toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Radepont, M.; Coquinot, Y.; Janssens, K.; Ezrati, J.-J.; de Nolf, W.; Cotte, M. url  doi
openurl 
  Title (down) Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide Type A1 Journal article
  Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 30 Issue 3 Pages 599-612  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The red pigment mercury sulfide, called cinnabar or vermilion, is well known to suffer from an alteration giving rise to a grey, grey-white or black color at the surface of degraded works of art. This phenomenon can dramatically affect the esthetical value of artworks. This work aims at assessing the factors (light, halides) influencing the instability of red mercury sulfide and understanding (by combining thermodynamic and experimental approaches) the chemical equilibria governing the formation and evolution of the different degradation compounds. From the thermodynamic study of the Hg-S-Cl-H2O system, it was concluded that Hg(0), Hg3S2Cl2, and Hg2Cl2 can be formed from the reaction of alpha-HgS with ClO(g). In the second part, the artificial ageing experiments presented were carried out on model samples following the conditions assessed in the first part, in order to reproduce natural ageing observed on red mercury sulfide. Similarly to degradation compounds detected on original works of art, mercury chlorine compounds such as calomel (Hg2Cl2) and corderoite (alpha-Hg3S2Cl2) were identified on the surface of alpha-HgS model samples, when exposed to light and a sodium hypochlorite solution. Sulfates were detected as well, and more particularly gypsum (CaSO4 center dot 2H(2)O) when Ca was originally present in the model sample. The relationship between color and composition is discussed as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000350650800005 Publication Date 2015-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 26 Open Access  
  Notes ; The authors gratefully acknowledge the ESRF for granting beamtime under proposal no. EC720. Michel Dubus is thanked for providing precious advices concerning ageing protocols. This research was supported by Belgian Science Policy project S2-ART (BELSPO S4DA), the GOA “SOLARPAINT” (Research Fund University of Antwerp, Belgium) and FWO (Brussels, Belgium) projects no. G.0C12.13, G.0704.08 and G.01769.09. ; Approved Most recent IF: 3.379; 2015 IF: 3.466  
  Call Number UA @ admin @ c:irua:125474 Serial 5877  
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title (down) Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor : experimental assessment of the ignition front propagation velocity Type A1 Journal article
  Year 2021 Publication Energy Abbreviated Journal Energy  
  Volume 220 Issue Pages 119702-119710  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Co-thermochemical conversion of coal and biomass can potentially decrease the use of fossil carbon and pollutant emissions. This work presents experimental results for the so-called top-lit updraft fixed bed reactor, in which the ignition front starts at the top and propagates downward while the gas product flows upwards. The study focuses on the ignition front propagation velocity for the co-thermochemical conversion of palm kernel shell and high-volatile bituminous coal. Within the range of assessed air superficial velocities, the process occurred under gasification and near stoichiometric conditions. Under gasification conditions increasing coal particle size from 7.1 to 22 mm decreased ignition front velocity by around 26% regardless of the coal volume percentage. Furthermore, increasing coal volume percentage and decreasing coal particle size result in product gas with higher energy content. For the operation near stoichiometric conditions, increasing coal volume percentage from 10 to 30% negatively affected the ignition front velocity directly proportional to its particle size. Additional experiments confirmed a linear dependence of ignition front velocity on air superficial velocity. Further steps in the development of the top-lit updraft technology are implementing continuous solids feeding and variable cross-sectional area and optimizing coal particle size distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623087300003 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.52 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.52  
  Call Number UA @ admin @ c:irua:175861 Serial 8664  
Permanent link to this record
 

 
Author Goris, B.; van Huis, M.A.; Bals, S.; Zandbergen, H.W.; Manna, L.; Van Tendeloo, G. pdf  doi
openurl 
  Title (down) Thermally induced structural and morphological changes of CdSe/CdS octapods Type A1 Journal article
  Year 2012 Publication Small Abbreviated Journal Small  
  Volume 8 Issue 6 Pages 937-942  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000301718800021 Publication Date 2012-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 20 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 8.643; 2012 IF: 7.823  
  Call Number UA @ lucian @ c:irua:95040 Serial 3633  
Permanent link to this record
 

