toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zanin, L.; Tomasi, N.; Rizzardo, C.; Gottardi, S.; Terzano, R.; Alfeld, M.; Janssens, K.; De Nobili, M.; Mimmo, T.; Cesco, S. pdf  doi
openurl 
  Title (down) Iron allocation in leaves of Fe-deficient cucumber plants fed with natural Fe complexes Type A1 Journal article
  Year 2015 Publication Physiologia plantarum Abbreviated Journal Physiol Plantarum  
  Volume 154 Issue 1 Pages 82-94  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1day) allocated into the leaf veins, and after 5days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III)-chelate reductase (FRO), a Fe2+ transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353067500007 Publication Date 2014-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.33 Times cited 14 Open Access  
  Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma 'Futuro in Ricerca') and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 'Structuring the European Research Area' Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). We thank Karen Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.33; 2015 IF: 3.138  
  Call Number UA @ admin @ c:irua:132500 Serial 5678  
Permanent link to this record
 

 
Author Peeters, J.; Steenackers, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; van der Snickt, G. url  doi
openurl 
  Title (down) IR reflectography and active thermography on artworks : the added value of the 1.53 µm band Type A1 Journal article
  Year 2018 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 8 Issue 1 Pages 50  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared Radiation (IR) artwork inspection is typically performed through active thermography and reflectography with different setups and cameras. While Infrared Radiation Reflectography (IRR) is an established technique in the museum field, exploiting mainly the IR-A (0.71.4 µm) band to probe for hidden layers and modifications within the paint stratigraphy system, active thermography operating in the IR-C range (35 μ m) is less frequently employed with the aim to visualize structural defects and features deeper inside the build-up. In this work, we assess to which extent the less investigated IR-B band (1.53 μ m) can combine the information obtained from both setups. The application of IR-B systems is relatively rare as there are only a limited amount of commercial systems available due to the technical complexity of the lens coating. This is mainly added as a so-called broadband option on regular Mid-wave infrared radiation (MWIR) (IR-C/35 μ m) cameras to increase sensitivity for high temperature applications in industry. In particular, four objects were studied in both reflectographic and thermographic mode in the IR-B spectral range and their results benchmarked with IR-A and IR-C images. For multispectral application, a single benchmark is made with macroscopic reflection mode Fourier transform infrared (MA-rFTIR) results. IR-B proved valuable for visualisation of underdrawings, pencil marks, canvas fibres and wooden grain structures and potential pathways for additional applications such as pigment identification in multispectral mode or characterization of the support (panels, canvas) are indicated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424388800050 Publication Date 2018-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited 4 Open Access  
  Notes ; This research has been funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (VLAIO) by the support to the TETRA project 'SINT: Smart Integration of Numerical modelling and Thermal inspection' with project number HBC.2017.0032. Furthermore, the research leading to these results has received funding from the Research Foundation Flanders (FWO) travel grant V4.010.16N and the Stimpro stimuli of UAntwerpen under project ID 32864. We would like to end with a special thanks to the MiViM research chair of Prof. Xavier Maldague and the support of the full team in supporting the preliminary measurements of this research. ; Approved Most recent IF: 1.679  
  Call Number UA @ admin @ c:irua:149164 Serial 5677  
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. pdf  doi
openurl 
  Title (down) Ionized water confined in graphene nanochannels Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 18 Pages 9285-9295  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract When confined between graphene layers, water behaves differently from the bulk and exhibits unusual properties such as fast water flow and ordering into a crystal. The hydrogen-bonded network is affected by the limited space and by the characteristics of the confining walls. The presence of an extraordinary number of hydronium and hydroxide ions in narrow channels has the following effects: (i) they affect water permeation through the channel, (ii) they may interact with functional groups on the graphene oxide surface and on the edges, and (iii) they change the thermochemistry of water, which are fundamentally important to understand, especially when confined water is subjected to an external electric field. Here we study the physical properties of water when confined between two graphene sheets and containing hydronium and hydroxide. We found that: (i) there is a disruption in the solvation structure of the ions, which is also affected by the layered structure of confined water, (ii) hydronium and hydroxide occupy specific regions inside the nanochannel, with a prevalence of hydronium (hydroxide) ions at the edges (interior), and (iii) ions recombine more slowly in confined systems than in bulk water, with the recombination process depending on the channel height and commensurability between the size of the molecules and the nanochannel height – a decay of 20% (40%) in the number of ions in 8 ps is observed for a channel height of h = 7 angstrom (bulk water). Our work reveals distinctive properties of water confined in a nanocapillary in the presence of additional hydronium and hydroxide ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472922500028 Publication Date 2019-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 10 Open Access  
  Notes ; This work was supported by the Fund for Scientific Research Flanders (FWO-Vl) and the Methusalem programe. ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161377 Serial 5419  
Permanent link to this record
 

