toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; Amelinckx, S.; de Keyzer, R. doi  openurl
  Title (up) Long period surface ordering of iodine ions in mixed tabular AgBr-AgBrI microcrystals Type A1 Journal article
  Year 1995 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 337 Issue Pages 153-165  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995RQ74900024 Publication Date 2003-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13162 Serial 1836  
Permanent link to this record
 

 
Author Lepoittevin, C.; Malo, S.; Barrier, N.; Nguyen, N.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title (up) Long-range ordering in the Bi1-xAexFeO3-x/2 perovskites: Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 Type A1 Journal article
  Year 2008 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 181 Issue 10 Pages 2601-2609  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two-ordered perovskites, Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with a≈b≈2ap and c≈3ap (S.G.: Pb2n or Pbmn) for the Sr-based compound and one with a≈b≈2ap and c≈8ap (S.G.: B222, Bmm2, B2mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeOx]∞ layer, suggesting that Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi1/3Sr2/3FeO2.67 and a smooth reversible transition between 590 and 650 K for Bi1/2Ca1/2FeO2.75.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000260441000008 Publication Date 2008-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 27 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.299; 2008 IF: 1.910  
  Call Number UA @ lucian @ c:irua:75663 Serial 1839  
Permanent link to this record
 

 
Author Li, L.; Nijs, I.; De Boeck, H.; Vinduskova, O.; Reynaert, S.; Donnelly, C.; Zi, L.; Verbruggen, E. file  doi
openurl 
  Title (up) Longer dry and wet spells alter the stochasticity of microbial community assembly in grassland soils Type A1 Journal article
  Year 2023 Publication Soil biology and biochemistry Abbreviated Journal  
  Volume 178 Issue Pages 108969-9  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Climate change is increasing the duration of alternating wet and dry spells. These fluctuations affect soil water availability and other soil properties which are crucial drivers of soil microbial communities. While soil microbial communities have a moderate capacity to recover once a drought ceases, the expected alternation of strongly opposing regimes can challenge their capacity to adapt. Here, we set up experimental grassland mesocosms where precipitation frequency was adjusted along a gradient while holding total precipitation constant. The gradient varied the duration of wet and dry spells from 1 to 60 days during a total of 120 days, where we hy-pothesized that especially intermediate durations would increase the importance of stochastic community as-sembly due to frequent alternation of opposing environmental regimes. We examined bacterial and fungal community composition, diversity, co-occurrence patterns and assembly mechanisms across these different precipitation treatments. Our results show that 1) intermediate regimes of wet and dry spells increased the stochasticity of microbial community assembly whereas microbial communities at low and high regimes were subjected to more deterministic assembly, and 2) more persistent precipitation regimes (>6 days duration) reduced the fungal diversity and network connectivity but had little effect on bacterial communities. Collec-tively, these findings indicate that longer alternating wet and dry events lead to a less predictable and connected soil microbial community. This study provides new insight into the likely mechanisms through which precipi-tation persistence alters soil microbial communities and their predictability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930582500001 Publication Date 2023-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-0717 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.7 Times cited Open Access  
  Notes Approved Most recent IF: 9.7; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:195257 Serial 9211  
Permanent link to this record
 

 
Author Robberecht, H.J.; Van Grieken, R.E.; Van den Bosch, P.A.; Deelstra, H.; vanden Berghe, D. pdf  doi
openurl 
  Title (up) Losses of metabolically incorporated selenium in common digestion procedures for biological material Type A1 Journal article
  Year 1982 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 29 Issue 11 Pages 1025-1028  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Two common procedures for wet destruction of biological materials for subsequent determination of selenium have been investigated. Rat organs and biological fluids were endogenously labelled with 75Se to monitor losses during the procedures. Addition of nitric and perchloric acids with gradual heating up to 210° seemed to be the best method: at this temperature the labelled selenium was still recovered quantitatively, and the destruction was fast and efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1982PP35500009 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116568 Serial 8186  
Permanent link to this record
 

 
Author Wagaarachchige, J.D.; Idris, Z.; Arstad, B.; Kummamuru, N.B.; Sætre, K.A.S.; Halstensen, M.; Jens, K.-J. url  doi
openurl 
  Title (up) Low-viscosity nonaqueous sulfolane–amine–methanol solvent blend for reversible CO2 capture Type A1 Journal article
  Year 2022 Publication Industrial and engineering chemistry research Abbreviated Journal  
  Volume 61 Issue 17 Pages 5942-5951  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, the absorption–desorption performance of CO2 in six new solvent blends of amine (diisopropylamine (DPA), 2-amino-2-methyl-1-propanol (AMP), methyldiethanolamine (MDEA), diethanolamine (DEA), diisopropanolamine (DIPA), and ethanolamine (MEA)), sulfolane, and methanol has been monitored using ATR-FTIR spectroscopy. Additionally, NMR-based species confirmation and solvent viscosity analysis were done for DPA solvent samples. The identified CO2 capture products are monomethyl carbonate (MMC), carbamate, carbonate, and bicarbonate anions in different ratios. The DPA solvent formed MMC entirely with 0.88 molCO2/molamine capture capacity, 0.48 molCO2/molamine cyclic capacity, and 3.28 mPa·s CO2-loaded solvent viscosity. MEA, DEA, DIPA, and MDEA were shown to produce a low or a negligible amount of MMC while AMP occupied an intermediate position.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:199111 Serial 8895  
Permanent link to this record
 

 
Author Morozov, V.A.; Batuk, D.; Batuk, M.; Basovich, O.M.; Khaikina, E.G.; Deyneko, D.V.; Lazoryak, B.I.; Leonidov, I.I.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title (up) Luminescence Property Upgrading via the Structure and Cation Changing in AgxEu(2–x)/3WO4and AgxGd(2–x)/3–0.3Eu0.3WO4 Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 20 Pages 8811-8823  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The creation and ordering of A-cation vacancies and the effect of cation substitutions in the scheelite-type framework are investigated as a factor for controlling the scheelite-type structure and luminescence properties. AgxEu3+(2−x)/3□(1−2x)/3WO4 and AgxGd(2−x)/3−0.3Eu3+0.3□(1−2x)/3WO4 (x = 0.5−0) scheelite-type phases were synthesized by a solid state method, and their structures were investigated using a combination of transmission electron microscopy techniques and powder synchrotron X-ray diffraction. Transmission electron microscopy also revealed the (3 + 1)D incommensurately modulated character of AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.286, 0.2) phases. The crystal structures of the scheelite-based AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.5, 0.286, 0.2) red phosphors have been refined from high resolution synchrotron powder X-ray diffraction data. The luminescence properties of all phases under near-ultraviolet (n-UV) light have been investigated. The excitation spectra of AgxEu3+(2−x)/3□(1−2x)/3WO4 (x = 0.5, 0.286,0.2) phosphors show the strongest absorption at 395 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. The excitation spectra of the Eu2/3□1/3WO4 and Gd0.367Eu0.30□1/3WO4 phases exhibit the highest contribution of the charge transfer band at 250 nm and thus the most efficient energy transfer mechanism between the host and the luminescent ion as compared to direct excitation. The emission spectra of all samples indicate an intense red emission due to the 5D0 → 7F2 transition of Eu3+. Concentration dependence of the 5D0 → 7F2 emission for AgxEu(2−x)/3□(1−2x)/3WO4 samples differs from the same dependence for the earlier studied NaxEu3+(2−x)/3□(1−2x)/3MoO4 (0 ≤ x ≤ 0.5) phases. The intensity of the 5D0 → 7F2 emission is reduced almost 7 times with decreasing x from 0.5 to 0, but it practically does not change in the range from x = 0.286 to x = 0.200. The emission spectra of Gd-containing samples show a completely different trend as compared to only Eu-containing samples. The Eu3+ emission under excitation of Eu3+(5L6) level (λex = 395 nm) increases more than 2.5 times with the increasing Gd3+ concentration from 0.2 (x = 0.5) to 0.3 (x = 0.2) in the AgxGd(2−x)/3−0.3Eu3+0.3□(1−2x)/3WO4, after which it remains almost constant for higher Gd3+ concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413884900028 Publication Date 2017-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access Not_Open_Access  
  Notes This research was supported by FWO (project G039211N), Flanders Research Foundation. V.A.M. is grateful for financial support of the Russian Foundation for Basic Research (Grant 15-03-07741). E.G.K. and O.M.B. are grateful for financial support of the Russian Foundation for Basic Research (Grants 13-03-01020 and 16-03-00510). D.V.D. is grateful for financial support of the Russian Foundation for Basic Research (Grant 16-33-00197) and the Foundation of the President of the Russian Federation (Grant MK-7926.2016.5.). We are grateful to the ESRF for granting the beamtime. Experimental support of Andy Fitch at the ID31 beamline of ESRF is kindly acknowledged. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:147241 Serial 4768  
Permanent link to this record
 

 
Author van der Stam, W.; Berends, A.C.; Rabouw, F.T.; Willhammar, T.; Ke, X.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. pdf  url
doi  openurl
  Title (up) Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 621-628  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS NCs with photoluminescence (PL) far in the near-infrared (NIR), which cannot be directly synthesized by currently available synthesis protocols. We discuss the factors that favor partial, self-limited cation exchange from Cu2-xS to CIS NCs, rather than complete cation exchange to In2S3. The product CIS NCs have the wurtzite crystal structure, which is understood in terms of conservation of the hexagonal close packing of the anionic sublattice of the parent NCs into the product NCs. These results are an important step toward the design of CIS NCs with sizes and shapes that are not attainable by direct synthesis protocols and may thus impact a number of potential applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000348618400028 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 119 Open Access OpenAccess  
  Notes 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:125291 Serial 1858  
Permanent link to this record
 

 
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X. url  doi
openurl 
  Title (up) Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
  Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal Journal of Energy Chemistry  
  Volume 96 Issue Pages 153-163  
  Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links  
  Impact Factor 13.1 Times cited Open Access  
  Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved Most recent IF: 13.1; 2024 IF: 2.594  
  Call Number PLASMANT @ plasmant @ Serial 9124  
Permanent link to this record
 

 
Author Ricciardi, P.; Legrand, S.; Bertolotti, G.; Janssens, K. doi  openurl
  Title (up) Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges Type A1 Journal article
  Year 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 785-791  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Macro X-ray fluorescence scanning (MA-XRF) is gradually becoming an established technique for the non-invasive analytical investigation of painted surfaces. This paper discusses some of the benefits and limitations of employing MA-XRF for the study of manuscript illuminations. Art historical research on this type of artefacts that is based on scientific measurements is often limited by the fact that usually no sampling can take place. Hence there is a need for non-invasive analytical tools that make it possible to conduct systematic investigations. As a representative example of this type of objects, a 15th century Italian manuscript fragment from the collection of the Fitzwilliam Museum in Cambridge (UK) is investigated. The aims of the study were to gain insight into the materials and techniques employed by Renaissance illuminators and to help answer specific questions regarding the fragment's authorship and geographic origin. The complementarity and advantages of MA-XRF mapping versus site-specific analyses are discussed. For this purpose, MA-XRF data are evaluated and compared with the results of other analytical techniques. The interpretation of the elemental maps is discussed along with the challenges faced during the analysis. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600096 Publication Date 2015-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:144767 Serial 5698  
Permanent link to this record
 

 
Author Vanmeert, F.; de Nolf, W.; Dik, J.; Janssens, K. url  doi
openurl 
  Title (up) Macroscopic X-ray powder diffraction scanning : possibilities for quantitative and depth-selective parchment analysis Type A1 Journal article
  Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 11 Pages 6445-6452  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract At or below the surface of painted works of art, valuable information is present that provides insights into an objects past, such as the artists technique and the creative process that was followed or its conservation history but also on its current state of preservation. Various noninvasive techniques have been developed over the past 2 decades that can probe this information either locally (via point analysis) or on a macroscopic scale (e.g., full-field imaging and raster scanning). Recently macroscopic X-ray powder diffraction (MA-XRPD) mapping using laboratory X-ray sources was developed. This method can visualize highly specific chemical distributions at the macroscale (dm(2)). In this work we demonstrate the synergy between the quantitative aspects of powder diffraction and the noninvasive scanning capability of MA-XRPD highlighting the potential of the method to reveal new types of information. Quantitative data derived from a 15th/16th century illuminated sheet of parchment revealed three lead white pigments with different hydrocerussite-cerussite compositions in specific pictorial elements, while quantification analysis of impurities in the blue azurite pigment revealed two distinct azurite types: one rich in barite and one in quartz. Furthermore, on the same artifact, the depth-selective possibilities of the method that stem from an exploitation of the shift of the measured diffraction peaks with respect to reference data are highlighted. The influence of different experimental parameters on the depth-selective analysis results is briefly discussed. Promising stratigraphic information could be obtained, even though the analysis is hampered by not completely understood variations in the unit cell dimensions of the crystalline pigment phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434893200020 Publication Date 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 6 Open Access  
  Notes ; The authors thank Incoatec GmbH for giving us the opportunity to test the I mu S Cu X-ray source. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” project, and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:151994 Serial 5702  
Permanent link to this record
 

 
Author Vanmeert, F.; de Nolf, W.; De Meyer, S.; Dik, J.; Janssens, K. url  doi
openurl 
  Title (up) Macroscopic X-ray powder diffraction scanning, a new method for highly selective chemical imaging of works of art : instrument optimization Type A1 Journal article
  Year 2018 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 11 Pages 6436-6444  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the past decade macroscopic X-ray fluorescence imaging (MA-XRF) has become established as a method for the noninvasive investigation of flat painted surfaces, yielding large scale elemental maps. MA-XRF is limited by a lack of specificity, only allowing for indirect pigment identification based on the simultaneous presence of chemical elements. The high specificity of X-ray powder diffraction (XRPD) mapping is already being exploited at synchrotron facilities for investigations at the (sub)microscopic scale, but the technique has not yet been employed using lab sources. In this paper we present the development of a novel MA-XRPD/XRF instrument based on a laboratory X-ray source. Several combinations of X-ray sources and area detectors are evaluated in terms of their spatial and angular resolution and their sensitivity. The highly specific imaging capability of the combined MA-XRPD/XRF instrument is demonstrated on a 15th/16th century illuminated manuscript directly revealing the distribution of a large number of inorganic pigments, including the uncommon yellow pigment massicot (o-PbO). The case study illustrates the wealth of new mapping information that can be obtained in a noninvasive manner using the laboratory MA-XRPD/XRF instrument.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434893200019 Publication Date 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 11 Open Access  
  Notes ; The authors thank the persons involved at Incoatec GmbH, imXPAD SAS and Dectris Ltd. for loaning us some of their products over the past years. We acknowledge financial support from BELSPO (Brussels) S2-ART, the NWO (The Hague) Science4Arts “ReVisRembrandt” Project and GOA Project Solarpaint (University of Antwerp Research Council). Photo Copyright Geert Van der Snickt, 2008 for the photograph of the illuminated manuscript in the TOC graphic. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:151993 Serial 5701  
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Go, Y.B.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Hadermann, J.; Hodges, J.P.; Herber, R.H.; Nowik, I.; Greenblatt, M.; pdf  doi
openurl 
  Title (up) Magnetic and structural studies of the multifunctional material SrFe0.75Mo0.25O3-\text{\textgreek{d}} Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 51 Issue 22 Pages 12273-12280  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract SrFe0.75Mo0.25O3-delta has been recently discovered as an extremely efficient electrode for intermediate temperature solid oxide fuel cells (IT-SOFCs). We have performed structural and magnetic studies to fully characterize this multifunctional material. We have observed by powder neutron diffraction (PND) and transmission electron microscopy (TEM) that its crystal symmetry is better explained with a tetragonal symmetry (I4/mcm space group) than with the previously reported orthorhombic symmetry (Pnma space group). The temperature dependent magnetic properties indicate an exceptionally high magnetic ordering temperature (T-N similar to 750 K), well above room temperature. The ordered magnetic structure at low temperature was determined by PND to be an antiferromagnetic coupling of the Fe cations. Mossbauer spectroscopy corroborated the PND results. A detailed study, with X-ray absorption spectroscopy (XAS), in agreement with the Mossbauer results, confirmed the formal oxidation states of the cations to be mixed valence Fe3+/4+ and Mo6+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000311173700024 Publication Date 2012-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:105142 Serial 1862  
Permanent link to this record
 

 
Author Xu, X.; Jones, M.A.; Cassidy, S.J.; Manuel, P.; Orlandi, F.; Batuk, M.; Hadermann, J.; Clarke, S.J. pdf  url
doi  openurl
  Title (up) Magnetic Ordering in the Layered Cr(II) Oxide Arsenides Sr2CrO2Cr2As2and Ba2CrO2Cr2As2 Type A1 Journal article
  Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 21 Pages 15898-15912  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) μB (for Sr2CrO2Cr2As2) and 3.30(1) μB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) μB for Sr2CrO2Cr2As2 and 2.298(8) μB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588738100035 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes We thank the UK EPSRC (EP/M020517/1 and EP/P018874/ 1) and the Leverhulme Trust (RPG-2014-221) for funding and the ISIS pulsed neutron and muon source (RB1610357 and RB1700075) and the Diamond Light Source Ltd. (EE13284 and EE18786) for the award of beam time. We thank Dr. A. Baker and Dr. C. Murray for support on I11. Approved Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number EMAT @ emat @c:irua:176058 Serial 6704  
Permanent link to this record
 

 
Author Chin, C.–M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. pdf  url
doi  openurl
  Title (up) Magnetic properties of La3Ni2Sb Ta Nb1––O9; from relaxor to spin glass Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry (Print) Abbreviated Journal Journal of Solid State Chemistry  
  Volume 273 Issue Pages 175-185  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Neutron diffraction experiments conducted at 5 K in a magnetic field 0 < H/kOe < 50 have shown that the monoclinic perovskite La3Ni2TaO9 behaves as a relaxor ferromagnet. Compositions in the series La3Ni2SbxTayNb1–x–yO9 have been synthesized in polycrystalline form. Electron microscopy, X–ray diffraction and neutron diffraction have shown that the solid solutions are largely homogeneous and monophasic. Magnetometry and neutron diffraction have shown that the relaxor magnetisation persists in low fields when x + y = 1 but is rapidly diminished by the introduction of niobium. This change in magnetic behaviour is ascribed to the differences in the d–orbital energies of Sb5+, Nb5+ and Ta5+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466261100026 Publication Date 2019-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. Approved no  
  Call Number EMAT @ emat @c:irua:166445 Serial 6346  
Permanent link to this record
 

 
Author Tang, Y.; Sena, R.P.; Aydeev, M.; Battle, P.D.; Cadogan, J.M.; Hadermann, J.; Hunter, E.C. url  doi
openurl 
  Title (up) Magnetic properties of the 6H perovskite Ba3Fe2TeO9 Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 253 Issue Pages 347-354  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Ba3Fe2TeO9 having the 6H perovskite structure has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. Partial ordering of Fe3+ and Te6+ cations occurs over the six-coordinate sites; the corner-sharing octahedra are predominantly occupied by the former and the face-sharing octahedra by a 1:1 mixture of the two. On cooling through the temperature range 18 < T/K < 295 an increasing number of spins join an antiferromagnetic backbone running through the structure while the remainder show complex relaxation effects. At 3 K an antiferromagnetic phase and a spin glass coexist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000406572600047 Publication Date 2017-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access OpenAccess  
  Notes ; We thank EPSRC for financial support through grant EP/M018954/1. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:145692 Serial 4743  
Permanent link to this record
 

 
Author Blom, F.A.P.; Peeters, F.M.; van de Zanden, K.; van Hove, M. doi  openurl
  Title (up) Magneto-oscillations of the gate current in a laterally modulated two-dimensional electron gas Type A1 Journal article
  Year 1996 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 361/362 Issue Pages 851-854  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UZ03300202 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited 1 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15812 Serial 1905  
Permanent link to this record
 

 
Author Paul, S.; Bladt, E.; Richter, A.F.; Döblinger, M.; Tong, Y.; Huang, H.; Dey, A.; Bals, S.; Debnath, T.; Polavarapu, L.; Feldmann, J. url  doi
openurl 
  Title (up) Manganese‐Doping‐Induced Quantum Confinement within Host Perovskite Nanocrystals through Ruddlesden–Popper Defects Type A1 Journal article
  Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit  
  Volume 59 Issue 17 Pages 6794-6799  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of doping Mn2+ ions into II–VI semiconductor nanocrystals (NCs) was recently extended to perovskite NCs. To date, most studies on Mn2+ doped NCs focus on enhancing the emission related to the Mn2+ dopant via an energy transfer mechanism. Herein, we found that the doping of Mn2+ ions into CsPbCl3 NCs not only results in a Mn2+‐related orange emission, but also strongly influences the excitonic properties of the host NCs. We observe for the first time that Mn2+ doping leads to the formation of Ruddlesden–Popper (R.P.) defects and thus induces quantum confinement within the host NCs. We find that a slight doping with Mn2+ ions improves the size distribution of the NCs, which results in a prominent excitonic peak. However, with increasing the Mn2+ concentration, the number of R.P. planes increases leading to smaller single‐crystal domains. The thus enhanced confinement and crystal inhomogeneity cause a gradual blue shift and broadening of the excitonic transition, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525279800024 Publication Date 2020-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 64 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, EXC 2089/1-390776260 ; H2020 European Research Council, 815128-REALNANO ; Horizon 2020 Framework Programme, 839042 731019 ; Alexander von Humboldt-Stiftung; We acknowledge financial support by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy—EXC 2089/1‐390776260 (“e‐conversion”), the Alexander von Humboldt Foundation (A.D. and T.D.), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska‐Curie grant agreement No. 839042 (H.H.). E.B. acknowledges a postdoctoral grant 12T2719N from the Research Foundation Flanders (FWO, Belgium). E.B. and S.B. acknowledge the financial support from the European Research Council ERC Consolidator Grants #815128‐REALNANO. L.P. thanks the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). We thank local research center “Center for NanoScience (CeNS)” for providing communicative networking structure. We acknowledge the funding of Nanosystems Initiative Munich (NIM) for color figures.; sygma Approved Most recent IF: 16.6; 2020 IF: 11.994  
  Call Number EMAT @ emat @c:irua:168535 Serial 6399  
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H. doi  openurl
  Title (up) Many electron- and hole terms of molecular ions C60n\pm Type A1 Journal article
  Year 2003 Publication Coupling In Chemistry And Physics Abbreviated Journal Adv Quantum Chem  
  Volume 44 Issue Pages 305-312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000188940800019 Publication Date 2004-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0065-3276; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.196 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.196; 2003 IF: 0.375  
  Call Number UA @ lucian @ c:irua:104131 Serial 1942  
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Campos, R.; De Wael, K. pdf  url
doi  openurl
  Title (up) Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions Type A1 Journal article
  Year 2021 Publication Trac-Trends In Analytical Chemistry Abbreviated Journal Trac-Trend Anal Chem  
  Volume 142 Issue Pages 116311  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers are promising biorecognition elements with a wide applicability from therapeutics to bio-sensing. However, to successfully use these biomolecules, a complete characterisation of their bindingperformance in the presence of the target is crucial. Several multi-analytical approaches have been re-ported including techniques to describe kinetic and thermodynamic aspects of the aptamer-targetinteraction, and techniques which allow an in-depth understanding of the aptamer-target structures.Recent literature shows the need of a critical data interpretation, a combination of characterisationtechniques and suggests the key role of the characterisation protocol design. Indeed, thefinal applicationof the aptamer should be considered before choosing the characterisation method. All the limitations andcapabilities of the analytical tools in use for aptamer characterisation should be taken into account. Here,we present a critical overview of the current methods and multi-analytical approaches to study aptamer-target binding, aiming to provide researchers with guidelines for the design of characterisation protocols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682179000010 Publication Date 2021-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-9936; 1879-3142 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.442 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.442  
  Call Number UA @ admin @ c:irua:179407 Serial 8203  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. openurl 
  Title (up) Mathematical description of a direct current glow discharge in argon Type A1 Journal article
  Year 1996 Publication Fresenius' journal of analytical chemistry Abbreviated Journal  
  Volume 355 Issue Pages 853-857  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos A1996UY97500019 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 12 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:16240 Serial 1955  
Permanent link to this record
 

 
Author Vos, L.; Van Grieken, R. doi  openurl
  Title (up) Matrix effects and analysis of biological material by spark source mass spectrometry Type A3 Journal article
  Year 1985 Publication Fresenius' Zeitschrift für analytische Chemie Abbreviated Journal  
  Volume 321 Issue 1 Pages 32-36  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Spark-source mass spectrometric analyses of synthetic simulated biological samples were performed to determine the importance of matrix effects. A correlation between the variation of the relative sensitivity coefficients (RSC's) and the spark plasma composition, hence plasma temperature, was found. The determined RSC's were used in the analysis of four biological standard reference materials. An accuracy of 1013% and detection limits between 0.005 and 0.5 ppm were obtained during analysis under normal conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2004-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-1152 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116641 Serial 8209  
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Mechanical properties of monolayer sulphides : a comparative study between MoS2, HfS2 and TiS3 Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27742-27749  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The in-plane stiffness (C), Poisson's ratio (nu), Young's modulus and ultimate strength (sigma) along two different crystallographic orientations are calculated for the single layer crystals: MoS2, HfS2 and TiS3 in 1H, 1T and monoclinic phases. We find that MoS2 and HfS2 have isotropic in-plane stiffnesses of 124.24 N m(-1) and 79.86 N m(-1), respectively. While for TiS3 the in-plane stiffness is highly anisotropic due to its monoclinic structure, with C-x = 83.33 N m(-1) and C-y = 133.56 N m(-1) (x and y are parallel to its longer and shorter in-plane lattice vectors.). HfS2 which is in the 1T phase has the smallest anisotropy in its ultimate strength, whereas TiS3 in the monoclinic phase has the largest. Along the armchair direction MoS2 has the largest sigma of 23.48 GPa, whereas along y TiS3 has the largest sigma of 18.32 GPa. We have further analyzed the band gap response of these materials under uniaxial tensile strain, and find that they exhibit different behavior. Along both armchair and zigzag directions, the band gap of MoS2 (HfS2) decreases (increases) as strain increases, and the response is almost isotropic. For TiS3, the band gap decreases when strain is along x, while if strain is along y, the band gap increases first and then decreases beyond a threshold strain value. The different characteristics observed in these sulphides with different structures shed light on the relationship between the structure and properties, which is useful for applications in nanotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800055 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 83 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Super-computer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129478 Serial 4204  
Permanent link to this record
 

 
Author Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C. pdf  url
doi  openurl
  Title (up) Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage Type A1 Journal Article
  Year 2014 Publication Chemical Reviews Abbreviated Journal Chem. Rev.  
  Volume 114 Issue 8 Pages 4041-4062  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing non-fossil based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as H source for nitrogen fixation into NH3 by non-equilibrium plasma. The highest selectivity towards NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2014-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2665 ISBN Additional Links  
  Impact Factor Times cited Open Access  
  Notes We would like to thank Sylvia Dewilde (Department of Biomedical Sciences) for providing analytical equipment. Approved no  
  Call Number PLASMANT @ plasmant @ Serial 6337  
Permanent link to this record
 

 
Author Delabie, A.; Sioncke, S.; Rip, J.; van Elshocht, S.; Caymax, M.; Pourtois, G.; Pierloot, K. doi  openurl
  Title (up) Mechanisms for the trimethylaluminum reaction in aluminum oxide atomic layer deposition on sulfur passivated germanium Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue 35 Pages 17523-17532  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Germanium combined with high-κ dielectrics is investigated for the next generations of CMOS devices. Therefore, we study reaction mechanisms for Al2O3 atomic layer deposition on sulfur passivated Ge using calculations based on density functional theory and total reflection X-ray fluorescence (TXRF). TXRF indicates 6 S/nm2 and 4 Al/nm2 after the first TMA/H2O reaction cycle, and growth inhibition from the second reaction cycle on. Calculations are performed on molecular clusters representing −GeSH surface sites. The calculations confirm that the TMA reaction does not affect the S content. On fully SH-terminated Ge, TMA favorably reacts with up to three −GeSH sites, resulting in a near tetrahedral Al coordination. Electron deficient structures with a GeS site shared between two Al atoms are proposed. The impact of the cluster size on the structures and reaction energetics is systematically investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000294386000037 Publication Date 2011-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:91714 Serial 1980  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Dewaele, D.; Lemière, F.; Sobott, F.; Benedikt, J.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title (up) Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 5787-5799  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics (MD) simulations were performed to provide atomic scale insight in the initial interaction between hydroxyl radicals (OH) and peptide systems in solution. These OH radicals are representative reactive oxygen species produced by cold atmospheric plasmas. The use of plasma for biomedical applications is gaining increasing interest, but the fundamental mechanisms behind the plasma modifications still remain largely elusive. This study helps to gain more insight in the underlying mechanisms of plasma medicine but is also more generally applicable to peptide oxidation, of interest for other applications. Combining both reactive and nonreactive MD simulations, we are able to elucidate the reactivity of the amino acids inside the peptide systems and their effect on their structure up to 1 μs. Additionally, experiments were performed, treating the simulated peptides with a plasma jet. The computational results presented here correlate well with the obtained experimental data and highlight the importance of the chemical environment for the reactivity of the individual amino acids, so that specific amino acids are attacked in higher numbers than expected. Furthermore, the long time scale simulations suggest that a single oxidation has an effect on the 3D conformation due to an increase in hydrophilicity and intra- and intermolecular interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396969900037 Publication Date 2017-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G012413N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:142202 Serial 4537  
Permanent link to this record
 

 
Author Kus, M.; Altantzis, T.; Vercauteren, S.; Caretti, I.; Leenaerts, O.; Batenburg, K.J.; Mertens, M.; Meynen, V.; Partoens, B.; Van Doorslaer, S.; Bals, S.; Cool, P. pdf  url
doi  openurl
  Title (up) Mechanistic Insight into the Photocatalytic Working of Fluorinated Anatase {001} Nanosheets Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 121 Issue 121 Pages 26275-26286  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Anatase nanosheets with exposed {001} facets

have gained increasing interest for photocatalytic applications. To

fully understand the structure-to-activity relation, combined

experimental and computational methods have been exploited.

Anatase nanosheets were prepared under hydrothermal conditions

in the presence of fluorine ions. High resolution scanning

transmission electron microscopy was used to fully characterize

the synthesized material, confirming the TiO2 nanosheet

morphology. Moreover, the surface structure and composition

of a single nanosheet could be determined by annular bright-field

scanning transmission electron microscopy (ABF-STEM) and

STEM electron energy loss spectroscopy (STEM-EELS). The photocatalytic activity was tested for the decomposition of organic

dyes rhodamine 6G and methyl orange and compared to a reference TiO2 anatase sample. The anatase nanosheets with exposed

{001} facets revealed a significantly lower photocatalytic activity compared to the reference. In order to understand the

mechanism for the catalytic performance, and to investigate the role of the presence of F−, light-induced electron paramagnetic

resonance (EPR) experiments were performed. The EPR results are in agreement with TEM, proving the presence of Ti3+

species close to the surface of the sample and allowing the analysis of the photoinduced formation of paramagnetic species.

Further, ab initio calculations of the anisotropic effective mass of electrons and electron holes in anatase show a very high effective

mass of electrons in the [001] direction, having a negative impact on the mobility of electrons toward the {001} surface and thus

the photocatalysis. Finally, motivated by the experimental results that indicate the presence of fluorine atoms at the surface, we

performed ab initio calculations to determine the position of the band edges in anatase slabs with different terminations of the

{001} surface. The presence of fluorine atoms near the surface is shown to strongly shift down the band edges, which indicates

another reason why it can be expected that the prepared samples with a large amount of {001} surface, but with fluorine atoms

near the surface, show only a low photocatalytic activity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417228500017 Publication Date 2017-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access OpenAccess  
  Notes The authors acknowledge the University of Antwerp for financial support in the frame of a GOA project. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.V.D. and V.M. acknowledge funding from the Fund for Scientific Research-Flanders (G.0687.13). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:147240UA @ admin @ c:irua:147240 Serial 4771  
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V. pdf  doi
openurl 
  Title (up) Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 43 Pages 26201-26210  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493865700019 Publication Date 2019-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164664 Serial 6310  
Permanent link to this record
 

 
Author Singh, S.K.; Costamagna, S.; Neek-Amal, M.; Peeters, F.M. doi  openurl
  Title (up) Melting of partially fluorinated graphene : from detachment of fluorine atoms to large defects and random coils Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 8 Pages 4460-4464  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The melting of fluorographene is very unusual and depends strongly on the degree of fluorination. For temperatures below 1000 K, fully fluorinated graphene (FFG) is thermomechanically more stable than graphene but at T-m approximate to 2800 K FFG transits to random coils which is almost 2 times lower than the melting temperature of graphene, i.e., 5300 K. For fluorinated graphene up to 30% ripples causes detachment of individual F-atoms around 2000 K, while for 40%-60% fluorination large defects are formed beyond 1500 K and beyond 60% of fluorination F-atoms remain bonded to graphene until melting. The results agree with recent experiments on the dependence of the reversibility of the fluorination process on the percentage of fluorination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000332188100069 Publication Date 2014-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 16 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF postdoc Fellowship/299855 (for M.N.-A.), the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-VI). Financial support from the Collaborative program MINCyT (Argentina)-FWO(Belgium) is also acknowledged. ; Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:128874 Serial 4600  
Permanent link to this record
 

 
Author Matthai, C.C.; Lamoen, D.; March, N.H. pdf  url
doi  openurl
  Title (up) Melting temperatures and possible precursor plastic phases of CCl4and GeI4as a function of pressure Type A1 Journal article
  Year 2016 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq  
  Volume 54 Issue 54 Pages 130-134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The motivation for the present study is to be found in the recent experiments of Fuchizaki and Hamaya on GeI4. They observed a rapid increase in the melting temperature Tm in going from atmospheric pressure to p ~ 2.6 GPa. Tm was found to be largely independent of pressure above this value. In this paper, heuristic arguments are presented to support the idea that until some critical pressure, a crystalline phase of SnI4, CCl4 and GeI4 molecular solids melts into a low density liquid. However, at this critical pressure, a phase boundary intersects Tm(p), separating a low density liquid phase from a high density liquid. The new phase boundary is between the crystal and an amorphous molecular solid with increasing polymerisation as the pressure is increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365724100012 Publication Date 2015-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9104 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.145 Times cited Open Access  
  Notes NHM wishes to thank Professors D. Lamoen and C. Van Alsenoy for making possible the continuing affiliation of Approved Most recent IF: 1.145  
  Call Number c:irua:130190 Serial 4029  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title (up) Merging Metadynamics into Hyperdynamics: Accelerated Molecular Simulations Reaching Time Scales from Microseconds to Seconds Type A1 Journal article
  Year 2015 Publication Journal of chemical theory and computation Abbreviated Journal J Chem Theory Comput  
  Volume 11 Issue 11 Pages 4545-4554  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The hyperdynamics method is a powerful tool to simulate slow processes at the atomic level. However, the construction of an optimal hyperdynamics potential is a task that is far from trivial. Here, we propose a generally applicable implementation of the hyperdynamics algorithm, borrowing two concepts from metadynamics. First, the use of a collective variable (CV) to represent the accelerated dynamics gives the method a very large flexibility and simplicity. Second, a metadynamics procedure can be used to construct a suitable history-dependent bias potential on-the-fly, effectively turning the algorithm into a self-learning accelerated molecular dynamics method. This collective variable-driven hyperdynamics (CVHD) method has a modular design: both the local system properties on which the bias is based, as well as the characteristics of the biasing method itself, can be chosen to match the needs of the considered system. As a result, system-specific details are abstracted from the biasing algorithm itself, making it extremely versatile and transparent. The method is tested on three model systems: diffusion on the Cu(001) surface and nickel-catalyzed methane decomposition, as examples of reactive processes with a bond-length-based CV, and the folding of a long polymer-like chain, using a set of dihedral angles as a CV. Boost factors up to 109, corresponding to a time scale of seconds, could be obtained while still accurately reproducing correct dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000362921700004 Publication Date 2015-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.245 Times cited 41 Open Access  
  Notes K.M.B. is funded as Ph.D. fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant No. 11 V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), funded by the Hercules Foundation and the Flemish Government−Department EWI. Approved Most recent IF: 5.245; 2015 IF: 5.498  
  Call Number c:irua:128183 Serial 3991  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: