

applications is in biology and medicine. Most biomedical studies with DBD plasma systems are performed in vitro, which include cells grown on the surface of plastic well plates, or in vivo, which include animal research models (e.g. mice, pigs). Since many DBD systems use the biological target as the secondary electrode for direct plasma generation and treatment, they are sensitive to the surface properties of the target, and thus can be altered based on the in vitro or in vivo system used. This could consequently affect biological response from plasma treatment. Therefore, in this study, we investigated the DBD plasma behavior both in vitro (i.e. 96-well flat bottom plates, 96-well U-bottom plates, and 24-well flat bottom plates), and in vivo (i.e. mouse skin). Intensified charge coupled device (ICCD) imaging was performed and the plasma discharges were visually distinguishable between the different systems. The geometry of the wells did not affect DBD plasma generation for low application distances (≤ 2 mm), but differentially affected plasma uniformity on the bottom of the well at greater distances. Since DBD plasma treatment in vitro is rarely performed in dry wells for plasma medicine experiments, the effect of well wetness was also investigated. In all in vitro cases, the uniformity of the DBD plasma was affected when comparing wet versus dry wells, with the plasma in the wide-bottom wells appearing the most similar to plasma generated on mouse skin. Interestingly, based on quantification of ICCD images, the DBD plasma intensity per surface area demonstrated an exponential one-phase decay with increasing application distance, regardless of the in vitro or in vivo system. This trend is similar to that of the energy per pulse of plasma, which is used to determine the total plasma treatment energy for biological systems. Optical emission spectroscopy performed on the plasma revealed similar trends in radical species generation between the plastic well plates and mouse skin. Therefore, taken together, DBD plasma intensity per surface area may be a valuable parameter to be used as a simple method for in situ monitoring during biological treatment and active plasma treatment control, which can be applied for in vitro and in vivo systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001072607700001 Publication Date 2023-09-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access Not_Open_Access
Notes This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (A. L.), G044420N (A. L. and A. B.), and G033020N (A.B.). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number PLASMANT @ plasmant @c:irua:200285 Serial 8970
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
Year 2023 Publication Plasma chemistry and plasma processing Abbreviated Journal
Volume 43 Issue Pages 635-656
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000966639200001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number UA @ admin @ c:irua:196033 Serial 8516
Permanent link to this record
 

 
Author Admasu, W.F.; Van Passel, S.; Minale, A.S.; Tsegaye, E.A.; Nyssen, J.
Title Nexus between land development and the value of ecosystem services in Ethiopia : a contingent valuation study Type A1 Journal article
Year 2023 Publication Environment, development and sustainability Abbreviated Journal
Volume Issue Pages 1-21
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract In Ethiopia, the state owns all lands within the territory of the country. Cities are incorporating large parcels of land from their surrounding rural agricultural areas through land expropriation. However, these land developments do not consider the nonmarket value of ecosystem services (ES), which is causing a deterioration of the existing ES and reduction on the potential supply of ES from agricultural land. The aim of this study was to estimate the monetary value of nonmarketable ES from the agricultural land using a double-bounded dichotomous choice contingent valuation method. A survey of 524 smallholder farmers was conducted. In the survey, respondents were asked to state their willingness to pay for the improvement of some of the nonmarketable ES: erosion control, air and climate regulation, water regulation, and soil fertility. The estimation was carried out using a bivariate probit model. The results revealed that farmers are willing to pay on average 276 ETB (7.9 USD) per hectare per year for a period of 10 years. We found that individual characteristics such as age, family size, and a recent land expropriation experience adversely affect the willingness to pay by the farmers. On the other hand, individuals with higher income and larger land size are willing to pay more. In general, the study indicated that the nonmarket ES, which are affected by the land expropriation for urban expansion, are valuable for the farmers. Therefore, we recommend that the government consider the value of nonmarketable ES in its land use decisions and hence achieve sustainable land development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000907898700002 Publication Date 2023-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-585x; 1573-2975 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited Open Access Not_Open_Access: Available from 05.01.2024
Notes Approved Most recent IF: 4.9; 2023 IF: NA
Call Number UA @ admin @ c:irua:193432 Serial 7363
Permanent link to this record
 

 
Author Lian, M.; Shi, P.; Zhang, L.; Yao, W.; Gielis, J.; Niklas, K.J.
Title A generalized performance equation and its application in measuring the Gini index of leaf size inequality Type A1 Journal article
Year 2023 Publication Trees: structure and function Abbreviated Journal
Volume 37 Issue Pages 1555-1565
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The goal of this study is to provide a rigorous tool to quantify the inequality of the leaf size distribution of an individual plant, thereby serving as a reference trait for quantifying plant adaptations to local environmental conditions. The tool to be presented and tested employs three components: (1) a performance equation (PE), which can produce flexible asymmetrical and symmetrical bell-shaped curves, (2) the Lorenz curve (i.e., the cumulative proportion of leaf size vs. the cumulative proportion of number of leaves), which is the basis for calculating, and (3) the Gini index, which measures the inequality of leaf size distribution. We sampled 12 individual plants of a dwarf bamboo and measured the area and dry mass of each leaf of each plant. We then developed a generalized performance equation (GPE) of which the PE is a special case and fitted the Lorenz curve to leaf size distribution using the GPE and PE. The GPE performed better than the PE in fitting the Lorenz curve. We compared the Gini index of leaf area distribution with that of leaf dry mass distribution and found that there was a significant difference between the two indices that might emerge from the scaling relationship between leaf dry mass and area. Nevertheless, there was a strong correlation between the two Gini indices (r2 = 0.9846). This study provides a promising tool based on the GPE for quantifying the inequality of leaf size distributions across individual plants and can be used to quantify plant adaptations to local environmental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001069570200001 Publication Date 2023-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0931-1890; 1432-2285 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.3 Times cited Open Access Not_Open_Access: Available from 26.02.2024
Notes Approved Most recent IF: 2.3; 2023 IF: 1.842
Call Number UA @ admin @ c:irua:199562 Serial 8874
Permanent link to this record
 

 
Author Borah, R.; Ag, K.R.; Minja, A.C.; Verbruggen, S.W.
Title A review on self‐assembly of colloidal nanoparticles into clusters, patterns, and films : emerging synthesis techniques and applications Type A1 Journal article
Year 2023 Publication Small methods Abbreviated Journal
Volume Issue Pages 1-32
Keywords A1 Journal article; Engineering sciences. Technology
Abstract The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000940393200001 Publication Date 2023-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 12.4; 2023 IF: NA
Call Number UA @ admin @ c:irua:194597 Serial 7336
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P.
Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells (Small 12/2023) Type A1 Journal Article
Year 2023 Publication Small Abbreviated Journal Small
Volume 19 Issue 12 Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different

types of strategies and fuels, but the achievement of finite 3D structures with a controlled

morphology through this assembly mode is still rare. Here we used a spherical peptide-gold

superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs,

obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate

(SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution,

leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary

interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record
Impact Factor 13.3 Times cited Open Access Not_Open_Access
Notes P.M. is grateful to the European Research Council (ERC) for the Starting Grant ERC-2012- StG_20111012 FOLDHALO (Grant Agreement no. 307108) and the Proof-of-Concept Grant ERC-2017-PoC MINIRES (Grant Agreement no.789815). A. M. and P. M. are thankful to the project Hydrogex funded by Cariplo Foundation (grant no. 2018-1720). D.A.E. and S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO and Grant Agreement No. 731019 (EUSMI). Approved Most recent IF: 13.3; 2023 IF: 8.643
Call Number EMAT @ emat @c:irua:200859 Serial 8960
Permanent link to this record
 

 
Author Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P.
Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells Type A1 Journal article
Year 2023 Publication Small Abbreviated Journal
Volume Issue Pages 2206712
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but the achievement of finite 3D structures with a controlled morphology through this assembly mode is still rare. Here we used a spherical peptide-gold superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution, leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000914725800001 Publication Date 2023-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.3 Times cited 1 Open Access OpenAccess
Notes European Research Council, ERC‐2017‐PoC MINIRES 789815 ERC‐2012‐StG_20111012 FOLDHALO 307108 815128 ; Approved Most recent IF: 13.3; 2023 IF: 8.643
Call Number EMAT @ emat @c:irua:194299 Serial 7247
Permanent link to this record
 

 
Author Tampieri, F.; Gorbanev, Y.; Sardella, E.
Title Plasma‐treated liquids in medicine: Let's get chemical Type A1 Journal Article
Year 2023 Publication Plasma Processes and Polymers Abbreviated Journal Plasma Processes & Polymers
Volume 20 Issue 9 Pages e2300077
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Fundamental and applied research on plasma‐treated liquids for biomedical applications was boosted in the last few years, dictated by their advantages with respect to direct treatments. However, often, the lack of consistent analysis at a molecular level of these liquids, and of the processes used to produce them, have raised doubts of their usefulness in the clinic. The aim of this article is to critically discuss some basic aspects related to the use of plasma‐treated liquids in medicine, with a focus on their chemical composition. We analyze the main liquids used in the field, how they are affected by non‐thermal plasmas, and the possibility to replicate them without plasma treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001005060700001 Publication Date 2023-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.5 Times cited Open Access Not_Open_Access
Notes We thank COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Francesco Tampieri wishes to thank Dr. Cristina Canal for the helpful discussion during the planning stage of this paper. Approved Most recent IF: 3.5; 2023 IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:197386 Serial 8814
Permanent link to this record
 

 
Author Vallicrosa, H.; Lugli, L.F.; Fuchslueger, L.; Sardans, J.; Ramirez-Rojas, I.; Verbruggen, E.; Grau, O.; Brechet, L.; Peguero, G.; Van Langenhove, L.; Verryckt, L.T.; Terrer, C.; Llusia, J.; Ogaya, R.; Marquez, L.; Roc-Fernandez, P.; Janssens, I.; Penuelas, J.
Title Phosphorus scarcity contributes to nitrogen limitation in lowland tropical rainforests Type A1 Journal article
Year 2023 Publication Ecology Abbreviated Journal
Volume 104 Issue 6 Pages e4049-12
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract There is increasing evidence to suggest that soil nutrient availability can limit the carbon sink capacity of forests, a particularly relevant issue considering today's changing climate. This question is especially important in the tropics, where most part of the Earth's plant biomass is stored. To assess whether tropical forest growth is limited by soil nutrients and to explore N and P limitations, we analyzed stem growth and foliar elemental composition of the five stem widest trees per plot at two sites in French Guiana after 3 years of nitrogen (N), phosphorus (P), and N + P addition. We also compared the results between potential N-fixer and non-N-fixer species. We found a positive effect of N fertilization on stem growth and foliar N, as well as a positive effect of P fertilization on stem growth, foliar N, and foliar P. Potential N-fixing species had greater stem growth, greater foliar N, and greater foliar P concentrations than non-N-fixers. In terms of growth, there was a negative interaction between N-fixer status, N + P, and P fertilization, but no interaction with N fertilization. Because N-fixing plants do not show to be completely N saturated, we do not anticipate N providing from N-fixing plants would supply non-N-fixers. Although the soil-age hypothesis only anticipates P limitation in highly weathered systems, our results for stem growth and foliar elemental composition indicate the existence of considerable N and P co-limitation, which is alleviated in N-fixing plants. The evidence suggests that certain mechanisms invest in N to obtain the scarce P through soil phosphatases, which potentially contributes to the N limitation detected by this study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000977760600001 Publication Date 2023-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658; 1939-9170 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:196804 Serial 9218
Permanent link to this record
 

 
Author Cangi, A.; Moldabekov, Z.A.; Neilson, D.
Title International Conference on “Strongly Coupled Coulomb Systems” (July 24-29, 2022, Görlitz, Germany) Type Editorial
Year 2023 Publication Contributions to plasma physics Abbreviated Journal
Volume 63 Issue 9-10 Pages e202300110-3
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001100083800001 Publication Date 2023-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042; 1521-3986 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.6 Times cited Open Access
Notes Approved Most recent IF: 1.6; 2023 IF: 1.44
Call Number UA @ admin @ c:irua:201156 Serial 9051
Permanent link to this record
 

 
Author Bercx, M.; Mayda, S.; Depla, D.; Partoens, B.; Lamoen, D.
Title Plasmonic effects in the neutralization of slow ions at a metallic surface Type A1 Journal Article
Year 2023 Publication Contributions to Plasma Physics Abbreviated Journal Contrib. Plasma Phys
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Secondary electron emission is an important process that plays a significant role in several plasma‐related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliable yield data is critical as input for higher‐scale simulations. Here, we build upon our previous work combining density functional theory calculations with a model originally developed by Hagstrum to extend its application to metallic surfaces. As plasmonic effects play a much more important role in the secondary electron emission mechanism for metals, we introduce an approach based on Poisson point processes to include both surface and bulk plasmon excitations to the process. The resulting model is able to reproduce the yield spectra of several available experimental results quite well but requires the introduction of global fitting parameters, which describe the strength of the plasmon interactions. Finally, we use an in‐house developed workflow to calculate the electron yield for a list of elemental surfaces spanning the periodic table to produce an extensive data set for the community and compare our results with more simplified approaches from the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001067651300001 Publication Date 2023-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.6 Times cited Open Access Not_Open_Access
Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.6; 2023 IF: 1.44
Call Number EMAT @ emat @c:irua:200330 Serial 8962
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W.
Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
Year 2023 Publication Chemsuschem Abbreviated Journal
Volume 16 Issue 5 Pages e202201647-25
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000926901300001 Publication Date 2023-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 8.4; 2023 IF: 7.226
Call Number UA @ admin @ c:irua:193633 Serial 7335
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V.
Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal
Volume Issue Pages e202300437-13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071673900001 Publication Date 2023-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075
Call Number UA @ admin @ c:irua:198934 Serial 8911
Permanent link to this record
 

 
Author Moggia, G.; Hoekx, S.; Daems, N.; Bals, S.; Breugelmans, T.
Title Synthesis and characterization of a highly electroactive composite based on Au nanoparticles supported on nanoporous activated carbon for electrocatalysis Type A1 Journal article
Year 2023 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A facile, “one-pot”, chemical approach to synthesize gold-based nanoparticles finely dispersed on porous activated carbon (Norit) was demonstrated in this work. The pH of the synthesis bath played a critical role in determining the optimal gold-carbon interaction, which enabled a successful deposition of the gold nanoparticles onto the carbon matrix with a maximized metal utilization of 93 %. The obtained AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques. It was found that the Au nanoparticles, with diameters between 5 and 20 nm, were evenly distributed over the carbon matrix, both inside and outside the pores. Electrochemical characterization indicated that the composite had a very large electroactive surface area (EASA), as high as 282.4 m2 gAu-1. By exploiting its very high EASA, the catalyst was intended to boost the productivity of glucaric acid in the electrooxidation of its precursor, gluconic acid. However, cyclic voltammetry experiments revealed a very limited reactivity towards gluconic acid oxidation, due to the spacial hindrance of gluconic acid molecule which prevented diffusion inside the catalyst nanopores. On the other hand, the as-synthesized nanocomposite promises to be effective towards the ORR, and might thus find potential application as anode catalyst for fuel cells as well as for the scalability of all those electrochemical reactions involving small molecules with high diffusivity and catalysed by noble metals (i. e. CO2, CH4, N2, etc..). Electrocatalysis: Gold nanoparticles with diameter between 5 and 20 nm evenly distributed onto porous activated carbon (Norit) were obtained using a facile “one-pot” chemical synthesis technique with very high metal utilization. The AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques, revealing a very large electroactive surface area (EASA). The figure shows the HAADF-STEM image (a) and the respective EDX elemental distribution (b) for the AuNP/C composite with 9.3 % Au-loading developed in this work (Au is marked in red and C in green).image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060398900001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited 1 Open Access OpenAccess
Notes The research described in this article has not been supported by the Climate, Infrastructure and Environment Executive Agency of the European Commission. The views expressed in this article have not been adopted or in any way approved by the European Commission and do not constitute a statement of the European Commission & apos;s views.r S. Hoekx was supported by Research Foundation Flanders (FWO 1S42623N). The authors would like to thank Prof. Dr. Christophe Vande Velde, University of Antwerp, for the XRD analysis. Approved Most recent IF: 4; 2023 IF: 4.136
Call Number UA @ admin @ c:irua:199210 Serial 8941
Permanent link to this record
 

 
Author Daele, K.V.; Arenas‐Esteban, D.; Choukroun, D.; Hoekx, S.; Rossen, A.; Daems, N.; Pant, D.; Bals, S.; Breugelmans, T.
Title Enhanced Pomegranate‐Structured SnO2Electrocatalysts for the Electrochemical CO2Reduction to Formate Type A1 Journal article
Year 2023 Publication ChemElectroChem Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Although most state-of-the-art Sn-based electrocatalysts yield promising results in terms of selectivity and catalyst activity, their stability remains insufficient to date. Here, we demonstrate the successful application of the recently developed pomegranate-structured SnO2 (Pom. SnO2) and SnO2@C (Pom. SnO2@C) nanocomposite electrocatalysts for the efficient electrochemical conversion of CO2 to formate. With an initial selectivity of 83 and 86% towards formate and an operating potential of -0.72 V and -0.64 V vs. RHE, respectively, these pomegranate SnO2 electrocatalysts are able to compete with most of the current state-of-the-art Sn-based electrocatalysts in terms of activity and selectivity. Given the importance of electrocatalyst stability, long-term experiments (24 h) were performed and a temporary loss in selectivity for the Pom. SnO2@C electrocatalyst was largely restored to its initial selectivity upon drying and exposure to air. Of all the used (24 h) electrocatalysts, the pomegranate SnO2@C had the highest selectivity over a time period of one hour, reaching an average recovered FE of 85%, while the commercial SnO2 and bare pomegranate SnO2 electrocatalysts reached an average of 79 and 80% FE towards formate, respectively. Furthermore, the pomegranate structure of Pom. SnO2@C was largely preserved due to the presence of the heterogeneous carbon shell, which acts as a protective layer, physically inhibiting particle segregation/pulverisation and agglomeration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000936694800001 Publication Date 2023-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access OpenAccess
Notes European Regional Development Fund, E2C 2S03-019 ; Approved Most recent IF: 4; 2023 IF: 4.136
Call Number EMAT @ emat @c:irua:195228 Serial 7249
Permanent link to this record
 

 
Author Gonzalez, V.; Fazlic, I.; Cotte, M.; Vanmeert, F.; Gestels, A.; De Meyer, S.; Broers, F.; Hermans, J.; van Loon, A.; Janssens, K.; Noble, P.; Keune, K.
Title Lead(II) formate in Rembrandt's Night Watch : detection and distribution from the macro- to the micro-scale Type A1 Journal article
Year 2023 Publication Angewandte Chemie: international edition in English Abbreviated Journal
Volume Issue Pages 1-9
Keywords A1 Journal article; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)(2), in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17(th) century recipes. Synchrotron radiation based micro-XRPD (SR-mu-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000920584500001 Publication Date 2023-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 16.6; 2023 IF: 11.994
Call Number UA @ admin @ c:irua:194279 Serial 7318
Permanent link to this record
 

 
Author Meng, S.; Wu, L.; Liu, M.; Cui, Z.; Chen, Q.; Li, S.; Yan, J.; Wang, L.; Wang, X.; Qian, J.; Guo, H.; Niu, J.; Bogaerts, A.; Yi, Y.
Title Plasma‐driven<scp>CO2</scp>hydrogenation to<scp>CH3OH</scp>over<scp>Fe2O3</scp>/<scp>γ‐Al2O3</scp>catalyst Type A1 Journal Article
Year 2023 Publication AIChE Journal Abbreviated Journal AIChE Journal
Volume 69 Issue 10 Pages e18154
Keywords A1 Journal Article; chemisorbed oxygen, CO2 hydrogenation, iron-based catalyst, methanol production, plasma catalysis; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract We report a plasma‐assisted CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH over Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>catalysts, achieving 12% CO<sub>2</sub>conversion and 58% CH<sub>3</sub>OH selectivity at a temperature of nearly 80°C atm pressure. We investigated the effect of various supports and loadings of the Fe‐based catalysts, as well as optimized reaction conditions. We characterized catalysts by X‐ray powder diffraction (XRD), hydrogen temperature programmed reduction (H<sub>2</sub>‐TPR), CO<sub>2</sub>and CO temperature programmed desorption (CO<sub>2</sub>/CO‐TPD), high‐resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), x‐ray photoelectron spectroscopy (XPS), Mössbauer, and Fourier transform infrared<bold>(</bold>FTIR). The XPS results show that the enhanced CO<sub>2</sub>conversion and CH<sub>3</sub>OH selectivity are attributed to the chemisorbed oxygen species on Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>. Furthermore, the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and TPD results illustrate that the catalysts with stronger CO<sub>2</sub>adsorption capacity exhibit a higher reaction performance.<italic>In situ</italic>DRIFTS gain insight into the specific reaction pathways in the CO<sub>2</sub>/H<sub>2</sub>plasma. This study reveals the role of chemisorbed oxygen species as a key intermediate, and inspires to design highly efficient catalysts and expand the catalytic systems for CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001022420000001 Publication Date 2023-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-1541 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes Fundamental Research Funds for the Central Universities, DUT18JC42 ; National Natural Science Foundation of China, 21908016 21978032 ; Approved Most recent IF: 3.7; 2023 IF: 2.836
Call Number PLASMANT @ plasmant @c:irua:197829 Serial 8959
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Lin, A.; Canal, C.
Title Current State of Cold Atmospheric Plasma and Cancer‐Immunity Cycle: Therapeutic Relevance and Overcoming Clinical Limitations Using Hydrogels Type A1 Journal article
Year 2023 Publication Advanced Science Abbreviated Journal Adv Sci
Volume Issue Pages 2205803
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma (CAP) is a partially ionized gas that gains attention

as a well-tolerated cancer treatment that can enhance anti-tumor immune

responses, which are important for durable therapeutic effects. This review

offers a comprehensive and critical summary on the current understanding of

mechanisms in which CAP can assist anti-tumor immunity: induction of

immunogenic cell death, oxidative post-translational modifications of the

tumor and its microenvironment, epigenetic regulation of aberrant gene

expression, and enhancement of immune cell functions. This should provide

a rationale for the effective and meaningful clinical implementation of CAP. As

discussed here, despite its potential, CAP faces different clinical limitations

associated with the current CAP treatment modalities: direct exposure of

cancerous cells to plasma, and indirect treatment through injection of

plasma-treated liquids in the tumor. To this end, a novel modality is proposed:

plasma-treated hydrogels (PTHs) that can not only help overcome some of the

clinical limitations but also offer a convenient platform for combining CAP

with existing drugs to improve therapeutic responses and contribute to the

clinical translation of CAP. Finally, by integrating expertise in biomaterials and

plasma medicine, practical considerations and prospective for the

development of PTHs are offered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918224200001 Publication Date 2023-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2198-3844 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes European Research Council, 714793 ; Fonds Wetenschappelijk Onderzoek, 12S9221N G044420N ; Ministerio de Economía y Competitividad, PID2019‐103892RB‐I00/AEI/10.13039/501100011033 ; Approved Most recent IF: 15.1; 2023 IF: 9.034
Call Number PLASMANT @ plasmant @c:irua:193166 Serial 7238
Permanent link to this record
 

 
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S.
Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
Year 2023 Publication Advanced materials Abbreviated Journal
Volume 35 Issue 51 Pages 2306447-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001106139400001 Publication Date 2023-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 29.4; 2023 IF: 19.791
Call Number UA @ admin @ c:irua:201143 Serial 9022
Permanent link to this record
 

 
Author Han, I.; Song, I.S.; Choi, S.A.; Lee, T.; Yusupov, M.; Shaw, P.; Bogaerts, A.; Choi, E.H.; Ryu, J.J.
Title Bioactive Nonthermal Biocompatible Plasma Enhances Migration on Human Gingival Fibroblasts Type A1 Journal article
Year 2023 Publication Advanced healthcare materials Abbreviated Journal
Volume 12 Issue 4 Pages 2200527
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity. Focal adhesion kinase (FAK) mediated attenuation of wound healing or actin cytoskeleton rearrangement, and plasma-mediated reversal of this attenuation support the migratory effect of DBD-NBP. Further, this work performs computer simulations to investigate the effect of oxidation on the stability and conformation of the catalytic kinase domain (KD) of FAK. It is found that the oxidation of highly reactive amino acids (AAs) Cys427, Met442, Cys559, Met571, Met617, and Met643 changes the conformation and increases the structural flexibility of the FAK protein and thus modulates its function and activity. Low-dose DBD-NBP-induces host cell cycle arrest, ECM breakdown, and subsequent migration, thus contributing to the enhanced wound healing process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000897762100001 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-2640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10 Times cited Open Access OpenAccess
Notes National Research Foundation of Korea; Kementerian Pendidikan, 2020R1I1A1A01073071 2021R1A6A1A03038785 ; Approved Most recent IF: 10; 2023 IF: 5.11
Call Number PLASMANT @ plasmant @c:irua:192804 Serial 7242
Permanent link to this record