|   | 
Details
   web
Records
Author Fang, C.; Verbrigghe, N.; Sigurdsson, B.D.D.; Ostonen, I.; Leblans, N.I.W.; Maranon-Jimenez, S.; Fuchslueger, L.; Sigurosson, P.; Meeran, K.; Portillo-Estrada, M.; Verbruggen, E.; Richter, A.; Sardans, J.; Penuelas, J.; Bahn, M.; Vicca, S.; Janssens, I.A.
Title (up) Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation Type A1 Journal article
Year 2023 Publication New phytologist Abbreviated Journal
Volume 240 Issue 2 Pages 565-576
Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3 degrees C and +7.9 degrees C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001043561400001 Publication Date 2023-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited Open Access
Notes Approved Most recent IF: 9.4; 2023 IF: 7.33
Call Number UA @ admin @ c:irua:198443 Serial 9199
Permanent link to this record
 

 
Author Bhatia, H.; Martin, C.; Keshavarz, M.; Dovgaliuk, I.; Schrenker, N.J.; Ottesen, M.; Qiu, W.; Fron, E.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Roeffaers, M.B.J.; Hofkens, J.; Debroye, E.
Title (up) Deciphering the role of water in promoting the optoelectronic performance of surface-engineered lead halide perovskite nanocrystals Type A1 Journal article
Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 15 Issue 5 Pages 7294-7307
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lead halide perovskites are promising candidates for applicability is limited by their structural instability toward moisture. Although a deliberate addition of water to the precursor solution has recently been shown to improve the crystallinity and optical properties of perovskites, the corresponding thin films still do not exhibit a near-unity quantum yield. Herein, we report that the direct addition of a minute amount of water to post-treated substantially enhances the stability while achieving a 95% photoluminescence quantum yield in a NC thin film. We unveil the mechanism of how moisture assists in the formation of an additional NH4Br component. Alongside, we demonstrate the crucial role of moisture in assisting localized etching of the perovskite crystal, facilitating the partial incorporation of NH4+, which is key for improved performance under ambient conditions. Finally, as a proof-of-concept, the application of post-treated and watertreated perovskites is tested in LEDs, with the latter exhibiting a superior performance, offering opportunities toward commercial application in moisture-stable optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000931729400001 Publication Date 2023-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited 3 Open Access Not_Open_Access
Notes H.B. would like to express her sincere gratitude to Dr. Peter Erk (formerly BASF SE, Germany) for very insightful discussions. The authors acknowledge financial support from the Research Foundation-Flanders (FWO grant numbers S002019N, 1514220N, G.0B39.15, G.0B49.15, G098319N, and ZW15_09-GOH6316) , the KU Leuven Research Fund (C14/19/079, iBOF-21-085 PERSIST, and STG/21/010) , the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) , the Hercules Founda-tion (HER/11/14) , and the ERC through the Marie Curie ITN iSwitch Ph.D. fellowship to H.B. (grant number 642196) . C.M. acknowledges the financial support from grants PID2021-128761OA-C22 funded by MCIN/AEI/10.13039/501100011033 by the ?European Union? and SBPLY/21/180501/000127 funded by JCCM and by the EU through Fondo Europeo de Desarollo Regional? (FEDER) . Martin Bremholm and Martin Ottesen acknowledge funding from the Danish Council for Independent Research, Natural Sciences, under the Sapere Aude program (grant no. 7027-00077B) and VILLUM FONDEN through the Centre of Excellence for Dirac Materials (grant no. 11744) . Affiliation with the Center for Integrated Materials Research (iMAT) at Aarhus University is gratefully acknowledged.-N.J.S. acknowledges financial support from the research foundation Flanders (FWO) through a postdoctoral fellowship (FWO grant no. 1238622N) . S.B. acknowledges financial support from the European Commission by the ERC Consolidator grant REALNANO (no. 815128) . Approved Most recent IF: 9.5; 2023 IF: 7.504
Call Number UA @ admin @ c:irua:195375 Serial 7293
Permanent link to this record
 

 
Author Claes, J.; Partoens, B.; Lamoen, D.
Title (up) Decoupled DFT-1/2 method for defect excitation energies Type A1 Journal Article
Year 2023 Publication Physical Review B Abbreviated Journal Phys. Rev. B
Volume 108 Issue 12 Pages 125306
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract The DFT-1/2 method is a band-gap correction with GW precision at a density functional theory (DFT) computational cost. The method was also extended to correct the gap between defect levels, allowing for the calculation of optical transitions. However, this method fails when the atomic character of the occupied and unoccupied defect levels is similar as we illustrate by two examples, the tetrahedral hydrogen interstitial and the negatively charged vacancy in diamond. We solve this problem by decoupling the effect of the occupied and unoccupied defect levels and call this the decoupled DFT-1/2 method for defects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001089302800003 Publication Date 2023-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes This work was supported by the FWO (Research Foundation-Flanders), Project No. G0D1721N. This work was performed in part using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number CMT @ cmt @c:irua:201287 Serial 8976
Permanent link to this record
 

 
Author Chowdhury, M.S.; Rösch, E.L.; Esteban, D.A.; Janssen, K.-J.; Wolgast, F.; Ludwig, F.; Schilling, M.; Bals, S.; Viereck, T.; Lak, A.
Title (up) Decoupling the Characteristics of Magnetic Nanoparticles for Ultrahigh Sensitivity Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 1 Pages 58-65
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions. We provide insights into how to decouple physical properties of these MNCs to achieve ultrahigh sensitivity. We find that tri-component-based Zn0.06 Co0.80Fe2.14 O4 particles, with out-of-phase to initial magnetic susceptibility χ /χ ratio of 0.47 out of 0.50 for magnetically blocked ideal particles, show the ultrahigh magnetic sensitivity by providing rich magnetic particle spectroscopy (MPS) harmonics spectrum despite bearing lower saturation magnetization than di-component Zn0.1Fe2.9O4 having high saturation magnetization. The Zn0.06Co0.80Fe2.14O4 MNCs, coated with catechol-based polyethylene glycol ligands, measured by our benchtop MPS show three orders of magnitude better particle LOD than that of commercial nanoparticles of comparable size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000907816300001 Publication Date 2023-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 1 Open Access OpenAccess
Notes Deutsche Forschungsgemeinschaft, DFG RTG 1952 ; Joachim Herz Stiftung; H2020 Research Infrastructures, 823717 ; Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number EMAT @ emat @c:irua:193406 Serial 7248
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.; Annys, A.; Jannis, D.; Verbeeck, J.
Title (up) Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy Type A1 Journal article
Year 2023 Publication Scientific reports Abbreviated Journal
Volume 13 Issue 1 Pages 13724
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator strength tables, that represents 107 K, L, M or N core-loss edges and 80 chemical elements. Generic lifetime broadened peaks are used to mimic the fine structure due to band structure effects present in experimental core-loss edges. The proposed dataset is used to train and evaluate a series of neural network architectures, being a multilayer perceptron, a convolutional neural network, a U-Net, a residual neural network, a vision transformer and a compact convolutional transformer. An ensemble of neural networks is used to further increase performance. The ensemble network is used to demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the predicted elemental content and by using the predicted content as input for a physical model-based mapping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052937600046 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes A.A. would like to acknowledge the resources and services used in this work provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. J.V. acknowledges the IMPRESS project. The IMPRESS project has received funding from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. Approved Most recent IF: 4.6; 2023 IF: 4.259
Call Number UA @ admin @ c:irua:198647 Serial 8846
Permanent link to this record
 

 
Author Luo, Y.; He, Y.; Ding, Y.; Zuo, L.; Zhong, C.; Ma, Y.; Sun, M.
Title (up) Defective biphenylene as high-efficiency hydrogen evolution catalysts Type A1 Journal article
Year 2023 Publication Inorganic chemistry Abbreviated Journal
Volume 63 Issue 2 Pages 1136-1141
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrocatalysts play a pivotal role in advancing the application of water splitting for hydrogen production. This research unveils the potential of defective biphenylenes as high-efficiency catalysts for the hydrogen evolution reaction. Using first-principles simulations, we systematically investigated the structure, stability, and catalytic performance of defective biphenylenes. Our findings unveil that defect engineering significantly enhances the electrocatalytic activity for hydrogen evolution. Specifically, biphenylene with a double-vacancy defect exhibits an outstanding Gibbs free energy of -0.08 eV, surpassing that of Pt, accompanied by a remarkable exchange current density of -3.08 A cm(-2), also surpassing that of Pt. Furthermore, we find the preference for the Volmer-Heyrovsky mechanism in the hydrogen evolution reaction, with a low energy barrier of 0.80 eV. This research provides a promising avenue for developing novel metal-free electrocatalysts for water splitting with earth-abundant carbon elements, making a significant step toward sustainable hydrogen production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001143581300001 Publication Date 2023-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access
Notes Approved Most recent IF: 4.6; 2023 IF: 4.857
Call Number UA @ admin @ c:irua:202780 Serial 9018
Permanent link to this record
 

 
Author Alloul, A.; Blansaer, N.; Cabecas Segura, P.; Wattiez, R.; Vlaeminck, S.E.; Leroy, B.
Title (up) Dehazing redox homeostasis to foster purple bacteria biotechnology Type A1 Journal article
Year 2023 Publication Trends in biotechnology : regular edition Abbreviated Journal
Volume 41 Issue 1 Pages 106-119
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several ‘electron sinking’ strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000923198400001 Publication Date 2022-07-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1879-3096;0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.3 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 17.3; 2023 IF: 11.126
Call Number UA @ admin @ c:irua:192944 Serial 7294
Permanent link to this record
 

 
Author Calogiuri, T.; Hagens, M.; Van Groenigen, J.W.; Corbett, T.; Hartmann, J.; Hendriksen, R.; Janssens, I.; Janssens, I.A.; Ledesma Dominguez, G.; Loescher, G.; Mortier, S.; Neubeck, A.; Niron, H.; Poetra, R.P.; Rieder, L.; Struyf, E.; Van Tendeloo, M.; De Schepper, T.; Verdonck, T.; Vlaeminck, S.E.; Vicca, S.; Vidal, A.
Title (up) Design and construction of an experimental setup to enhance mineral weathering through the activity of soil organisms Type A1 Journal article
Year 2023 Publication Journal of visualized experiments Abbreviated Journal
Volume Issue 201 Pages e65563-30
Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Applied mathematics; Sustainable Energy, Air and Water Technology (DuEL); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001127854400015 Publication Date 2023-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087x ISBN Additional Links UA library record; WoS full record
Impact Factor 1.2 Times cited Open Access
Notes Approved Most recent IF: 1.2; 2023 IF: 1.232
Call Number UA @ admin @ c:irua:200770 Serial 9019
Permanent link to this record
 

 
Author Truta, F.M.; Cruz, A.G.; Dragan, A.-M.; Tertis, M.; Cowen, T.; Stefan, M.-G.; Topala, T.; Slosse, A.; Piletska, E.; Van Durme, F.; Kiss, B.; De Wael, K.; Piletsky, S.A.; Cristea, C.
Title (up) Design of smart nanoparticles for the electrochemical detection of 3,4-methylenedioxymethamphetamine to allow in field screening by law enforcement officers Type A1 Journal article
Year 2023 Publication Drug testing and analysis Abbreviated Journal
Volume Issue Pages 1-14
Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract A portable and highly sensitive sensor was designed for the specific detection of 3,4-methyl-enedioxy-methamphetamine (MDMA), in a range of field-testing situations. The sensor can detect MDMA in street samples, even when other controlled substances drugs, or adulterants are present. In this work, we report for the first time a sensor using electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA and then produced using solid phase synthesis. A composite comprising chitosan, reduced graphene oxide, and molecularly imprinted polymer nanoparticles synthesized for MDMA for the first time was immobilized on screen-printed carbon electrodes. The sensors displayed a satisfactory sensitivity (106.8 nA x mu M-1), limit of detection (1.6 nM; 0.31 ng/mL), and recoveries (92-99%). The accuracy of the results was confirmed through validation using Ultra-High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (UPLC-MS/MS). This technology could be used in forensic analysis and make it possible to selectively detect MDMA in street samples. A highly sensitive and portable sensor has been developed to detect MDMA in street samples. It uses electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA, which were immobilized on screen-printed carbon electrodes with chitosan and graphene. The sensor showed good sensitivity and satisfactory recoveries (92-99%), confirmed with UPLC-MS/MS validation. This technology has the potential to be used in forensic analysis.image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001107703400001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access
Notes Approved Most recent IF: 2.9; 2023 IF: 3.469
Call Number UA @ admin @ c:irua:202058 Serial 9020
Permanent link to this record
 

 
Author Voordeckers, D.
Title (up) Design to breathe : understanding and altering wind patterns in street canyons to reduce human exposure to air pollution Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages xxii, 303 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Air pollution is proclaimed by the World Health Organiaation (WHO) as the biggest environmental threat to human health. Street canyons, or urban roads flanked by a continuous row of high buildings on both sides, are perceived as typical bottleneck areas for air quality due to their lack of natural ventilation. This doctoral thesis aims to integrate expert knowledge on in-canyon flow fields and pollution dispersion in street canyons from the specialized field of (bio)engineering into the field of urban planning and vice versa. In Chapter 1, a Geospatial Information System (GIS) method was developed to detect exposure zones and hotspot street canyons. A critical combination between aspect ratio (AR > 0.65) and traffic volume (TVmax > 300) was detected and subsequently used to detect hotspot street canyons in three major European cities (Antwerp, London and Paris). Chapter 2 focusses on acquiring in-depth knowledge on flow and concentration fields in street canyons by conducting an extensive literature review on over 200 studies and translates this knowledge into nineteen guidelines and eleven spatial tools, comprised in a toolbox for urban planning. Subsequently, computational fluid dynamics (CFD) was used into a research trough design process (Chapter 4) to illustrate how the design tools can be applied to a specific case study (Belgiëlei, Antwerp). Alternations to traffic lanes (traffic lane reduction and lateral displacement) combined with low boundary walls (LBWs), were found to reduce NO2 levels in the entire pedestrian area up to – 3.6 % and peak pollutions were reduced by -8 %. A maximum NO2 reduction was reached by combining a traffic lane displacement with hedges, adjustments to the tree planting pattern and an increased ground-level permeability, leading to reductions up to – 4.5 % in the pedestrian areas. In conclusion, urban design was found to be a valuable tool to enhance the effect of emission reduction strategies and draw in-canyon concentrations closer to the value of the background concentration. However, the background concentration seemed to dominate the efficiency of the urban design interventions and therefore, additional measures should be taken to reduce background pollution levels. This dissertation aims to contribute to the awareness of air pollution in street canyons, as well as support local governments in taking action by delivering spatial tools and guidelines applicable for urban planning and represents a framework for the dissemination of expert information on air quality in street canyons to the field of urban planning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:196399 Serial 7767
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E.
Title (up) Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
Year 2023 Publication Journal of cleaner production Abbreviated Journal
Volume 410 Issue Pages 137278-13
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991013600001 Publication Date 2023-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 11.1; 2023 IF: 5.715
Call Number UA @ admin @ c:irua:196227 Serial 7770
Permanent link to this record
 

 
Author Harrabi, K.; Gasmi, K.; Mekki, A.; Bahlouli, H.; Kunwar, S.; Milošević, M.V.
Title (up) Detection and measurement of picoseconds-pulsed laser energy using a NbTiN superconducting filament Type A1 Journal article
Year 2023 Publication IEEE transactions on applied superconductivity Abbreviated Journal
Volume 33 Issue 5 Pages 2400205-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract investigate non-equilibrium states created by a laser beam incident on a superconducting NbTiN filament subject to an electrical pulse at 4 K. In absence of the laser excitation, when the amplitude of the current pulse applied to the filament exceeds the critical current value, we monitored the delay time td that marks the collapse of the superconducting phase which is then followed by a voltage rise. We linked the delay time to the applied current using the time-dependent Ginzburg-Landau (TDGL) theory, which enabled us to deduce the cooling (or heat-removal) time from the fit to the experimental data. Subsequently, we exposed the filament biased with a current pulse close to its critical value to a focused laser beam, inducing a normal state in the impact region of the laser beam. We showed that the energy of the incident beam and the incurred delay time are related to each other by a simple expression, that enables direct measurement of incident beam energy by temporal monitoring of the transport response. This method can be extended for usage in single-photon detection regime, and be used for accurate calibration of an arbitrary light source.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000946265900016 Publication Date 2023-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.8; 2023 IF: NA
Call Number UA @ admin @ c:irua:195110 Serial 7295
Permanent link to this record
 

 
Author Tang, C.S.; Zeng, S.; Wu, J.; Chen, S.; Naradipa, M.A.; Song, D.; Milošević, M.V.; Yang, P.; Diao, C.; Zhou, J.; Pennycook, S.J.; Breese, M.B.H.; Cai, C.; Venkatesan, T.; Ariando, A.; Yang, M.; Wee, A.T.S.; Yin, X.
Title (up) Detection of two-dimensional small polarons at oxide interfaces by optical spectroscopy Type A1 Journal article
Year 2023 Publication Applied physics reviews Abbreviated Journal
Volume 10 Issue 3 Pages 031406-31409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) perovskite oxide interfaces are ideal systems to uncover diverse emergent properties, such as the arising polaronic properties from short-range charge-lattice interactions. Thus, a technique to detect this quasiparticle phenomenon at the buried interface is highly coveted. Here, we report the observation of 2D small-polarons at the LaAlO3/SrTiO3 conducting interface using high-resolution spectroscopic ellipsometry. First-principles investigations show that interfacial electron-lattice coupling mediated by the longitudinal phonon mode facilitates the formation of these polarons. This study resolves the long-standing question by attributing the formation of interfacial 2D small polarons to the significant mismatch between experimentally measured interfacial carrier density and theoretical values. Our study sheds light on the complexity of broken periodic lattice-induced quasi-particle effects and its relationship with exotic phenomena at complex oxide interfaces. Meanwhile, this work establishes spectroscopic ellipsometry as a useful technique to detect and locate optical evidence of polaronic states and other emerging quantum properties at the buried interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001038283300001 Publication Date 2023-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15; 2023 IF: 13.667
Call Number UA @ admin @ c:irua:198433 Serial 8847
Permanent link to this record
 

 
Author Campos, R.; Thiruvottriyur Shanmugam, S.; Daems, E.; Ribeiro, R.; De Wael, K.
Title (up) Development of an electrochemiluminescent oligonucleotide-based assay for the quantification of prostate cancer associated miR-141-3p in human serum Type A1 Journal article
Year 2023 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal
Volume 153 Issue Pages 108495-108496
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract MicroRNAs (miRNAs) are small oligonucleotides (18–25 bases), biologically relevant for epigenetic regulation of key processes, particularly in association with cancer. Research effort has therefore been directed towards the monitoring and detection of miRNAs to progress (early) cancer diagnoses. Traditional detection strategies for miRNAs are expensive, with a lengthy time-to-result. In this study we develop an oligonucleotide-based assay using electrochemistry for the specific, selective and sensitive detection of a circulating miRNA (miR-141) associated with prostate cancer. In the assay, the excitation and readout of the signal are independent: an electrochemical stimulation followed by an optical readout. A ‘sandwich’ approach is incorporated, consisting of a biotinylated capture probe immobilised on streptavidin-functionalised surfaces and a detection probe labelled with digoxigenin. We show that the assay allows the detection of miR-141 in human serum, even in the presence of other miRNAs, with a LOD of 0.25 pM. The developed electrochemiluminescent assay has, therefore, the potential for efficient universal oligonucleotide target detection via the redesign of capture and detection probes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031760700001 Publication Date 2023-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record
Impact Factor 5 Times cited Open Access Not_Open_Access: Available from 01.01.2024
Notes Approved Most recent IF: 5; 2023 IF: 3.346
Call Number UA @ admin @ c:irua:197615 Serial 8849
Permanent link to this record
 

 
Author Cui, W.; Lin, W.; Lu, W.; Liu, C.; Gao, Z.; Ma, H.; Zhao, W.; Van Tendeloo, G.; Zhao, W.; Zhang, Q.; Sang, X.
Title (up) Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal
Volume 14 Issue 1 Pages 554-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te-6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials. Weak interlayer van der Waals (vdW) bonding has significant impact on the structure and properties of vdW layered materials. Here authors use in-situ aberration-corrected ADF-STEM for an atomistic insight into the cation diffusion in the vdW gaps and the etching of vdW surfaces at high temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001076227200001 Publication Date 2023-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited Open Access
Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:201342 Serial 9021
Permanent link to this record
 

 
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S.
Title (up) Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
Year 2023 Publication Advanced materials Abbreviated Journal
Volume 35 Issue 51 Pages 2306447-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001106139400001 Publication Date 2023-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 29.4; 2023 IF: 19.791
Call Number UA @ admin @ c:irua:201143 Serial 9022
Permanent link to this record
 

 
Author Li, C.-F.; Chen, L.-D.; Wu, L.; Liu, Y.; Hu, Z.-Y.; Cui, W.-J.; Dong, W.-D.; Liu, X.; Yu, W.-B.; Li, Y.; Van Tendeloo, G.; Su, B.-L.
Title (up) Directly revealing the structure-property correlation in Na+-doped cathode materials Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 612 Issue Pages 155810-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The introduction of Na+ is considered as an effective way to improve the performance of Ni-rich cathode materials. However, the direct structure-property correlation for Na+ doped NCM-based cathode materials remain unclear, due to the difficulty of local and accurate structural characterization for light elements such as Li and Na. Moreover, there is the complexity of the modeling for the whole Li ion battery (LIB) system. To tackle the above-mentioned issues, we prepared Na+-doped LiNi0.6Co0.2Mn0.2O2 (Na-NCM622) material. The crystal structure change and the lattice distortion with picometers precision of the Na+-doped material is revealed by Cs-corrected scanning transmission electron microscopy (STEM). Density functional theory (DFT) and the recently proposed electrochemical model, i.e., modified Planck-Nernst-Poisson coupled Frumkin-Butler-Volmer (MPNP-FBV), has been applied to reveal correlations between the activation energy and the charge transfer resistance at multiscale. It is shown that Na+ doping can reduce the activation energy barrier from. G = 1.10 eV to 1.05 eV, resulting in a reduction of the interfacial resistance from 297 O to 134 Omega. Consequently, the Na-NCM622 cathode delivers a superior capacity retention of 90.8 % (159 mAh.g(-1)) after 100 cycles compared to the pristine NCM622 (67.5 %, 108 mAh.g(-1)). Our results demonstrate that the kinetics of Li+ diffusion and the electrochemical reaction can be enhanced by Na+ doping the cathode material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000892940300001 Publication Date 2022-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number UA @ admin @ c:irua:192758 Serial 7296
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Du, Y.; Li, K.; Schryvers, D.
Title (up) Discovery of core-shell quasicrystalline particles Type A1 Journal article
Year 2023 Publication Scripta materialia Abbreviated Journal
Volume 222 Issue Pages 115040-115046
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Submicron-sized quasicrystalline particles were obtained in an Al-Zn-Mg-Cu alloy produced by traditional melting. These particles consist of an Al-Fe-Ni core and a Mg-Cu-Zn shell and were found to be stable and embedded randomly in the Al matrix. The diffraction patterns of these core-shell particles reveal a decagonal core and an icosahedral shell with, respectively, ten- and five-fold axes aligned. High resolution scanning transmission electron microscopy of the Mg-Cu-Zn shell confirms the five-fold symmetry atomic arrangement and the icosahedral structure. It can therefore be concluded that Fe and Ni impurities play an important role in mediating the formation of such an unusual ternary core-shell quasicrystalline particle. These findings provide some novel insights in the formation of quasicrystals in traditional industrial Al alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000864491400005 Publication Date 2022-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6; 2023 IF: 3.747
Call Number UA @ admin @ c:irua:191489 Serial 7144
Permanent link to this record
 

 
Author Muys, M.; González Cámara, S.J.; Derese, S.; Spiller, M.; Verliefde, A.; Vlaeminck, S.E.
Title (up) Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein Type A1 Journal article
Year 2023 Publication The science of the total environment Abbreviated Journal
Volume 866 Issue Pages 161172-161179
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non‑sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000922040000001 Publication Date 2022-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.8; 2023 IF: 4.9
Call Number UA @ admin @ c:irua:192943 Serial 7297
Permanent link to this record
 

 
Author Mazhar, R.; Azadi, H.; Van Passel, S.; Varnik, R.; Pietrzykowski, M.; Skominas, R.; Wei, Z.; Xuehao, B.
Title (up) Does contract length matter? The impact of various contract-farming regimes on land-improvement investment and the efficiency of contract farmers in Pakistan Type A1 Journal article
Year 2023 Publication Agriculture (Basel) Abbreviated Journal
Volume 13 Issue 9 Pages 1651-16
Keywords A1 Journal article; Engineering Management (ENM)
Abstract Land-tenure security is integral to local communities' socioeconomic development. It has been a center of debate in academia and for legislators and advocates to implement reforms to enhance efficient and sustainable development in land management. Yet, knowledge gaps remain in how various contract-farming regimes contribute to land-improvement investment and technical efficiency. This study used a data set of 650 farm households collected through a two-stage stratified sampling to investigate the influence of three contract-farming regimes: long-term, medium-term, and short-term contracts, on the land-improvement investment, productivity, and technical efficiency of contract farmers in Punjab, Pakistan. The study used multivariate probit and ordinary least square regression models to examine the posit relationships. The findings highlight that farmers with long-term land contracts have higher per hectare yield, income and profit than those with medium-term and short-term contracts. The results confirm that farmers with medium- and long-term contracts tend to invest more in land-improvement measures, i.e., organic and green manure. Further, the study findings demonstrate that long-term land tenures are more effective when farmers make decisions regarding the on-farm infrastructure, like tube-well installation, tractor ownership, and holding farm logistics. Last, the study results confirm that long-term contracts are more robust regarding technical efficiency. Moreover, the findings support the Marshallian inefficiency hypothesis and extend the literature on contract farming, land-improvement investment, and land use policy, and offer coherent policy actions for stakeholders to improve farmers' productivity, technical efficiency, and income.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071045300001 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2077-0472 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200373 Serial 9201
Permanent link to this record
 

 
Author Tampieri, F.; Espona-Noguera, A.; Labay, C.; Ginebra, M.-P.; Yusupov, M.; Bogaerts, A.; Canal, C.
Title (up) Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Type A1 Journal Article
Year 2023 Publication Biomaterials Science Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets. The direct effects of the plasma treatment on the structure of biopolymers in water solution, as well as the chemical mechanisms responsible for the enhanced generation of RONS, are not yet fully understood. In this study, we aim at filling this gap by investigating, on the one hand, the nature and extent of the modifications induced by plasma treatment in alginate solutions, and, on the other hand, at using this information to explain the mechanisms responsible for the enhanced generation of reactive species as a consequence of the treatment. The approach we use is twofold: (i) investigating the effects of plasma treatment on alginate solutions, by size exclusion chromatography, rheology and scanning electron microscopy and (ii) study of a molecular model (glucuronate) sharing its chemical structure, by chromatography coupled with mass spectrometry and by molecular dynamics simulations. Our results point out the active role of the biopolymer chemistry during direct plasma treatment. Short-lived reactive species, such as OH radicals and O atoms, can modify the polymer structure, affecting its functional groups and causing partial fragmentation. Some of these chemical modifications, like the generation of organic peroxide, are likely responsible for the secondary generation of long-lived reactive species such as hydrogen peroxide and nitrite ions. This is relevant in view of using biocompatible hydrogels as vehicles for storage and delivery reactive species for targeted therapies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000973699000001 Publication Date 2023-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2047-4830 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.6 Times cited Open Access Not_Open_Access
Notes Agència de Gestió d’Ajuts Universitaris i de Recerca, SGR2022-1368 ; H2020 European Research Council, 714793 ; European Cooperation in Science and Technology, CA19110 CA20114 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; We thank Gonzalo Rodríguez Cañada and Xavier Solé-Martí (Universitat Politècnica de Catalunya) for help in collecting some of the experimental data and for the useful discussions. This work has been primarily funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 714793). The authors acknowledge MINECO for PID2019103892RB-I00/AEI/10.13039/501100011033 project (CC). The authors belong to SGR2022-1368 (FT, AEN, CL, MPG, CC) and acknowledge Generalitat de Catalunya for the ICREA Academia Award for Excellence in Research of CC. We thank also COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Approved Most recent IF: 6.6; 2023 IF: 4.21
Call Number PLASMANT @ plasmant @c:irua:196773 Serial 8794
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A.
Title (up) Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume Issue Pages 142953-29
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986051300001 Publication Date 2023-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:195603 Serial 7264
Permanent link to this record
 

 
Author Vizarim, N.P.
Title (up) Dynamic behavior of Skyrmions under the influence of periodic pinning in chiral magnetic infinite thin films Type Doctoral thesis
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 212 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract The miniaturization of transistors for application in new processors and logic devices poses a significant challenge in the field of materials. Spintronics, which relies on controlled movement of magnetic nanostructures, offers a promising solution. Among the candidates, magnetic skyrmions are considered one of the most promising. These chiral spin structures, characterized by topological protection and enhanced stability compared to vortices or magnetic bubbles, have been extensively studied. To advance in the control of skyrmion motion, essential for practical applications, we investigated their dynamic behavior in a two-dimensional chiral magnet at zero temperature. Our study focused on the influence of periodic arrays of pinning centers. The simulations considered skyrmions as point-like particles considering the following interactions: skyrmion-skyrmion interactions, interactions with pinning center arrays, a current of polarized spins, and the Magnus force. We conducted calculations for scenarios involving a single skyrmion as well as different skyrmion density values in the material. The aim was to explore possibilities for controlled skyrmion motion, investigate different dynamic regimes, and examine collective effects. The results demonstrate that by adjusting the size, strength, and density of the pinning centers, we can effectively control the motion of individual skyrmions and manage the flow of multiple skyrmions. Furthermore, we discovered that periodic arrays of pinning centers can facilitate topological selection when different species of skyrmions with distinct Magnus components are present. Employing alternating currents, we observed the significant role of the ratchet effect in the skyrmion dynamics. By fine-tuning the amplitudes of the alternating currents, we achieved direct and controlled motion of skyrmions in specific directions. These findings hold potential for advancing our understanding of skyrmion dynamics and can inspire future technological applications involving these quasi-particles. Overall, we anticipate that our results will be valuable to the scientific community, contributing to a deeper comprehension of skyrmion dynamics and paving the way for future technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:198101 Serial 8852
Permanent link to this record
 

 
Author McLachlan, G.; Majdak, P.; Reijniers, J.; Mihocic, M.; Peremans, H.
Title (up) Dynamic spectral cues do not affect human sound localization during small head movements Type A1 Journal article
Year 2023 Publication Frontiers in neuroscience Abbreviated Journal
Volume 17 Issue Pages 1027827-10
Keywords A1 Journal article; Psychology; Condensed Matter Theory (CMT); Engineering Management (ENM)
Abstract Natural listening involves a constant deployment of small head movement. Spatial listening is facilitated by head movements, especially when resolving front-back confusions, an otherwise common issue during sound localization under head-still conditions. The present study investigated which acoustic cues are utilized by human listeners to localize sounds using small head movements (below ±10° around the center). Seven normal-hearing subjects participated in a sound localization experiment in a virtual reality environment. Four acoustic cue stimulus conditions were presented (full spectrum, flattened spectrum, frozen spectrum, free-field) under three movement conditions (no movement, head rotations over the yaw axis and over the pitch axis). Localization performance was assessed using three metrics: lateral and polar precision error and front-back confusion rate. Analysis through mixed-effects models showed that even small yaw rotations provide a remarkable decrease in front-back confusion rate, whereas pitch rotations did not show much of an effect. Furthermore, MSS cues improved localization performance even in the presence of dITD cues. However, performance was similar between stimuli with and without dMSS cues. This indicates that human listeners utilize the MSS cues before the head moves, but do not rely on dMSS cues to localize sounds when utilizing small head movements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000938567400001 Publication Date 2023-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-4548; 1662-453x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:194507 Serial 9025
Permanent link to this record
 

 
Author Perreault, P.; Preuster, P.
Title (up) Editorial hydrogen production storage and use Type Editorial
Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal
Volume 44 Issue Pages 100861-100863
Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract In the pursuit of clean and sustainable energy sources, hydrogen has emerged as a key contender, offering high energy density and the potential to serve as a carbon-neutral fuel. However, one of the major challenges associated with hydrogen is efficient and safe storage and transportation. In this Special Edition, we delve into the exciting developments in the upcoming hydrogen economy, from its sustainable production to chemical hydrogen storage. Some of our reviews focus on particular technologies namely on liquid organic hydrogen carriers (LOHCs) and the utilization of ammonia as a hydrogen carrier.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079651000001 Publication Date 2023-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.3; 2023 IF: NA
Call Number UA @ admin @ c:irua:198505 Serial 8853
Permanent link to this record
 

 
Author Verbruggen, S.W.; Mul, G.
Title (up) Editorial overview : photocatalysis 2022 shining light on a diversity of research opportunities Type Editorial
Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal
Volume 42 Issue Pages 100838-2
Keywords Editorial; Engineering sciences. Technology
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001034184800001 Publication Date 2023-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.3; 2023 IF: NA
Call Number UA @ admin @ c:irua:197220 Serial 8854
Permanent link to this record
 

 
Author Niklas, K.J.; Shi, P.; Gielis, J.; Schrader, J.; Niinemets, U.
Title (up) Editorial: leaf functional traits : ecological and evolutionary implications Type Editorial
Year 2023 Publication Frontiers in plant science Abbreviated Journal
Volume 14 Issue Pages 1169558-5
Keywords Editorial; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000964122500001 Publication Date 2023-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-462x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.6; 2023 IF: 4.298
Call Number UA @ admin @ c:irua:196076 Serial 7834
Permanent link to this record
 

 
Author Rakesh Roshan, S.C.; Yedukondalu, N.; Pandey, T.; Kunduru, L.; Muthaiah, R.; Rajaboina, R.K.; Ehm, L.; Parise, J.B.
Title (up) Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides Type A1 Journal article
Year 2023 Publication ACS applied electronic materials Abbreviated Journal
Volume 5 Issue 11 Pages 5852-5863
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Lattice thermal conductivity (kappa(L)) is of great scientific interest for the development of efficient energy conversion technologies. Therefore, microscopic understanding of phonon transport is critically important for designing functional materials. In our previous study (Roshan et al., ACS Applied Energy Mater. 2021, 5, 882-896), anomalous kappa(L) trends were predicted for rocksalt alkaline-earth chalcogenides (AECs). In the present work, we extended it to alkali halides (AHs) and conducted a thorough investigation to explore the role of atomic mass contrast on lattice dynamics and phonon transport properties of 36 binary compounds (20 AHs + 16 AECs). The calculated spectral and cumulative kappa(L) reveal that low-lying optical phonon modes significantly boost kappa(L) alongside acoustic phonons in materials where the atomic mass ratio approaches unity and cophonocity nears zero. Phonon scattering rates are relatively low for materials with a mass ratio close to one, and the corresponding phonon lifetimes are higher, which enhances kappa(L). Phonon lifetimes play a critical role, outweighing phonon group velocities, in determining the anomalous trends in kappa(L) for both AHs and AECs. To further explore the role of atomic mass contrast in kappa(L), the effect of tensile lattice strain on phonon transport has also been investigated. Under tensile strain, both group velocities and phonon lifetimes decrease in the low frequency range, leading to a decrease in kappa(L). This work provides insights on how atomic mass contrast can tune the contribution of optical phonons to kappa(L) and its implications on scattering rates by either enhancing or suppressing kappa(L). These insights would aid in the selection of elements for designing new functional materials with and without atomic mass contrast to achieve relatively high and low kappa(L) values, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001096792500001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201198 Serial 9026
Permanent link to this record
 

 
Author Matnazarova, S.; Khalilov, U.; Yusupov, M.
Title (up) Effect of endohedral nickel atoms on the hydrophilicity of carbon nanotubes Type A1 Journal article
Year 2023 Publication Molecular simulation Abbreviated Journal
Volume 49 Issue 17 Pages 1575-1581
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) have been successfully used in biomedicine, including cancer therapy, due to their unique physico-chemical properties. Because pristine CNTs exhibit hydrophobic behaviour, they can have a cytotoxic effect on cells, which limits their practical use in biomedicine. The toxicity of CNTs can be reduced by adding water-soluble functional radicals to their surface, i.e. by increasing their hydrophilicity. Another possibility for increasing the hydrophilicity of CNTs is probably filling them with endohedral metal atoms, which has not yet been studied. Thus, in this study, we use computer simulations to investigate the combined effect of endohedral nickel atoms and functional groups on the hydrophilicity of CNTs. Our simulation results show that the introduction of endohedral nickel atoms into CNTs increases their binding energy with functional groups. We also find that the addition of functional groups to the surface of CNT, along with filling it with endohedral nickel atoms, leads to an increase in the dipole moment of the CNT as well as its interaction energy with water, thereby increasing the hydrophilicity of the CNT and, consequently, its solubility in water. This, in turn, can lead to a decrease in CNT toxicity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001059544800001 Publication Date 2023-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-7022 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.1 Times cited Open Access
Notes Approved Most recent IF: 2.1; 2023 IF: 1.254
Call Number UA @ admin @ c:irua:199261 Serial 9027
Permanent link to this record
 

 
Author Yedukondalu, N.; Pandey, T.; Roshan, S.C.R.
Title (up) Effect of hydrostatic pressure on lone pair activity and phonon transport in Bi₂O₂S Type A1 Journal article
Year 2023 Publication ACS applied energy materials Abbreviated Journal
Volume 6 Issue 4 Pages 2401-2411
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Dibismuth dioxychalcogenides, Bi2O2Ch (Ch = S, Se, Te), are a promising class of materials for next-generation electronics and thermoelectrics due to their ultrahigh carrier mobility and excellent air stability. An interesting member of this family is Bi2O2S, which has a stereochemically active 6s2 lone pair of Bi3+ cations, heterogeneous bonding, and a high mass contrast between its constituent elements. In the present study, we have used first-principles calculations in combination with Boltzmann transport theory to systematically investigate the effect of hydrostatic pressure on lattice dynamics and phonon transport properties of Bi2O2S. We found that the ambient Pnmn phase has a low average lattice thermal conductivity (kappa l) of 1.71 W/(m K) at 300 K. We also predicted that Bi2O2S undergoes a structural phase transition from a low-symmetry (Pnmn) to a high-symmetry (I4/mmm) structure at around 4 GPa due to centering of Bi3+ cations with pressure. Upon compression, the lone pair activity of Bi3+ cations is suppressed, which increases kappa l by almost 3 times to 4.92 W/ (m K) at 5 GPa for the I4/mmm phase. The computed phonon lifetimes and Gru''neisen parameters show that anharmonicity decreases with increasing pressure due to further suppression of the lone pair activity and strengthening of intra-and intermolecular interactions, leading to an average room-temperature kappa l of 12.82 W/(m K) at 20 GPa. Overall, this study provides a comprehensive understanding of the effect of hydrostatic pressure on the stereochemical activity of the lone pair of Bi3+ cations and its implications on the phonon transport properties of Bi2O2S.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000929103700001 Publication Date 2023-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 6.4; 2023 IF: NA
Call Number UA @ admin @ c:irua:195245 Serial 7300
Permanent link to this record