Supporting Information

for Plasma Process. Polym.

Plasma-Treated Organic Solutions for Enhanced Electrospun Nanofibers

Fatemeh Rezaei*, Yury Gorbanev, Michael Chys, Anton Nikiforov, Stijn W. H. Van Hulle, Paul Cos, Annemie Bogaerts, Nathalie De Geyter

Figure S1. Effect of plasma treatment time on the optical emission spectrum of the plasma jet afterglow sustained in a 6% w/v PLA solution (PEPT parameters: 0.5 L/min, 2 kV).

Figure S2. UV-vis absorbance spectra of (a) untreated solvents and a 2% w/v PLA solution, (b) plasma-treated solvents and a plasma treated 2% w/v PLA solution (PEPT parameters: 5 min, 0.5 L/min, 2 kV).

Figure S3. DMPO adducts in a 2% w/v plasma-treated PLA solution. Adducts: DMPO-CHO/-CON(CH₃)₂ ($a_N = 1.41 \text{ mT}$, $a_H = 1.81 \text{ mT}$); DMPO-CCl₃ ($a_N = 1.33 \text{ mT}$, $a_H = 1.59 \text{ mT}$); DMPO-CHCl₂ ($a_N = 1.36 \text{ mT}$, $a_H = 1.93 \text{ mT}$); DMPO-CH₃ ($a_N = 1.52 \text{ mT}$, $a_H = 2.04 \text{ mT}$).

Figure S4. PBN adducts in a 2% w/v plasma-treated PLA solution. Adducts: PBN-CHCl₂ ($a_N = 1.42 \text{ mT}$, $a_H = 0.21 \text{ mT}$); PBN-CH₂N(CH₃)(CHO)/-COH/-CH₃ ($a_N = 1.45 \text{ mT}$, $a_H = 0.28 \text{ mT}$).

Figure S5. ¹³C (A) and ¹H (B) NMR spectra of the aqueous extract from (1) an untreated and (2) a plasma-treated 2% w/v PLA solution.

In the ¹³C NMR spectra shown in Figure S5, only the chemical shifts of carbon atoms of DMF and residual CHCl₃ were detected, with chemical shifts of 31.27, 36.77, 164.59 ppm (DMF) and 77.87 ppm (CHCl₃). No differences in ¹³C NMR spectra before and after plasma treatment can be revealed. ¹H-NMR analysis demonstrated signals with chemical shifts at 2.47 (NH₂), 2.63 (OC=O), 4.39 (H₂O), 7.32 (CHCl₃), and 7.56 (DMF) ppm and the same signals were present in the D₂O extract after PEPT (Figure S5B). In the extract of the PEPT solution, the H₂O signals originated either from impurities in D₂O or from generated HCl.

Figure S6. ¹H-NMR spectra of (a) a plasma-treated mixture solvent, (b) a plasma-treated 2% w/v PLA solution, and (c) an untreated 2% w/v PLA solution in CDCl₃.

Figure S7. Fitted C1s peak of PLA nanofibers produced from (a) untreated and (b) plasma-treated (PEPT parameters: 5 min, 0.5 L/min, 2 kV) 6% w/v PLA polymer solutions.