 
Author Leigh, S.; Doyle, S.J.; Smith, G.J.; Gibson, A.R.; Boswell, R.W.; Charles, C.; Dedrick, J.P. url  doi
openurl 
  Title (down) Ionization and neutral gas heating efficiency in radio frequency electrothermal microthrusters : the role of driving frequency Type A1 Journal article
  Year 2024 Publication Physics of plasmas Abbreviated Journal  
  Volume 31 Issue 2 Pages 023509-23513  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The development of compact, low power, charge-neutral propulsion sources is of significant recent interest due to the rising application of micro-scale satellite platforms. Among such sources, radio frequency (rf) electrothermal microthrusters present an attractive option due to their scalability, reliability, and tunable control of power coupling to the propellant. For micropropulsion applications, where available power is limited, it is of particular importance to understand how electrical power can be transferred to the propellant efficiently, a process that is underpinned by the plasma sheath dynamics. In this work, two-dimensional fluid/Monte Carlo simulations are employed to investigate the effects of applied voltage frequency on the electron, ion, and neutral heating in an rf capacitively coupled plasma microthruster operating in argon. Variations in the electron and argon ion densities and power deposition, and their consequent effect on neutral-gas heating, are investigated with relation to the phase-averaged and phase-resolved sheath dynamics for rf voltage frequencies of 6-108 MHz at 450 V. Driving voltage frequencies above 40.68 MHz exhibit enhanced volumetric ionization from bulk electrons at the expense of the ion heating efficiency. Lower driving voltage frequencies below 13.56 MHz exhibit more efficient ionization due to secondary electrons and an increasing fraction of rf power deposition into ions. Thermal efficiencies are improved by a factor of 2.5 at 6 MHz as compared to the more traditional 13.56 MHz, indicating a favorable operating regime for low power satellite applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001207449000001 Publication Date 2024-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.2 Times cited Open Access  
  Notes Approved Most recent IF: 2.2; 2024 IF: 2.115  
  Call Number UA @ admin @ c:irua:205506 Serial 9156  
Permanent link to this record
 

 
Author de Witte, H.; Conard, T.; Vandervorst, W.; Gijbels, R. doi  openurl
  Title (down) Ion-bombardment artifact in TOF-SIMS analysis of ZrO2/SiO2/Si stacks Type A1 Journal article
  Year 2003 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 203 Issue Pages 523-526  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We analyzed ultra-thin ZrO2/SiO2/Si gate dielectrics under post-deposition anneals in dry O-2 at temperatures from 500 to 700 degreesC. TOF-SIMS profiling of ZrO2/SiO2/Si stacks is hampered by many sputter induced artifacts. The depletion of oxygen leads to a decrease in SIMS intensities. However, preferential sputtering is accompanied by transport of the depleted species towards the surface. Due to recoil implantation oxygen gets piled-up near the ZrO2/SiO2 interface. Either normal or radiation-enhanced diffusion transports oxygen back to the surface. Simultaneously also segregation of zirconium towards and through the interface is observed, resulting in a large zirconium tail in the underlying silicon substrate. (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000180527300119 Publication Date 2002-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.387; 2003 IF: 1.284  
  Call Number UA @ lucian @ c:irua:51975 Serial 1743  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title (down) Ion irradiation for improved graphene network formation in carbon nanotube growth Type A1 Journal article
  Year 2014 Publication Carbon Abbreviated Journal Carbon  
  Volume 77 Issue Pages 790-795  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ion irradiation of carbon nanotubes very often leads to defect formation. However, we have recently shown that Ar ion irradiation in a limited energy window of 1025 eV may enhance the initial cap nucleation process, when the carbon network is in contact with the metal nanocatalyst. Here, we employ reactive molecular dynamics simulations to demonstrate that ion irradiation in a higher energy window of 1035 eV may also heal network defects after the nucleation stage through a non-metal-mediated mechanism, when the carbon network is no longer in contact with the metal nanocatalyst. The results demonstrate the possibility of beneficially utilizing ions in e.g. plasma-enhanced chemical vapour deposition of carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000340689400083 Publication Date 2014-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 7 Open Access  
  Notes Approved Most recent IF: 6.337; 2014 IF: 6.196  
  Call Number UA @ lucian @ c:irua:118062 Serial 1745  
Permanent link to this record
 

 
Author Kabsch-Korbutowicz, M.; Kozak, A.; Krupińska, B. openurl 
  Title (down) Ion exchange-ultrafiltration integrated process as a useful method in removing natural organic matter from water Type A1 Journal article
  Year 2008 Publication Environment protection engineering Abbreviated Journal  
  Volume 34 Issue 2 Pages 79-93  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The experiments conducted are focused on natural organic substances, removal from water in ion-exchange process, ultrafiltration process and ion exchange-ultrafiltration integrated process. The water from the Odra River and model solution were investigated. In treatment processes, various doses of 5 anion-exchange resins as well as polyethersulphone membranes with different cut-offs were used. The efficiency of process was determined by measuring a decrease both in the colour intensity and the UV 254 nm absorbance. The results show that separation efficiency in integrated process depends on resin dose added to water before ultrafiltration and on the membrane cut-off as well. Among the resins tested the most efficient was MIEX (R) resin. The ion-exchange process carried out prior to the ultrafiltration increased, especially for high cut-off membranes, NOM retention and resulted in the decrease of membrane fouling intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000257186600008 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0324-8828 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:94633 Serial 8131  
Permanent link to this record
 

 
Author Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D.G.; Gorbachev, R.; Shaw, S.; Novoselov, K.S.; Raveendran-Nair, R.; Peeters, F.M.; Lozada-Hidalgo, M.; Haigh, S.J. url  doi
openurl 
  Title (down) Ion exchange in atomically thin clays and micas Type A1 Journal article
  Year 2021 Publication Nature Materials Abbreviated Journal Nat Mater  
  Volume 20 Issue 12 Pages 1677-1682  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 10(4) times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moire superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance. Layered clays are of interest for membranes and many other applications but their ion-exchange dynamics remain unexplored in atomically thin materials. Here, using electron microscopy, it is found that the ion diffusion for few-layer two-dimensional clays approaches that of free water and that superlattice cation islands can form in twisted and restacked materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000689664000001 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 39.737  
  Call Number UA @ admin @ c:irua:181691 Serial 6999  
Permanent link to this record
 

 
Author van Oeffelen, L.; Van Roy, W.; Idrissi, H.; Charlier, D.; Lagae, L.; Borghs, G. url  doi
openurl 
  Title (down) Ion current rectification, limiting and overlimiting conductances in nanopores Type A1 Journal article
  Year 2015 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 10 Issue 10 Pages e0124171  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000354916100012 Publication Date 2015-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.806; 2015 IF: 3.234  
  Call Number c:irua:126366 Serial 1744  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations Type A1 Journal article
  Year 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 88 Issue 88 Pages 8005-8018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.  
  Address Research Group PLASMANT, Chemistry Department, University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000381654800020 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 9 Open Access  
  Notes The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO), Grant Number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @ c:irua:135644 Serial 4293  
Permanent link to this record
 

 
Author Frangis, N.; Nejim, A.; Hemment, P.L.F.; Stoemenos, J.; van Landuyt, J. doi  openurl
  Title (down) Ion beam synthesis of \beta-SiC at 950 degrees C and structural characterization Type A1 Journal article
  Year 1996 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms T2 – Symposium J on Correlated Effects in Atomic and Cluster Ion Bombardment and Implantation/Symposium C on Pushing the Limits of Ion Beam, Processing – Fr Abbreviated Journal Nucl Instrum Meth B  
  Volume 112 Issue 1-4 Pages 325-329  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The structure of beta-SiC formed by carbon implantation into Si at high temperatures (850-950 degrees C) at doses ranging between 0.2 X 10(18) to 1 X 10(18) cm(-2) at 200 keV, was studied by combined cross section and high resolution transmission electron microscopy (XTEM and HRTEM). Implantation was performed on (001) and (111) Si wafers. In both cases a buried beta-SiC layer was formed having the same orientation as the Si matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos A1996UW20100069 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.124 Times cited 9 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:95886 Serial 1742  
Permanent link to this record
 

 
Author Kalitzova, M.; Peeva, A.; Ignatova, V.; Lebedev, O.I.; Zollo, G.; Vitali, G. pdf  doi
openurl 
  Title (down) Ion beam synthesis of Te and Bi nanoclusters in silicon: the effect of post-implantation high frequency electromagnetic field Type A1 Journal article
  Year 2006 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B  
  Volume 242 Issue Pages 209-213  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000236225200056 Publication Date 2005-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.109 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.109; 2006 IF: 0.946  
  Call Number UA @ lucian @ c:irua:58051 Serial 1741  
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Investigations of discharge and post-discharge in a gliding arc: a 3D computational study Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055017  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study we quantitatively investigate for the first time the plasma characteristics of an argon gliding arc with a 3D model. The model is validated by comparison with available experimental data from literature and a reasonable agreement is obtained for the calculated gas temperature and electron density. A complete arc cycle is modeled from initial ignition to arc decay. We investigate how the plasma characteristics, i.e., the electron temperature, gas temperature,

reduced electric field, and the densities of electrons, Ar+ and Ar2+ ions and Ar(4s) excited states, vary over one complete arc cycle, including their behavior in the discharge and post-discharge. These plasma characteristics exhibit a different evolution over one arc cycle, indicating that either the active discharge stage or the post-discharge stage can be beneficial for certain applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399278100002 Publication Date 2017-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access OpenAccess  
  Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). SR Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142204 Serial 4550  
Permanent link to this record
 

 
Author Bugani, S.; Camaiti, M.; Morselli, L.; Van de Casteele, E.; Janssens, K. doi  openurl
  Title (down) Investigation on porosity changes of Lecce stone due to conservation treatments by means of x-ray nano- and improved micro-computed tomography: preliminary results Type A1 Journal article
  Year 2007 Publication X-ray spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume 36 Issue 5 Pages 316-320  
  Keywords A1 Journal article; Vision lab; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000249961800005 Publication Date 2007-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.298 Times cited 28 Open Access  
  Notes Approved Most recent IF: 1.298; 2007 IF: 1.117  
  Call Number UA @ admin @ c:irua:66602 Serial 5676  
Permanent link to this record
 

 
Author Liang, Y.-S.; Liu, Y.-X.; Zhang, Y.-R.; Wang, Y.-N. pdf  doi
openurl 
  Title (down) Investigation of voltage effect on reaction mechanisms in capacitively coupled N-2 discharges Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 127 Issue 13 Pages 133301  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A systematic investigation of voltage effect on the plasma parameters, especially the species densities and chemical reaction mechanisms, in the capacitive N-2 discharges is performed by employing a two-dimensional self-consistent fluid model. The validity of the numerical model is first demonstrated by the qualitative agreement of the calculated and experimental results. Then, the densities, production mechanisms, and loss mechanisms of species from simulation are examined at various voltages. It is found that all the species densities increase monotonically with the voltage, whereas their spatial profiles at lower voltages are quite different from those at higher voltages. The electrons and Nthorn 2 ions are mainly generated by the electron impact ionization of N-2 gas, while the Nthorn ions, whose density is one or two orders of magnitude lower, are mostly formed by the ionization of N atoms. The electron impact dissociation of N-2 gas dominates the generation of N atoms, which are mostly destroyed for the Nthorn ion production. As for the excited N-2 levels, the level conversion processes play a very important role in their production and depletion mechanisms, except for the electron impact excitation of the ground state N-2 molecules. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000524256700001 Publication Date 2020-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; This work was financially supported by the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11805089 and 11875101), the Natural Science Foundation of Liaoning Province, China (Grant No. 2019-BS-127), the Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, China (Grant No. KF1804), and the China Scholarship Council. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:168558 Serial 6555  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Wilcop, M.; Anderson, R.; Wendt, D.; Barden, R.; Kavich, G.M. pdf  doi
openurl 
  Title (down) Investigation of volatile organic compounds in museum storage areas Type A1 Journal article
  Year 2021 Publication Air Quality Atmosphere And Health Abbreviated Journal Air Qual Atmos Hlth  
  Volume 14 Issue 11 Pages 1797-1809  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This study investigates the complex mixture of volatile organic compounds (VOCs) released by and accumulated within a collection of historic medicinal, pharmaceutical, and cosmetic artifacts housed at the National Museum of American History (Smithsonian Institution). In recent years, staff have become concerned, both for the safety of the objects and for personnel working in the collection, about strong unremediated odors accumulating within several storage cabinets. Museum staff also wondered if non-odorous off-gassing might need remediation. Solid-phase microextraction combined with gas chromatography–mass spectrometry analysis (SPME–GC–MS) was used to identify VOCs present in the storage room housing the collection. Over 160 compounds were detected and identified overall. Among these, 49 appeared to be directly related to ingredients used in the manufacture of many collection items. The results of the study suggest that SPME–GC–MS can be a strong tool for the rapid screening of multicomponent museum collections exhibiting off-gassing problems, before the pursuit of other more tedious analytical approaches. Additionally, the study reveals valuable insight into the characteristic volatile emission of historic medicinal, pharmaceutical, and cosmetic artifacts, increasing understanding of, and decision-making for, similar collections of objects. Eventually, it is hoped that this information can be used to inform mitigation strategies for the capture and reduction of VOCs in collections storage areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659058300001 Publication Date 2021-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1873-9318 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.184 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.184  
  Call Number UA @ admin @ c:irua:181923 Serial 8129  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Lebeau, K.; Mertens, M.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. doi  openurl
  Title (down) Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials Type A1 Journal article
  Year 2006 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 110 Issue 18 Pages 9183-9187  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000237451300042 Publication Date 2006-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 109 Open Access  
  Notes Approved Most recent IF: 3.177; 2006 IF: 4.115  
  Call Number UA @ lucian @ c:irua:58264 Serial 1738  
Permanent link to this record
 

 
Author Pauwels, D.; Hereijgers, J.; Verhulst, K.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title (down) Investigation of the electrosynthetic pathway of the aldol condensation of acetone Type A1 Journal article
  Year 2016 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 289 Issue Pages 554-561  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The potential-controlled electrochemical aldol condensation of acetone to diacetone alcohol in a standard batch electrolysis set-up was studied in this work. It is confirmed that the reaction proceeds at the cathode and that, contrary to what is mentioned in earlier literature, water in the electrolyte has a disadvantageous effect on the reaction. Similar to the chemical reaction, the electrochemical reaction reaches a maximum yield when the equilibrium is reached. Separating the anode and cathode prevents cross-over and degradation of products, leading to a higher yield. Starting with pure acetone and support electrolyte, it was possible to obtain a diacetone alcohol concentration of 15 m% after two hours electrolysis in a divided set-up with a platinum electrode at -2.5 V. The concentration gradient throughout the electrolysis follows an exponential curve up to its equilibrium concentration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371559900061 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:130396 Serial 5675  
Permanent link to this record
 

 
Author Spolnik, Z.; Osán, J.; Klepka, M.; Lawniczak-Jablonska, K.; Van Grieken, R.; Molak, A.; Potgieter, J.H. doi  openurl
  Title (down) Investigation of the chemical composition of (Na1-xBix)(MnyNb1-y)O3 ceramics by single particle electron probe X-ray microanalysis with an application of Monte Carlo simulations Type A1 Journal article
  Year 2005 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal  
  Volume 60 Issue 4 Pages 525-530  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000229955200012 Publication Date 2005-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:52668 Serial 8128  
Permanent link to this record
 

 
Author Bafekry, A.; Nguyen, C., V; Goudarzi, A.; Ghergherehchi, M.; Shafieirad, M. url  doi
openurl 
  Title (down) Investigation of strain and doping on the electronic properties of single layers of C₆N₆ and C₆N₈: a first principles study Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 46 Pages 27743-27751  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C(6)N(6)and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C(6)N(6)monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C(6)N(8)monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C(6)N(6)may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C(6)N(8)monolayer. Our results highlight the electronic properties and magnetism of C(6)N(6)and C(6)N(8)monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C(6)N(6)and C(6)N(8)carbon nitride monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000553911800053 Publication Date 2020-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 11 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172111 Serial 6553  
Permanent link to this record
 

 
Author Tarakina, N.V.; Denisova, T.A.; Maksimova, L.G.; Baklanova, Y.V.; Tyutyunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G. doi  openurl
  Title (down) Investigation of stacking disorder in Li2SnO3 Type A1 Journal article
  Year 2009 Publication Zeitschrift für Kristallographie Abbreviated Journal  
  Volume Issue S:30 Pages 375-380  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A crystal structure investigation of the low temperature Li2SnO3 modification has been carried out. X-ray, neutron powder and electron diffraction data showed that this compound crystallizes in a monoclinic unit cell with parameters: a = 5.3033(2)Å, b = 9.1738(3)Å, c = 10.0195(2)Å, β ~ 100.042(2)º and has stacking disorder along the c-axis. Simulation of diffraction patterns with different stacking faults mainly reveal the presence of rotational stacking faults with a probability of about 40% .  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication München Editor  
  Language Wos 000271325700024 Publication Date 2009-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-486X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 16 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:79987 Serial 1735  
Permanent link to this record
 

 
Author Brammertz, G.; Oueslati, S.; Buffiere, M.; Bekaert, J.; El Anzeery, H.; Messaoud, K.B.; Sahayaraj, S.; Nuytten, T.; Koble, C.; Meuris, M.; Poortmans, J.; url  doi
openurl 
  Title (down) Investigation of properties limiting efficiency in Cu2ZnSnSe4-based solar cells Type A1 Journal article
  Year 2015 Publication IEEE journal of photovoltaics Abbreviated Journal Ieee J Photovolt  
  Volume 5 Issue 5 Pages 649-655  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We have investigated different nonidealities in Cu2ZnSnSe4CdSZnO solar cells with 9.7% conversion efficiency, in order to determine what is limiting the efficiency of these devices. Several nonidealities could be observed. A barrier of about 300 meV is present for electron flow at the absorberbuffer heterojunction leading to a strong crossover behavior between dark and illuminated currentvoltage curves. In addition, a barrier of about 130 meV is present at the Moabsorber contact, which could be reduced to 15 meV by inclusion of a TiN interlayer. Admittance spectroscopy results on the devices with the TiN backside contact show a defect level with an activation energy of 170 meV. Using all parameters extracted by the different characterization methods for simulations of the two-diode model including injection and recombination currents, we come to the conclusion that our devices are limited by the large recombination current in the depletion region. Potential fluctuations are present in the devices as well, but they do not seem to have a special degrading effect on the devices, besides a probable reduction in minority carrier lifetime through enhanced recombination through the band tail defects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353524800026 Publication Date 2014-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3381;2156-3403; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.712 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 3.712; 2015 IF: 3.165  
  Call Number c:irua:123717 Serial 1734  
Permanent link to this record
 

 
Author Rezaei, F.; Gorbanev, Y.; Chys, M.; Nikiforov, A.; Van Hulle, S.W.H.; Cos, P.; Bogaerts, A.; De Geyter, N. url  doi
openurl 
  Title (down) Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers Type A1 Journal article
  Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 15 Issue 6 Pages 1700226  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrospinning is a versatile technique for the fabrication of polymer-based nano/microfibers. Both physical and chemical characteristics of pre-electrospinning polymer solutions affect the morphology and chemistry of electrospun nanofibers. An atmospheric-pressure plasma jet has previously been shown to induce physical modifications in polylactic acid (PLA) solutions. This work aims at investigating the plasma-induced chemistry in organic solutions of PLA, and their effects on the resultant PLA nanofibers. Therefore, very broad range of gas, liquid, and solid (nanofiber) analyzing techniques has been applied. Plasma alters the acidity of the solutions. SEM studies illustrated that complete fiber morphology enhancement only occurred when both PLA and solvent molecules were exposed to preelectrospinning plasma treatment.

Additionally, the surface

chemistry of the PLA nanofibers

was mostly preserved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436407300005 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 12 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0379.15N ; FP7 Ideas: European Research Council, 335929 (PLASMATS) ; European Marie Sklodowska-Curie Individual Fellowship “LTPAM”, 657304 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:152173 Serial 4992  
Permanent link to this record
 

 
Author Albrechts, M.; Tsonev, I.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Investigation of O atom kinetics in O2plasma and its afterglow Type A1 Journal Article
  Year 2024 Publication Plasma Sources Science and Technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 33 Issue 4 Pages 045017  
  Keywords A1 Journal Article; oxygen plasma, pseudo-1D plug-flow kinetic model, O atoms, low-pressure validation, atmospheric pressure microwave torch; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We have developed a comprehensive kinetic model to study the O atom kinetics in an O<sub>2</sub>plasma and its afterglow. By adopting a pseudo-1D plug-flow formalism within the kinetic model, our aim is to assess how far the O atoms travel in the plasma afterglow, evaluating its potential as a source of O atoms for post-plasma gas conversion applications. Since we could not find experimental data for pure O<sub>2</sub>plasma at atmospheric pressure, we first validated our model at low pressure (1–10 Torr) where very good experimental data are available. Good agreement between our model and experiments was achieved for the reduced electric field, gas temperature and the densities of the dominant neutral species, i.e. O<sub>2</sub>(a), O<sub>2</sub>(b) and O. Subsequently, we confirmed that the chemistry set is consistent with thermodynamic equilibrium calculations at atmospheric pressure. Finally, we investigated the O atom densities in the O<sub>2</sub>plasma and its afterglow, for which we considered a microwave O<sub>2</sub>plasma torch, operating at a pressure between 0.1 and 1 atm, for a flow rate of 20 slm and an specific energy input of 1656 kJ mol<sup>−1</sup>. Our results show that for both pressure conditions, a high dissociation degree of ca. 92% is reached within the discharge. However, the O atoms travel much further in the plasma afterglow for<italic>p</italic>= 0.1 atm (9.7 cm) than for<italic>p</italic>= 1 atm (1.4 cm), attributed to the longer lifetime (3.8 ms at 0.1 atm vs 1.8 ms at 1 atm) resulting from slower three-body recombination kinetics, as well as a higher volumetric flow rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001209453500001 Publication Date 2024-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access  
  Notes This research was supported by the Horizon Europe Framework Program ‘Research and Innovation Actions’ (RIA), Project CANMILK (Grant No. 101069491). Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:205920 Serial 9125  
Permanent link to this record
 

 
Author Idaszek, J.; Brynk, T.; Jaroszewicz, J.; Vanmeert, F.; Bruinink, A.; Swieszkowski, W. pdf  doi
openurl 
  Title (down) Investigation of mechanical properties of porous composite scaffolds with tailorable degradation kinetics after in vitro degradation using digital image correlation Type A1 Journal article
  Year 2017 Publication Polymer composites Abbreviated Journal  
  Volume 38 Issue 11 Pages 2402-2410  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Tissue engineering combines artificial scaffolds and living cells in order to reconstruct damaged tissues and organs. The biodegradable scaffolds should maintain their mechanical properties during first stages of the regeneration. The aim of this study was to investigate the extent the degradation affects the mechanical stability of novel biodegradable composite scaffolds in relation to their composition. The scaffolds were made using fused deposition modeling. They were composed of ternary composites containing poly(epsilon-caprolactone) (PCL), 5 wt% of tricalcium phosphate (TCP) and 5, 15, and 25 wt% of poly(lactide-co-glycolide) (PLGA). Scaffolds made of pristine PCL and binary composite PCL-TCP were tested as reference samples. The degradation experiment was carried out in simulated body fluid at 37 degrees C for 12 weeks. Mechanical tests were carried out in a mechanical tester. Strain was measured using digital image correlation and crossbar displacement. Chemical composition had a significant effect on initial mechanical properties and their changes during degradation. The initial apparent Young's modulus of ternary composite scaffolds was two times higher than that of PCL-TCP. Higher PLGA concentration yielded faster decrease of the mechanical properties. At the end of the experiment, there were no significant differences of the modulus among all tested materials although degradation of the ternary composite scaffolds was significantly advanced. (C) 2015 Society of Plastics Engineers  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000415812000008 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-8397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:147728 Serial 8127  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Grozeva, M.; Sabotinov, N. doi  openurl
  Title (down) Investigation of laser output power saturation in the He-Cu+ IR hollow cathode discharge laser by experiments and numerical modeling Type A1 Journal article
  Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume T105 Issue Pages 90-97  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000184344900014 Publication Date 2003-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited Open Access  
  Notes Approved Most recent IF: 1.28; 2003 IF: 0.688  
  Call Number UA @ lucian @ c:irua:44019 Serial 1733  
Permanent link to this record
 

 
Author Swaenen, M.; Stefaniak, E.A.; Frost, R.; Worobiec, A.; Van Grieken, R. doi  openurl
  Title (down) Investigation of inclusions trapped inside Libyan desert glass by Raman microscopy Type A1 Journal article
  Year 2010 Publication Analytical and bioanalytical chemistry Abbreviated Journal  
  Volume 397 Issue 7 Pages 2659-2665  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Several specimens of Libyan desert glass (LDG), an enigmatic natural glass from Egypt, were subjected to investigation by micro-Raman spectroscopy. The spectra of inclusions inside the LDG samples were successfully measured through the layers of glass and the mineral species were identified on this basis. The presence of cristobalite as typical for high-temperature melt products was confirmed, together with co-existing quartz. TiO2 was determined in two polymorphic species rutile and anatase. Micro-Raman spectroscopy proved also the presence of minerals unusual for high-temperature glasses such as anhydrite and aragonite.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000280122100004 Publication Date 2010-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642; 1618-2650 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:83276 Serial 8125  
Permanent link to this record
 

 
Author Niessner, R.; Klockow, D.; Bruynseels, F.; Van Grieken, R. doi  openurl
  Title (down) Investigation of heterogeneous reactions of PAH's on particle surfaces using laser microprobe mass analysis Type A1 Journal article
  Year 1985 Publication International journal of environmental analytical chemistry Abbreviated Journal  
  Volume 22 Issue 3/4 Pages 281-295  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Artificially generated NaCl particles were coated with PAH's by using a condensation technique. These particles were exposed to reactive gases like ozone, bromine and nitrogen dioxide. The original as well as the exposed particles were investigated by fluorimetric analysis and by LAMMA (Laser Microprobe Mass Analysis) in the desorption mode, which allows the evaporation and characterization of surfaces of single particles. The results are interpreted in terms of possible heterogeneous atmospheric reactions. The reactivity of the considered PAH's towards nitrogen dioxide was found to be negligible. The structure of the reaction products formed with ozone was partially elucidated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1985AZE2300009 Publication Date 2007-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-7319 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116576 Serial 8124  
Permanent link to this record
 

 
Author Ozen, S.A.; Ozkalayci, F.; Cevik, U.; Van Grieken, R. pdf  doi
openurl 
  Title (down) Investigation of heavy metal distributions along 15m soil profiles using EDXRF, XRD, SEM-EDX, and ICP-MS techniques Type A1 Journal article
  Year 2018 Publication X-ray spectrometry Abbreviated Journal  
  Volume 47 Issue 3 Pages 231-241  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The research of soil contamination by heavy metal is an important field due to its environmental and health implications. The goal was to study the elemental mobility as a function of depth. For this reason, the distribution of heavy metals (V, Cr, Co, Ni, Cu, Zn, As, Sn, and Pb) was investigated along soil profiles up to a depth of 15m at 9 sampling sites in the Nilufer industrial district (Bursa, Turkey). Elemental analyses were done with the Epsilon 5 energy dispersive X-ray fluorescence and inductively coupled plasma mass spectrometry equipment. Particle analysis was performed with a JEOL scanning electron microscope equipped with a Si(Li) X-ray detector. The crystallographic compositions of oxide compounds in soil samples were identified by a Rigaku X-ray diffraction instrument. Different parameters such as the soil's chemical (mineralogical structure, pH, and electrical conductivity) and physical properties (the number of blows, the stiffness index, the liquidity index, the plasticity index, and the water content) were analyzed. To assess the mobility of the heavy metals, diffusion (D) and convection coefficients (?) were calculated with the finite difference method. Convection was determined to dominate the studied region. In addition, the mobility coefficient was determined for each metal. High mobilities were determined for Zn and V, moderate mobilities for Cr, Ni, Cu, and As, and low mobilities were determined for Co and Pb. The results revealed that elements had reached depths of up to 15m, causing irreversible soil contamination that may lead to environmental health issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430188700005 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:150722 Serial 8123  
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W.; Gijbels, R. doi  openurl
  Title (down) Investigation of growth mechanisms of clusters in a silane discharge with the use of a fluid model Type A1 Journal article
  Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume 32 Issue 2 Pages 691-698  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000222278400026 Publication Date 2004-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.052 Times cited 29 Open Access  
  Notes Approved Most recent IF: 1.052; 2004 IF: 1.042  
  Call Number UA @ lucian @ c:irua:46379 Serial 1732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: