|   | 
Details
   web
Records
Author Gasparotto, A.; Maccato, C.; Carraro, G.; Sada, C.; Štangar, U.L.; Alessi, B.; Rocks, C.; Mariotti, D.; La Porta, A.; Altantzis, T.; Barreca, D.
Title (down) Surface Functionalization of Grown-on-Tip ZnO Nanopyramids: From Fabrication to Light-Triggered Applications Type A1 Journal Article
Year 2019 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 11 Issue 17 Pages 15881-15890
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466988800078 Publication Date 2019-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links
Impact Factor 7.504 Times cited 1 Open Access Not_Open_Access
Notes The research leading to these results has received financial support from Padova University ACTION postdoc fellowship, DOR 2016-2018, P-DiSC #03BIRD2016-UNIPD projects, and HERALD COST Action MP1402-37831. The support from EPSRC (awards EP/R008841/1 and EP/M024938/1) as well as from the Slovenian Research Agency (research core funding No. P1-0134) is also recognized. T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). The authors are grateful to Dr. Sebastiano Pianta (Department of Chemical Sciences, Padova University, Italy) for experimental assistance. Approved Most recent IF: 7.504
Call Number EMAT @ emat @ Serial 5185
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title (down) Surface correlation effects in two-band strongly correlated slabs Type A1 Journal article
Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 7 Pages 075601-75609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/ center to center/ surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000330719500009 Publication Date 2014-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 1 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. One of us (LC) is a postdoctoral fellow of the FWO-Vl. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115723 Serial 3395
Permanent link to this record
 

 
Author Matthai, C.C.; March, N.H.; Lamoen, D.
Title (down) Supercooled molecular liquids and the glassy phases of chemically bonded N, P, As, Si and Ge Type A1 Journal article
Year 2009 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq
Volume 47 Issue 6 Pages 607-613
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Glassy phases which have insulating character exist for a variety of monatomic species. By contrast, until recently, it has been possible to make bulk metallic glasses (BMG) by vitrification only for multicomponent systems. After a relatively brief summary on supercooling of a few molecular liquids, we review some of the recently reported results on molecular assemblies of the series N, P, As and amorphous Si and Ge. Based on these results, we suggest that the transition metals with their directional bonding might be suitable candidates for the production of BMG by vitrification.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000273047400003 Publication Date 2009-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9104;1029-0451; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.145 Times cited 1 Open Access
Notes BoF Approved Most recent IF: 1.145; 2009 IF: 0.580
Call Number UA @ lucian @ c:irua:80653 Serial 3376
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title (down) Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type A1 Journal article
Year 2009 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 32nd International Workshop on Condensed Matter Theories, Aug 12-19, 2008, Loughborough Univ, Loughborough, England Abbreviated Journal Int J Mod Phys B
Volume 23 Issue 20-21 Pages 4257-4268
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract We study the effect of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We show that in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements.
Address
Corporate Author Thesis
Publisher World scientific Place of Publication Singapore Editor
Language Wos 000274525500026 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.736 Times cited 1 Open Access
Notes Approved Most recent IF: 0.736; 2009 IF: 0.408
Call Number UA @ lucian @ c:irua:95673 Serial 3362
Permanent link to this record
 

 
Author Devreese, J.T.; Fomin, V.M.; Misko, V.R.; Moshchalkov, V.V.
Title (down) Superconducting mesoscopic square loops: phase boundaries and magnetization Type A1 Journal article
Year 1998 Publication Abbreviated Journal
Volume 1/2 Issue Pages 33-38
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000072938400006 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:21901 Serial 3355
Permanent link to this record
 

 
Author Milošević, M.V.; Rakib, M.T.I.; Peeters, F.M.
Title (down) Superconducting disk with magnetic coating: re-entrant Meissner phase, novel critical and vortex phenomena Type A1 Journal article
Year 2007 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 77 Issue 2 Pages 27005,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000245671500025 Publication Date 2007-01-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 1 Open Access
Notes Approved Most recent IF: 1.957; 2007 IF: 2.206
Call Number UA @ lucian @ c:irua:64309 Serial 3351
Permanent link to this record
 

 
Author Ding, L.; Orekhov, A.; Weng, Y.; Jia, Z.; Idrissi, H.; Schryvers, D.; Muraishi, S.; Hao, L.; Liu, Q.
Title (down) Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography Type A1 Journal article
Year 2019 Publication Journal of materials science Abbreviated Journal J Mater Sci
Volume 54 Issue 10 Pages 7943-7952
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The precipitation mechanism of the Q phase in Al-Mg-Si-Cu alloys has long been the subject of ambiguity and debate since its metastable phase (Q 0) has the same crystal structure and similar lattice parameters as its equilibrium counterparts. In the present work, the evolution of the Q 0 (Q) phase during aging is studied by combination of quantitative atomic-resolution scanning transmission electron microscopy and atom probe tomography. It was found that the transformation from the Q 0 to the Q phase involves changes of the occupancy of Al atoms in atomic columns of the Q 0 (Q) phase. The Al atoms incorporated in the Cu, Si and Mg columns are gradually released into the Al matrix, while mixing between Cu and Si atoms occurs in the Si columns. This transformation process is mainly attributed to the low lattice misfit of the equilibrium Q phase. Besides, the formation of various compositions of the Q phase is due to the different occupancy in the atomic columns of the Q phase. The occupancy changes in the columns of the Q phase are kinetically controlled and are strongly influenced by the alloy composition and aging temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460069500043 Publication Date 2019-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 1 Open Access Not_Open_Access
Notes Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing, cstc2017zdcy-zdzxX0006 ; Fundamental Research Funds for the Central Universities of China, 2018CDGFCL0002 106112017CDJQJ308822 ; Belgian National Fund for Scientific Research; the National Natural Science Foundation of China, 51871035 ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant No. cstc2017zdcyzdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant No. 2018CDGFCL0002), the National Natural Science Foundation of China (Grant No. 51871035) and the Foundation for Innovative Research Groups J Mater Sci National Natural Science Foundation of China (Grant No. 51421001). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 2.599
Call Number EMAT @ emat @UA @ admin @ c:irua:158112 Serial 5158
Permanent link to this record
 

 
Author Van Wesenbeeck, K.; Hauchecorne, B.; Lenaerts, S.
Title (down) Study of positive and negative plasma catalytic oxidation of ethylene Type A1 Journal article
Year 2017 Publication Environmental technology Abbreviated Journal Environ Technol
Volume 38 Issue 12 Pages 1554-1561
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15kV. This shows the potential of plasma catalysis as indoor air purification technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000402018900010 Publication Date 2016-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3330 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 1 Open Access
Notes ; The authors wish to thank the University of Antwerp for supporting and funding this research. ; Approved Most recent IF: 1.751
Call Number UA @ admin @ c:irua:144351 Serial 5993
Permanent link to this record
 

 
Author Van Tendeloo, G.; Muto, S.; van Heurck, C.; Amelinckx, S.
Title (down) Structure and phase transitions in C60 and C70 fullerites Type P3 Proceeding
Year 1992 Publication Abbreviated Journal
Volume Issue Pages 476-479
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Beijing Editor
Language Wos 000301042000091 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:4442 Serial 3291
Permanent link to this record
 

 
Author Bez, R.; Zehani, K.; Batuk, M.; Van Tendeloo, G.; Mliki, N.; Bessais, L.
Title (down) Structure and magnetic properties of Sm(Fe,Si)(9)C/alpha-Fe nanocomposite magnets Type A1 Journal article
Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 695 Issue 695 Pages 810-817
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract SmFe8.75 Si-0.25 C/alpha-Fe nanocomposites have been successfully synthesized using high energy milling, followed by annealing at 750 degrees C. The crystal structure of these compounds was characterized by the Rietveld method using powder X-ray diffraction data. By increasing the concentration of Sm, we observed a decrease in the amount of alpha-Fe phase. The morphology of the samples was determined by scanning and transmission electron microscopy. The average grain size is about 20 nm. The magnetic properties were investigated at room temperature and at 10 K. A ferromagnetic behavior was observed in all samples at both temperatures. An increase of the soft magnetic phase alpha-Fe induced an increase in the magnetization and a decrease in coercivity. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000391817600098 Publication Date 2016-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 1 Open Access Not_Open_Access
Notes ; This work is main supported by the CNRS and the “Ministere de l'Enseignement Superieur, de la Recherche Scientifique” (LR99ES17) (Tunisia), PHC-Utique (Project 11/G 1301) and PHC-Maghreb (Project 15MAG07). The authors acknowledge the French SIE doctoral school of the University Paris Est for its support. ; Approved Most recent IF: 3.133
Call Number UA @ lucian @ c:irua:140380 Serial 4448
Permanent link to this record
 

 
Author Ozcan, M.; Ozen, S.; Yagmurcukardes, M.; Sahin, H.
Title (down) Structural, electronic and vibrational properties of ultra-thin octahedrally coordinated structure of EuO2 Type A1 Journal article
Year 2020 Publication Journal Of Magnetism And Magnetic Materials Abbreviated Journal J Magn Magn Mater
Volume 493 Issue 493 Pages 165668
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Novel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486397800003 Publication Date 2019-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 1 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 117F095. MY is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 2.7; 2020 IF: 2.63
Call Number UA @ admin @ c:irua:162755 Serial 6323
Permanent link to this record
 

 
Author Van Tendeloo, G.; Krekels, T.; Milat, O.; Amelinckx, S.
Title (down) Structural effects of element substitution on superconducting properties in 1-2-3 YBCO: an electron microscopy study Type A1 Journal article
Year 1993 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 195 Issue Pages 307-314
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993LC49200075 Publication Date 2003-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.999 Times cited 1 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:6790 Serial 3234
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.; Ledda, A.; Shelyakov, A.
Title (down) Structural characterisation of melt-spun Ti-Ni-Cu-ribbons Type A1 Journal article
Year 2001 Publication Journal de physique: 4 Abbreviated Journal J Phys Iv
Volume 11 Issue Pages 363-368
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos 000173253800062 Publication Date 2007-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48386 Serial 3214
Permanent link to this record
 

 
Author Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T.
Title (down) Strong-coupling limit for one-dimensional polarons in a finite box Type A1 Journal article
Year 1996 Publication Zeitschrift für Physik: B: condensed matter and quanta Abbreviated Journal
Volume 99 Issue Pages 345-351
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1996TW44800007 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0722-3277;1431-584X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:15035 Serial 3180
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Schowalter, M.; Zillmann, D.; Sellin, R.; Müller-Caspary, K.; Mahr, C.; Mehrtens, T.; Bimberg, D.; Rosenauer, A.
Title (down) Strain analysis from nano-beam electron diffraction : influence of specimen tilt and beam convergence Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 190 Issue 190 Pages 45-57
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. (C) 2018 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000432868800006 Publication Date 2018-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes ; This work was supported by the German Research Foundation (DFG) under Contracts RO2057/11-1 and RO2057/12-1. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:151454 Serial 5041
Permanent link to this record
 

 
Author De Backer, A.; van den Bos, K.H.W.; Van den Broek, W.; Sijbers, J.; Van Aert, S.
Title (down) StatSTEM: An efficient program for accurate and precise model-based quantification of atomic resolution electron microscopy images Type P1 Proceeding
Year 2017 Publication Journal of physics : conference series T2 – Electron Microscopy and Analysis Group Conference 2017 (EMAG2017), 3-6 July 2017, Manchester, UK Abbreviated Journal J. Phys.: Conf. Ser.
Volume 902 Issue Pages 012013
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab
Abstract An efficient model-based estimation algorithm is introduced in order to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for the overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, is investigated. The highest attainable precision is reached even for low dose images. Furthermore, advantages of the model- based approach taking into account overlap between neighbouring columns are highlighted. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000416370700013 Publication Date 2017-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The authors acknowledge nancial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0374.13N, G.0368.15N, G.0369.15N, WO.010.16N) and a PhD research grant to K H W van den Bos, and a postdoctoral research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). A Rosenauer is acknowledged for providing the STEMsim program. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:147188 Serial 4764
Permanent link to this record
 

 
Author Vandelannoote, R.; Blommaert, W.; Van 't dack, L.; Gijbels, R.; van Grieken, R.
Title (down) Statistical grouping and controlling factors of dissolved trace elements in a surface water system Type A3 Journal article
Year 1983 Publication Environmental technology letters Abbreviated Journal
Volume 4 Issue 8/9 Pages 363-376
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Sensitive multi‐element analytical techniques were applied to determine 24 dissolved trace components in 25 different water samples from a 10 km2 zone in Brittany, France. Correspondence factor and multiple regression analyses showed that the elements considered are influenced mainly by the presence of: Fe‐Mn oxide accumulations, a local poly‐metallic sulfide mineralization, and non‐mineralized host rocks, agricultural activity and abundant organic material in local swamps. Via these numerical techniques the location of the poly‐metallic ore body can be derived from the data set.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 2008-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-2060; ISBN Additional Links UA library record
Impact Factor Times cited 1 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:111443 Serial 3157
Permanent link to this record
 

 
Author Menezes, R.M.; de Souza Silva, C.C.; Milošević, M.V.
Title (down) Spin textures in chiral magnetic monolayers with suppressed nearest-neighbor exchange Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 21 Pages 214429-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract High tunability of two-dimensional magnetic materials (by strain, gating, heterostructuring, or otherwise) provides unique conditions for studying versatile magnetic properties and controlling emergent magnetic phases. Expanding the scope of achievable magnetic phenomena in such materials is important for both fundamental and technological advances. Here we perform atomistic spin-dynamics simulations to explore the (chiral) magnetic phases of atomic monolayers in the limit of suppressed first-neighbors exchange interaction. We report the rich phase diagram of exotic magnetic configurations, obtained for both square and honeycomb lattice symmetries, comprising coexistence of ferromagnetic and antiferromagnetic spin cycloids, as well as multiple types of magnetic skyrmions. We perform a minimum-energy path analysis for the skyrmion collapse to evaluate the stability of such topological objects and reveal that magnetic monolayers could be good candidates to host the antiferromagnetic skyrmions that are experimentally evasive to date.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000540910100002 Publication Date 2020-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 1 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen) and Brazilian Agencies FACEPE (under Grant No. APQ-0198-1.05/14), CAPES, and CNPq. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:170176 Serial 6610
Permanent link to this record
 

 
Author Tsirlin, A.A.; Shpanchenko, R.V.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Schnelle, W.; Rosner, H.
Title (down) Spin ladder compound Pb0.55Cd0.45V2O5: synthesis and investigation Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 10 Pages 104429,1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249786300074 Publication Date 2007-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:65594 Serial 3091
Permanent link to this record
 

 
Author Schryvers, D.; Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.
Title (down) Some examples of electron microscopy studies of microstructures and phase transitions in solids Type A1 Journal article
Year 1995 Publication Meccanica Abbreviated Journal Meccanica
Volume 30 Issue Pages 433-438
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Milano Editor
Language Wos A1995TD08800003 Publication Date 2005-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-6455;1572-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.949 Times cited 1 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:13170 Serial 3054
Permanent link to this record
 

 
Author Mahmoudi, H.; Renn, O.; Hoffmann, V.; Van Passel, S.; Azadi, H.
Title (down) Social risk screening using a socio-political ambiguity approach : the case of organic agriculture in Iran Type A1 Journal article
Year 2015 Publication Journal Of Risk Research Abbreviated Journal J Risk Res
Volume 18 Issue 6 Pages 747-770
Keywords A1 Journal article; Sociology; Engineering Management (ENM)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000356236300009 Publication Date 2014-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1366-9877 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.34 Times cited 1 Open Access
Notes ; H.M. thanks the Ministry of Science, Research, and Technology of Iran (MSRT) for a PhD fellowship. The authors wish to thank Dr. Stefan Burkart for his kind help to improve the English of the paper. ; Approved Most recent IF: 1.34; 2015 IF: 0.935
Call Number UA @ admin @ c:irua:127534 Serial 6249
Permanent link to this record
 

 
Author Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M.
Title (down) Slippage dynamics of confined water in graphene oxide capillaries Type A1 Journal article
Year 2018 Publication Physical review materials Abbreviated Journal
Volume 2 Issue 7 Pages 074004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication College Park, Md Editor
Language Wos 000439435200006 Publication Date 2018-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 Serial 5128
Permanent link to this record
 

 
Author Tempère, J.; Vermeyen, E.; Van Duppen, B.
Title (down) Skyrmion rows, vortex rows, and phase slip lines in sheared multi-component condensates Type A1 Journal article
Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 479 Issue Pages 61-64
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract When a condensate is sheared by imparting a velocity to a part of the condensate, phase singularities must appear at the interface between the region that is still at rest and the region that has acquired a velocity. For helium, Feynman argued that these phase singularies will arrange themselves in the form of a vortex row. BoseEinstein condensates of ultracold atomic gases differ from helium in that the healing length is generally much larger and is, in fact, tunable. Another difference is that multicomponent condensates can be created, where the two components forming the mixture are usually two different hyperfine states of the condensed atoms. These two components can be manipulated separately and can be interconverted. In this contribution, we investigate how these additional degrees of freedom, available in quantum gases, change what happens in sheared condensates. In particular, we consider skyrmion rows as an alternative to vortex rows, and we also consider phase slip lines filled with the second, unmoving component, in a condensate mixture. We show that depending on the ratios of the interaction strengths between the components, and depending on the shear velocity, skyrmion rows and phase slip lines can become lower in energy than vortex rows, and hence should be observable in quantum gases. Moreover, we find that the velocity field affects the stability region of the condensate with respect to phase separation.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000308580600013 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited 1 Open Access
Notes ; This work was supported by the Research Foundation – Flanders (FWO) through Projects G.0356.06, G.0370.09 N, G.0180.09 N, and G.0365.08. E. V. acknowledges financial support in the form of a Ph.D. fellowship of the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 1.404; 2012 IF: 0.718
Call Number UA @ lucian @ c:irua:100617 Serial 3040
Permanent link to this record
 

 
Author Savchenko, T.M.; Buzzi, M.; Howald, L.; Ruta, S.; Vijayakumar, J.; Timm, M.; Bracher, D.; Saha, S.; Derlet, P.M.; Béché, A.; Verbeeck, J.; Chantrell, R.W.; Vaz, C.A.F.; Nolting, F.; Kleibert, A.
Title (down) Single femtosecond laser pulse excitation of individual cobalt nanoparticles Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the magnetic, structural, and chemical stability of individual magnetic nanoparticles excited by single femtosecond laser pulses. We find that the energy transfer from the fs laser pulse to the nanoparticles is limited by the Rayleigh scattering cross section, which in combination with the light absorption of the supporting substrate and protective layers determines the increase in the nanoparticle temperature. We investigate individual Co nanoparticles (8 to 20 nm in size) as a prototypical model system, using x-ray photoemission electron microscopy and scanning electron microscopy upon excitation with single femtosecond laser pulses of varying intensity and polarization. In agreement with calculations, we find no deterministic or stochastic reversal of the magnetization in the nanoparticles up to intensities where ultrafast demagnetization or all-optical switching is typically reported in thin films. Instead, at higher fluences, the laser pulse excitation leads to photo-chemical reactions of the nanoparticles with the protective layer, which results in an irreversible change in the magnetic properties. Based on our findings, we discuss the conditions required for achieving laser-induced switching in isolated nanomagnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589602000005 Publication Date 2020-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited 1 Open Access OpenAccess
Notes This work received funding by the Swiss National Foundation (SNF) (Grants No. 200021160186 and No. 2002153540), the Swiss Nanoscience Institute (SNI) (Grant No. SNI P1502), the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 737093 (FEMTOTERABYTE), and the COST Action CA17123 (MAGNETOFON). Part of this work was performed at the SIM beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. Part of the simulations were undertaken on the VIKING cluster, which is a high-performance compute facility provided by the University of York. We kindly acknowledge Anja Weber from PSI for preparation of substrates with marker structures. A.B. and Jo Verbeeck acknowledge funding through FWO Project No. G093417N (“Compressed sensing enabling low dose imaging in transmission electron microscopy”) from the Flanders Research Fund. Jo Verbeeck acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717 – ESTEEM3. S.S. acknowledges ETH Zurich Post-Doctoral fellowship and Marie Curie actions for people COFUND program.; esteem3JRA; esteem3reported Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number EMAT @ emat @c:irua:174273 Serial 6669
Permanent link to this record
 

 
Author Helm, M.; Hilber, W.; Strasser, G.; de Meester, R.; Peeters, F.M.; Wacker, A.
Title (down) Simultaneous investigation of vertical transport and intersubband absorption in a superlattice: continuum Wannier-Strak ladders and next-nearest neighbor tunneling Type A1 Journal article
Year 1999 Publication Physica: B : condensed matter Abbreviated Journal Physica B
Volume 272 Issue Pages 194-197
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000084375600055 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.386 Times cited 1 Open Access
Notes Approved Most recent IF: 1.386; 1999 IF: 0.725
Call Number UA @ lucian @ c:irua:28509 Serial 3015
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M.
Title (down) Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume 10 Issue 52 Pages 31261-31270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566579400025 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited 1 Open Access OpenAccess
Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108
Call Number EMAT @ emat @c:irua:172059 Serial 6416
Permanent link to this record
 

 
Author Nerl, H.C.; Pokle, A.; Jones, L.; Müller‐Caspary, K.; Bos, K.H.W.; Downing, C.; McCarthy, E.K.; Gauquelin, N.; Ramasse, Q.M.; Lobato, I.; Daly, D.; Idrobo, J.C.; Van Aert, S.; Van Tendeloo, G.; Sanvito, S.; Coleman, J.N.; Cucinotta, C.S.; Nicolosi, V.
Title (down) Self‐Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus Type A1 Journal article
Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 29 Issue 37 Pages 1903120
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478478400001 Publication Date 2019-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 1 Open Access OpenAccess
Notes European Research Council, 2DNanoCaps TC2D CoG 3D2DPrint CoG Picometrics grant agreement No. 770887; Engineering and Physical Sciences Research Council, EP/P033555/1 EP/R029431 ; Science Foundation Ireland, HPC1600932 ; Approved Most recent IF: 12.124
Call Number EMAT @ emat @c:irua:161901 Serial 5362
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G.
Title (down) Self-consistent procedure including envelope function normalization for full-zone Schrodinger-Poisson problems with transmitting boundary conditions Type A1 Journal article
Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 124 Issue 20 Pages 204501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the quantum mechanical simulation of exploratory semiconductor devices, continuum methods based on a k.p/envelope function model have the potential to significantly reduce the computational burden compared to prevalent atomistic methods. However, full-zone k.p/envelope function simulation approaches are scarce and existing implementations are not self-consistent with the calculation of the electrostatic potential due to the lack of a stable procedure and a proper normalization of the multi-band envelope functions. Here, we therefore present a self-consistent procedure based on a full-zone spectral k.p/envelope function band structure model. First, we develop a proper normalization for the multi-band envelope functions in the presence of transmitting boundary conditions. This enables the calculation of the free carrier densities. Next, we construct a procedure to obtain self-consistency of the carrier densities with the electrostatic potential. This procedure is stabilized with an adaptive scheme that relies on the solution of Poisson's equation in the Gummel form, combined with successive underrelaxation. Finally, we apply our procedure to homostructure In0.53Ga0.47As tunnel field-effect transistors (TFETs) and staggered heterostructure GaAs0.5Sb0.5/In0.53Ga0.47As TFETs and show the importance of self-consistency on the device predictions for scaled dimensions. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451743900015 Publication Date 2018-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 1 Open Access
Notes ; This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:156291 Serial 5228
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
Title (down) Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume Issue Pages 1916-1921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001006191600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Vishwakarma, M.; Thota, N.; Karakulina, O.; Hadermann, J.; Mehta, B.R.
Title (down) Role of graphene inter layer on the formation of the MoS2 – CZTS interface during growth Type P1 Proceeding
Year 2018 Publication (icc-2017) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract The growth of MoS2 layer near the Mo/CZTS interface during sulphurization process can have an impact on back contact cell parameters (series resistance and fill factor) depending upon the thickness or quality of MoS2. This study reports the dependence of the thickness of interfacial MoS2 layer on the growth of graphene at the interface between molybdenum back contact and deposited CZTS layer. The graphene layer reduces the accumulation of Zn/ZnS, Sn/SnO2 and formation of pores near the MoS2-CZTS interface. The use of graphene as interface layer can be potentially useful for improving the quality of Mo/MoS2/CZTS interface.
Address
Corporate Author Thesis
Publisher Amer inst physics Place of Publication Melville Editor
Language Wos 000436313003046 Publication Date 2018-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume 1953 Series Issue Edition
ISSN 978-0-7354-1648-2; 0094-243x; 0094-243x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access OpenAccess
Notes ; The authors acknowledge support provided by DST project. M.V. acknowledges IIT Delhi for MHRD fellowship. Prof. B. R. Mehta acknowledges the support of the Schlumberger chair professorship. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:153203 Serial 5126
Permanent link to this record