 
Author Grodzinska, D.; Pietra, F.; van Huis, M.A.; Vanmaekelbergh, D.; de Mello Donegá, C. url  doi
openurl 
  Title (down) Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 31 Pages 11556-11565  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The properties of hetero-nanocrystals (HNCs) depend strongly on the mutual arrangement of the nanoscale components. In this work we have investigated the structural and morphological evolution of colloidal PbSe/CdSe core/shell quantum dots upon annealing under vacuum. Prior to annealing the PbSe core has an approximately octahedral morphology with eight {111} facets, and the CdSe shell has zinc-blende crystal structure. Thermal annealing under vacuum at temperatures between 150 °C and 200 °C induces a structural and morphological reconstruction of the HNCs whereby the PbSe core and the CdSe shell are reorganized into two hemispheres joined by a common {111} Se plane. This thermally induced reconstruction leads to considerable changes in the optical properties of the colloidal PbSe/CdSe HNCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000293190200018 Publication Date 2011-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 44 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:91945 Serial 3632  
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Reith, P.; Halisdemir, U.; Jannis, D.; Spreitzer, M.; Huijben, M.; Abel, S.; Fompeyrine, J.; Verbeeck, J.; Hilgenkamp, H.; Rijnders, G.; Koster, G. pdf  doi
openurl 
  Title (down) Thermal-strain-engineered ferromagnetism of LaMnO3/SrTiO3 heterostructures grown on silicon Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials  
  Volume 4 Issue 2 Pages 024406  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The integration of oxides on Si remains challenging, which largely hampers the practical applications of oxide-based electronic devices with superior performance. Recently, LaMnO3/SrTiO3 (LMO/STO) heterostructures have gained renewed interest for the debating origin of the ferromagnetic-insulating ground state as well as for their spin-filter applications. Here we report on the structural and magnetic properties of high-quality LMO/STO heterostructures grown on silicon. The chemical abruptness across the interface was investigated by atomic-resolution scanning transmission electron microscopy. The difference in the thermal expansion coefficients between LMO and Si imposed a large biaxial tensile strain to the LMO film, resulting in a tetragonal structure with c/a∼ 0.983. Consequently, we observed a significantly suppressed ferromagnetism along with an enhanced coercive field, as compared to the less distorted LMO film (c/a∼1.004) grown on STO single crystal. The results are discussed in terms of tensile-strain enhanced antiferromagnetic instabilities. Moreover, the ferromagnetism of LMO on Si sharply disappeared below a thickness of 5 unit cells, in agreement with the LMO/STO case, pointing to a robust critical behavior irrespective of the strain state. Our results demonstrate that the growth of oxide films on Si can be a promising way to study the tensile-strain effects in correlated oxides, and also pave the way towards the integration of multifunctional oxides on Si with atomic-layer control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000513552900003 Publication Date 2020-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 6 Open Access Not_Open_Access  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G093417N ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; European Commission, H2020-ICT-2016-1-732642 ; Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number EMAT @ emat @c:irua:167782 Serial 6375  
Permanent link to this record
 

 
Author Albrecht, W.; Bladt, E.; Vanrompay, H.; Smith, J.D.; Skrabalak, S.E.; Bals, S. url  doi
openurl 
  Title (down) Thermal Stability of Gold/Palladium Octopods Studied in Situ in 3D: Understanding Design Rules for Thermally Stable Metal Nanoparticles Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 6522-6530  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multifunctional metal nanoparticles (NPs) such as anisotropic multimetallic NPs are crucial for boosting nanomaterial based applications. Advanced synthetic protocols exist to make a large variety of such nanostructures. However, a major limiting factor for the usability of them in real life applications is their stability. Here, we show that Au/Pd octopods, 8-branched nanocrystals with Oh symmetry, with only a low amount of Pd exhibited a high thermal stability and maintained strong plasmon resonances up to 600 ◦C. Furthermore, we study the influence of the composition, morphology and environment on the thermal stability and define key parameters for the design of thermally stable multifunctional NPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473248300038 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 46 Open Access OpenAccess  
  Notes W. A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. H. V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). J. D. S. and S.E.S acknowledge funding from the US National Science Foundation (award number: CHE-1602476). The authors acknowledge funding from the European Commission Grant (EUSMI E180600101 to S. B. and S. E. S.) and European Research Council (ERC Starting Grant #335078-COLOURATOMS). Realnano 815128; sygma Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:161356 Serial 5285  
Permanent link to this record
 

 
Author Altantzis, T.; Yang, Z.; Bals, S.; Van Tendeloo, G.; Pileni, M.-P. pdf  url
doi  openurl
  Title (down) Thermal Stability of CoAu13Binary Nanoparticle Superlattices under the Electron Beam Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 716-719  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract One primary goal of self-assembly in nanoscale regime is to implement multifunctional binary nanoparticle superlattices into practical use. In the last decade, considerable effort has been put into the fabrication of binary nanoparticle superlattices with controllable structure and stoichiometry. However, limited effort has been made in order to improve the stability of these binary nanoparticle superlattices, which is a prerequisite for their potential application. In this work, we demonstrate that the carbon deposition from specimen contamination can play an auxiliary role during the heat treatment of binary nanoparticle superlattices. With the in-situ carbon matrix formation, the thermal stability of CoAu 13 binary nanoparticle superlattices is unambiguously enhanced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370112200007 Publication Date 2016-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access OpenAccess  
  Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by theEuropean Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number c:irua:131908 Serial 4040  
Permanent link to this record
 

 
Author Worobiec, A.; de Hoog, J.; Osán, J.; Szalóki, I.; Ro, C.-U.; Van Grieken, R. doi  openurl
  Title (down) Thermal stability of beam sensitive atmospheric aerosol particles in electron probe microanalysis at liquid nitrogen temperature Type A1 Journal article
  Year 2003 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal  
  Volume 58 Issue Pages 479-496  
  Keywords A1 Journal article; Laboratory Experimental Medicine and Pediatrics (LEMP); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000182680400008 Publication Date 2003-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; 1873-3565 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:41220 Serial 8663  
Permanent link to this record
 

 
Author Nistor, L.C.; Richard, O.; Zhao, C.; Bender, H.; Van Tendeloo, G. doi  openurl
  Title (down) Thermal stability of atomic layer deposited Zr:Al mixed oxide thin films: an in situ transmission electron microscopy study Type A1 Journal article
  Year 2005 Publication Journal of materials research Abbreviated Journal J Mater Res  
  Volume 20 Issue 7 Pages 1741-1750  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000230296100012 Publication Date 2005-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0884-2914;2044-5326; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.673 Times cited Open Access  
  Notes Bil 01/73; IAP V-1 Approved Most recent IF: 1.673; 2005 IF: 2.104  
  Call Number UA @ lucian @ c:irua:54884 Serial 3631  
Permanent link to this record
 

 
Author Costamagna, S.; Neek-Amal, M.; Los, J.H.; Peeters, F.M. url  doi
openurl 
  Title (down) Thermal rippling behavior of graphane Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 4 Pages 041408-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal fluctuations of single layer hydrogenated graphene (graphane) are investigated using large scale atomistic simulations. By analyzing the mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures, we show that hydrogenated graphene is an unrippled system in contrast to graphene. The height fluctuations are bounded, which is confirmed by a H(q) tending to a constant in the long wavelength limit instead of showing the characteristic scaling law q(4-eta)(eta similar or equal to 0.85) predicted by membrane theory. This unexpected behavior persists up to temperatures of at least 900 K and is a consequence of the fact that in graphane the thermal energy can be accommodated by in-plane bending modes, i.e., modes involving C-C-C bond angles in the buckled carbon layer, instead of leading to significant out-of-plane fluctuations that occur in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000306649200002 Publication Date 2012-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; We thank A. Fasolino, A. Dobry, and K. H. Michel for their useful comments. S.C. is supported by the Belgian Science Foundation (BELSPO). This work is supported by the ESF-EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100840 Serial 3630  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Radu, I.; Neyts, E.C.; De Gendt, S. pdf  doi
openurl 
  Title (down) Thermal recrystallization of short-range ordered WS2 films Type A1 Journal article
  Year 2018 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A  
  Volume 36 Issue 5 Pages 05g501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The integration of van der Waals materials in nanoelectronic devices requires the deposition of few-layered MX2 films with excellent quality crystals covering a large area. In recent years, astonishing progress in the monolayer growth of WS2 and MoS2 was demonstrated, but multilayer growth resulted often in separated triangular or hexagonal islands. These polycrystalline films cannot fully employ the specific MX2 properties since they are not connected in-plane to the other domains. To coalesce separated islands, ultrahigh-temperature postdeposition anneals in H2S are applied, which are not compatible with bare silicon substrates. Starting from the deposition of stoichiometric short-ordered films, the present work studies different options for subsequent high-temperature annealing in an inert atmosphere to form crystalline films with large grains from stoichiometric films with small grains. The rapid thermal annealing, performed over a few seconds, is compared to excimer laser annealing in the nanosecond range, which are both able to crystallize the thin WS2. The WS2 recrystallization temperature can be lowered using metallic crystallization promoters (Co and Ni). The best result is obtained using a Co cap, due to the circumvention of Co and S binary phase formation below the eutectic temperature. The recrystallization above a critical temperature is accompanied by sulfur loss and 3D regrowth. These undesired effects can be suppressed by the application of a dielectric capping layer prior to annealing. A SiO2 cap can suppress the sulfur loss successfully during annealing and reveals improved material quality in comparison to noncapped films Published by the AVS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000444033200002 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.374  
  Call Number UA @ lucian @ c:irua:153671 Serial 5134  
Permanent link to this record
 

 
Author Pereira, J.R.V.; Tunes, T.M.; De Arruda, A.S.; Godoy, M. pdf  url
doi  openurl
  Title (down) Thermal properties of the mixed spin-1 and spin-3/2 Ising ferrimagnetic system with two different random single-ion anisotropies Type A1 Journal article
  Year 2018 Publication Physica: A : theoretical and statistical physics Abbreviated Journal Physica A  
  Volume 500 Issue 500 Pages 265-272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, we have performed Monte Carlo simulations to study a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on a square lattice with two different random single-ion anisotropies. This lattice is divided in two interpenetrating sublattices with spins S-A = 1 in the sublattice A and S-B = 3/2 in the sublattice B. The exchange interaction between the spins on the sublattices is antiferromagnetic (J < 0). We used two random single-ion anisotropies, D-i(A) and D-j(B), on the sublattices A and B, respectively. We have determined the phase diagram of the model in the critical temperature T-c versus strength of the random single-ion anisotropy D plane and we shown that it exhibits only second-order phase transition lines. We also shown that this system displays compensation temperatures for some cases of the random single-ion distribution. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000430027400025 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4371 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.243 Times cited 3 Open Access  
  Notes ; The authors acknowledge financial support by the Brazilian agencies CNPq, Brazil, CAPES, Brazil (Grant No. 88881.120851/2016-01) and FAPEMAT, Brazil. ; Approved Most recent IF: 2.243  
  Call Number UA @ lucian @ c:irua:150706UA @ admin @ c:irua:150706 Serial 4985  
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M. url  doi
openurl 
  Title (down) Thermal properties of fluorinated graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 10 Pages 104114-104116  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316933500002 Publication Date 2013-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108495 Serial 3629  
Permanent link to this record
 

 
Author Aierken, Y.; Çakır, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title (down) Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 081408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Different allotropes of phosphorene are possible of which black and blue phosphorus are the most stable. While blue phosphorus has isotropic properties, black phosphorus is strongly anisotropic in its electronic and optical properties due to its anisotropic crystal structure. In this work, we systematically investigated the lattice thermal properties of black and blue phosphorene by using first-principles calculations based on the quasiharmonic approximation approach. Similar to the optoelectronic and electronic properties, we predict that black phosphorene has highly anisotropic thermal properties, in contrast to the blue phase. The linear thermal expansion coefficients along the zigzag and armchair direction differ up to 20% in black phosphorene. The armchair direction of black phosphorene is more expandable as compared to the zigzag direction and the biaxial expansion of blue phosphorene under finite temperature. Our comparative analysis reveals that the inclusion of finite-temperature effects makes the blue phase thermodynamically more stable over the black phase above 135 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359860700005 Publication Date 2015-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 124 Open Access  
  Notes This work was supported by the Flemish Science Founda- tion (FWO-Vl) and the Methusalem foundation of the Flem- ish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Comput- ing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges the support from Anadolu University (BAP-1407F335), and Turkish Academy of Sciences (TUBA-GEBIP). Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127754 Serial 4034  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title (down) Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 4962  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342984800018 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 36 Open Access  
  Notes ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:121121 Serial 3628  
Permanent link to this record
 

 
Author Kelly, S.; van de Steeg, A.; Hughes, A.; van Rooij, G.; Bogaerts, A. pdf  url
doi  openurl
  Title (down) Thermal instability and volume contraction in a pulsed microwave N2plasma at sub-atmospheric pressure Type A1 Journal article
  Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 30 Issue 5 Pages 055005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the evolution of an isolated pulsed plasma in a vortex flow stabilised microwave (MW) discharge in N2 at 25 mbar via the combination of 0D kinetics modelling, iCCD imaging and laser scattering diagnostics. Quenching of electronically excited N2 results in fast gas heating and the onset of a thermal-ionisation instability, contracting the discharge volume. The onset of a thermal-ionisation instability driven by vibrational excitation pathways is found to facilitate significantly higher N2 conversion (i.e. dissociation to atomic N2 ) compared to pre-instability conditions, emphasizing the potential utility of this dynamic in future fixation applications. The instability onset is found to be instigated by super-elastic heating of the electron energy distribution tail via vibrationally excited N2 . Radial contraction of the discharge to the skin depth is found to occur post instability, while the axial elongation is found to be temporarily contracted during the thermal instability onset. An increase in power reflection during the thermal instability onset eventually limits the destabilising effects of exothermic electronically excited N2 quenching. Translational and vibrational temperature reach a quasi-non-equilibrium after the discharge contraction, with translational temperatures reaching ∼1200 K at the pulse end, while vibrational temperatures are found in near equilibrium with the electron energy (1 eV, or ∼11 600 K). This first description of the importance of electronically excited N2 quenching in thermal instabilities gives an additional fundamental understanding of N2 plasma behaviour in pulsed MW context, and thereby brings the eventual implementation of this novel N2 fixation method one step closer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000648710900001 Publication Date 2021-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access OpenAccess  
  Notes Stichting voor de Technische Wetenschappen, 733.000.002 ; Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; H2020 Marie Skłodowska-Curie Actions, 813393 838181 ; SK & AB acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘PENFIX’ within Horizon 2020 (Grant No. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. SK and AB would like to thank Mr Luc van ’t dack, Dr Karen Leyssens and Ing. Karel Venken for their technical assistance. AvdS, AH and GvR are grateful to Ampleon for the use of their solid-state microwave amplifier units and acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO Grant No. 733.000.002) in the framework of the CO2 -to-products programme with kind support from Shell, and the ENW PPP Fund for the top sectors. This project has been partially funded by the European Union’s Horizon 2020 research and innovation programme ‘Pioneer’ under the Marie Skłodowska-Curie Grant Agreement No. 813393. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:178122 Serial 6759  
Permanent link to this record
 

 
Author Damm, H.; Kelchtermans, A.; Bertha, A.; Van den Broeck, F.; Elen, K.; Martins, J.C.; Carleer, R.; D'Haen, J.; De Dobbelaere, C.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title (down) Thermal decomposition synthesis of Al-doped ZnO nanoparticles : an in-depth study Type A1 Journal article
  Year 2013 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 3 Issue 45 Pages 23745-23754  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Al-doped ZnO nanoparticles are synthesized by means of a heating up solution based thermal decomposition method. The synthesis involves a reaction of zinc acetylacetonate hydrate, aluminium acetylacetonate and 1,2-hexadecanediol in the presence of oleic acid and oleyl amine. A proposed reaction mechanism from reagents to monomers is corroborated by analysis of the evolving gases using headspace GC-MS analysis. The Al-doped ZnO nanoparticles synthesized are dynamically stabilized by adsorbed oleate ions, after deprotonation of oleic acid by oleyl amine, as was found by NOESY proton NMR and complementary FTIR spectroscopy. Precession electron diffraction shows a simultaneous increase in lattice parameters with Al concentration. This, together with HAADF-STEM and EDX maps, indicates the incorporation of Al into the ZnO nanoparticles. By the combination of complementary characterization methods during all stages of the synthesis, it is concluded that Al is incorporated into the ZnO wurtzite lattice as a dopant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326395800139 Publication Date 2013-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.108; 2013 IF: 3.708  
  Call Number UA @ lucian @ c:irua:112753 Serial 3627  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Dietz, W.; Verwerft, M. pdf  url
doi  openurl
  Title (down) Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 493 Issue Pages 154-167  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or “15-15Ti”) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium- Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 degrees C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 degrees C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 degrees C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 degrees C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000408044000018 Publication Date 2017-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 5 Open Access OpenAccess  
  Notes ; ; Approved Most recent IF: 2.048  
  Call Number UA @ lucian @ c:irua:145686 Serial 4753  
Permanent link to this record
 

 
Author Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K. pdf  doi
openurl 
  Title (down) Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 578 Issue 578 Pages 133-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A seriesof [TiN/TiAlN]nmultilayer coatingswith different bilayer numbers n=5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEMimaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000351686500019 Publication Date 2015-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 41 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number c:irua:125517 Serial 3626  
Permanent link to this record
 

 
Author Kandemir, A.; Ozden, A.; Cagin, T.; Sevik, C. doi  openurl
  Title (down) Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures Type A1 Journal article
  Year 2017 Publication Science and technology of advanced materials Abbreviated Journal  
  Volume 18 Issue 1 Pages 187-196  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, <100>, is better than the <111> crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405949800001 Publication Date 2017-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1468-6996; 1878-5514 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193772 Serial 8662  
Permanent link to this record
 

 
Author Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M. doi  openurl
  Title (down) Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs Type A1 Journal article
  Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 111 Issue 4 Pages 041901  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (k(Dia)) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of k(Dia) in the measured 25-225 degrees C range. Device simulation using the experimental jDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000406779700008 Publication Date 2017-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 78 Open Access Not_Open_Access  
  Notes ; The authors are grateful to Professor Michael Uren and Dr. Roland B. Simon (University of Bristol) for helpful discussions and to Dr. Sien Drijkoningen (Hasselt University) for taking the SEM micrographs. This work was in part supported by DARPA under Contract No. FA8650-15-C-7517, monitored by Dr. Avram Bar Cohen and Dr. John Blevins, and supported by Dr. Joseph Maurer and Dr. Abirami Sivananthan. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Y.Z. acknowledges China Scholarship Council for the financial support. S.K. and J.V. acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N “Charge ordering.” ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:145203 Serial 4728  
Permanent link to this record
 

 
Author Scipioni, R.; Matsubara, M.; Ruiz, E.; Massobrio, C.; Boero, M. doi  openurl
  Title (down) Thermal behavior of Si-doped fullerenes vs their structural stability at T = 0 K : a density functional study Type A1 Journal article
  Year 2011 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 510 Issue 1/3 Pages 14-17  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We establish the topological conditions underlying the thermal stability of C30Si30 clusters. Two topologies have been considered: a segregated one, where Si and C atoms lie on neighboring and yet, separated parts of the cage, and a non-segregated one, where the number of SiC bonds is maximized. The segregated network is energetically favored against the non-segregated one, both structures being fully relaxed at T = 0 K. Conversely, the non-segregated structure is the only one stable at finite temperatures, regardless of the nature of the local states (d or p) included in the KleynmanBylander construction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000291478400002 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 14 Open Access  
  Notes Approved Most recent IF: 1.815; 2011 IF: 2.337  
  Call Number UA @ lucian @ c:irua:90453 Serial 3625  
Permanent link to this record
 

 
Author Pedrazo-Tardajos, A.; Arslan Irmak, E.; Kumar, V.; Sánchez-Iglesias, A.; Chen, Q.; Wirix, M.; Freitag, B.; Albrecht, W.; Van Aert, S.; Liz-Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title (down) Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy. The experimental results were used as input for molecular dynamics simulations, to unravel the mechanisms behind the morphological transformation of Au@Pt core–shell nanorods. We conclude that thermal stability is influenced not only by the degree of coverage of Pt on Au but also by structural details of the Pt shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819246800001 Publication Date 2022-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 8 Open Access OpenAccess  
  Notes S.B., S.V.A., L.M.L.-M. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant nos. 731019 (EUSMI) and 823717 (ESTEEM3) and ERC Consolidator grant nos. 815128 (REALNANO) and 770887 (PICOMETRICS). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 through grants no. PID2020-117779RB-I00 and Maria de Maeztu Unit of Excellence no. MDM-2017-0720. The authors acknowledge the resources and services used for the simulations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government.; esteem3reported; esteem3JRA Approved Most recent IF: 17.1  
  Call Number EMAT @ emat @c:irua:188540 Serial 7072  
Permanent link to this record
 

 
Author Peymanirad, F.; Singh, S.K.; Ghorbanfekr-Kalashami, H.; Novoselov, K.S.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title (down) Thermal activated rotation of graphene flake on graphene Type A1 Journal article
  Year 2017 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 4 Issue 2 Pages 025015  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The self rotation of a graphene flake over graphite is controlled by the size, initial misalignment and temperature. Using both ab initio calculations and molecular dynamics simulations, we investigate annealing effects on the self rotation of a graphene flake on a graphene substrate. The energy barriers for rotation and drift of a graphene flake over graphene is found to be smaller than 25 meV/atom which is comparable to thermal energy. We found that small flakes (of about similar to 4 nm) are more sensitive to temperature and initial misorientation angles than larger one (beyond 10 nm). The initial stacking configuration of the flake is found to be important for its dynamics and time evolution of misalignment. Large flakes, which are initially in the AA-or AB-stacking state with small misorientation angle, rotate and end up in the AB-stacking configuration. However small flakes can they stay in an incommensurate state specially when the initial misorientation angle is larger than 2 degrees. Our results are in agreement with recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000424399600005 Publication Date 2017-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 16 Open Access  
  Notes ; We would like to acknowledge Annalisa Fasolino and MM van Wijk for providing us with the implemented parameters of REBO-KC [5] in LAMMPS. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation. ; Approved Most recent IF: 6.937  
  Call Number UA @ lucian @ c:irua:149364 Serial 4984  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. pdf  doi
openurl 
  Title (down) Theory of trions in quantum wells Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, JUL 30-AUG 03, 2001, PRAGUE, CZECH REPUBLIC Abbreviated Journal Physica E  
  Volume 12 Issue 1-4 Pages 543-545  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy levels of the negatively and positively charged excitons (also called trions) in a 200 Angstrom wide GaAs quantum well in the presence of a perpendicular magnetic field. A comparison is made with the experimental results of Glasberg et al. (Phys. Rev. B. 59 (1999) R10 425) and of Yusa et al. (cond-mat/0103505). (C) 2002 Elsevier Science B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000175206300134 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:103903 Serial 3624  
Permanent link to this record
 

 
Author Michel, K.H.; Costamagna; Peeters, F.M. pdf  doi
openurl 
  Title (down) Theory of thermal expansion in 2D crystals Type A1 Journal article
  Year 2015 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 252 Issue 252 Pages 2433-2437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000364690400014 Publication Date 2015-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 21 Open Access  
  Notes ; We thank B. Verberck, D. Lamoen, and A. Dobry for useful comments. We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. This work is supported by the Euro GRAPHENE project CONGRAN. ; Approved Most recent IF: 1.674; 2015 IF: 1.489  
  Call Number UA @ lucian @ c:irua:130281 Serial 4264  
Permanent link to this record
 

 
Author Badalian, S.M.; Ibrahim, I.S.; Peeters, F.M. openurl 
  Title (down) Theory of the magneto-transport in a nonplanar two dimensional electron gas Type P3 Proceeding
  Year 1997 Publication Abbreviated Journal  
  Volume Issue Pages 327-330  
  Keywords P3 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Scientific Place of Publication Singapore Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:19304 Serial 3623  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title (down) Theory of the evolution of phonon spectra and elastic constants from graphene to graphite Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 8 Pages 085424,1-085424,17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a unified theory of the phonon dispersions and elastic properties of graphene, graphite, and graphene multilayer systems. Starting from a fifth-nearest-neighbor force-constant model derived from full in-plane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)], we use Born's long-wave method to calculate the tension and bending coefficients of graphene. Extending the model by interplanar interactions, we study the phonon dispersions and the elastic constants of graphite, and the phonon spectra of graphene multilayers. We find that the inner displacement terms due to sublattice shifts between inequivalent C atoms are quantitatively important in determining the elastomechanical properties of graphene and of graphite. The overall agreement between theory and experiment is very satisfactory. We investigate the evolution from graphene to graphite by studying the increase in the rigid plane optical mode as a function of the number of layers N. At N=10 the graphite value B2g1127 cm−1 is attained within a few percent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000259406900106 Publication Date 2008-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 72 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76527 Serial 3622  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. doi  openurl
  Title (down) Theory of the elastic constants of graphite and graphene Type A1 Journal article
  Year 2008 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 245 Issue 10 Pages 2177-2180  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Born's long wave method is used to study the elastic properties of graphite and graphene. Starting from an empirical force constant model derived from full inplane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)] we calculate the tension coefficients of graphene. Extending the model by interplanar interactions, we calculate the elastic constants of graphite. The agreement of our theoretical values with inelastic x-ray scattering results on elastic constants of graphite [Bosak et al., Phys. Rev. B 75, 153408 (2007)] is very satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000260581800066 Publication Date 2008-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 47 Open Access  
  Notes Approved Most recent IF: 1.674; 2008 IF: 1.166  
  Call Number UA @ lucian @ c:irua:75660 Serial 3621  
Permanent link to this record
 

 
Author Symons, D.M.; Peeters, F.M.; Lakrimi, M.; Khym, S.; Portal, J.C.; Mason, N.J.; Nicholas, R.J.; Walker, P.J. doi  openurl
  Title (down) Theory of the band mixing induced negative magnetoresistance in broken gap superlattices Type A1 Journal article
  Year 1998 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 2 Issue Pages 353-357  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000075383500074 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.221; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24183 Serial 3620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: